Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Multifunctional Mesoporous Silica Nanoparticles for Cancer Therapy and Imaging

Author(s): Fahima Dilnawaz*

Volume 26, Issue 31, 2019

Page: [5745 - 5763] Pages: 19

DOI: 10.2174/0929867325666180501101044

Price: $65

Abstract

Background: Cancer is a widespread disease and has a high mortality rate. Popular conventional treatment encompasses chemotherapy, radiation and surgical resection. However, these treatments impart lots of toxicity problems to the patients mostly due to their non-selectiveness nature, which invokes drug resistances and severe side-effects.

Objectives: In this regard, nanotechnology has claimed to be a smart technology that provides the system with the ability to target drugs to the specific sites. With the use of nanotechnology, various nanomaterials that are widely used as a drug delivery vehicle are created for biomedical applications. Amongst variously diversified nanovehicles, mesoporous silica nanoparticles (MSNs) have attracted enormous attention due to their structural characteristics, great surface areas, tunable pore diameters, good thermal and chemical stability, excellent biocompatibility along with ease of surface modification. Furthermore, the drug release from MSNs can be tailored through various stimuli response gatekeeper systems. The ordered structure of MSNs is extremely suitable for loading of the high amount of drug molecules with controlled delivery for targeting the cancer tissues via enhanced permeability and retention effect or further with surface modification, it can also be actively targeted by various ligands.

Methods: The review article emphases the common synthetic methods and current advancement of MSNs usages for stimuli response drug delivery, immunotherapy as well as the theranostic ability for cancer.

Conclusion: Although MSNs are becoming the promising tool for more efficient and safer cancer therapy, however, additional translational studies are required to explore its multifunctional ability in a clinical setting.

Keywords: Nanotechnology, mesoporous silica nanoparticles, theranostic, drug delivery, cancer therapy, biodegradability.

[1]
Reichert, J.M.; Wenger, J.B. Development trends for new cancer therapeutics and vaccines. Drug Discov. Today, 2008, 13(1-2), 30-37.
[http://dx.doi.org/10.1016/j.drudis.2007.09.003] [PMID: 18190861]
[2]
Das, M.; Mohanty, C.; Sahoo, S.K. Ligand-based targeted therapy for cancer tissue. Expert Opin. Drug Deliv., 2009, 6(3), 285-304.
[http://dx.doi.org/10.1517/17425240902780166] [PMID: 19327045]
[3]
Gensini, G.F.; Conti, A.A.; Lippi, D. The contributions of Paul Ehrlich to infectious disease. J. Infect., 2007, 54(3), 221-224.
[http://dx.doi.org/10.1016/j.jinf.2004.05.022] [PMID: 16567000]
[4]
Sahoo, S.K.; Parveen, S.; Panda, J.J. The present and future of nanotechnology in human health care. Nanomedicine (Lond.), 2007, 3(1), 20-31.
[http://dx.doi.org/10.1016/j.nano.2006.11.008] [PMID: 17379166]
[5]
Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1), 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[6]
Sahoo, S.K.; Labhasetwar, V. Nanotech approaches to drug delivery and imaging. Drug Discov. Today, 2003, 8(24), 1112-1120.
[http://dx.doi.org/10.1016/S1359-6446(03)02903-9] [PMID: 14678737]
[7]
Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S.G.; Nel, A.E.; Tamanoi, F.; Zink, J.I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano, 2008, 2(5), 889-896.
[http://dx.doi.org/10.1021/nn800072t] [PMID: 19206485]
[8]
Argyo, C.; Weiss, V.; Braeuchle, C.; Bein, T. Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem. Mater., 2014, 26, 435-451.
[http://dx.doi.org/10.1021/cm402592t]
[9]
Yuan, L.; Tang, Q.; Yang, D.; Zhang, J.Z.; Zhang, F.; Hu, J. Preparation of pH-responsive mesoporous silica nanoparticles and their application in controlled drug delivery. J. Phys. Chem. C, 2011, 115, 9926-9932.
[http://dx.doi.org/10.1021/jp201053d]
[10]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[11]
Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J. Control. Release, 2015, 200, 138-157.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.030] [PMID: 25545217]
[12]
Choi, H.; Chen, I.W. Surface-modified silica colloid for diagnostic imaging. J. Colloid Interface Sci., 2003, 258(2), 435-437.
[http://dx.doi.org/10.1016/S0021-9797(02)00130-3] [PMID: 12618117]
[13]
Liberman, A.; Mendez, N.; Trogler, W.C.; Kummel, A.C. Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf. Sci. Rep., 2014, 69(2-3), 132-158.
[http://dx.doi.org/10.1016/j.surfrep.2014.07.001] [PMID: 25364083]
[14]
Shimura, N.; Ogawa, M. Preparation of surfactant templated nanoporous silica spherical particles by the Stöber method. Effect of solvent composition on the particle size. J. Mater. Sci., 2007, 42, 5299-5306.
[http://dx.doi.org/10.1007/s10853-007-1771-y]
[15]
Stöber, W.; Fink, A.; Bohn, E. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range 1. J. Colloid Interface Sci., 1968, 26, 62-69.
[http://dx.doi.org/10.1016/0021-9797(68)90272-5]
[16]
Wang, X-D.; Shen, Z-X.; Sang, T.; Cheng, X-B.; Li, M-F.; Chen, L-Y.; Wang, Z-S. Preparation of spherical silica particles by Stöber process with high concentration of tetra-ethyl-orthosilicate. J. Colloid Interface Sci., 2010, 341(1), 23-29.
[http://dx.doi.org/10.1016/j.jcis.2009.09.018] [PMID: 19819463]
[17]
Cai, Q.; Lin, W-Y.; Xiao, F-S.; Pang, W-Q.; Chen, X-H.; Zou, B-S. The preparation of highly ordered MCM-41 with extremely low surfactant concentration. Microporous Mesoporous Mater., 1999, 32, 1-15.
[http://dx.doi.org/10.1016/S1387-1811(99)00082-7]
[18]
Radu, D.R.; Lai, C-Y.; Huang, J.; Shu, X.; Lin, V.S.Y. Fine-tuning the degree of organic functionalization of mesoporous silica nanosphere materials via an interfacially designed co-condensation method. Chem. Commun. (Camb.), 2005, (10), 1264-1266.
[http://dx.doi.org/10.1039/b412618a] [PMID: 15742046]
[19]
Jambhrunkar, S.; Yu, M.; Yang, J.; Zhang, J.; Shrotri, A.; Endo-Munoz, L.; Moreau, J.; Lu, G.; Yu, C. Stepwise pore size reduction of ordered nanoporous silica materials at angstrom precision. J. Am. Chem. Soc., 2013, 135(23), 8444-8447.
[http://dx.doi.org/10.1021/ja402463h] [PMID: 23668366]
[20]
Chen, Y.; Chen, H.; Guo, L.; He, Q.; Chen, F.; Zhou, J.; Feng, J.; Shi, J. Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano, 2010, 4(1), 529-539.
[http://dx.doi.org/10.1021/nn901398j] [PMID: 20041633]
[21]
Sandberg, L.I.C.; Gao, T.; Jelle, B.; Gustavsen, A. Synthesis of Hollow Silica Nanospheres by Sacrificial Polystyrene Templates for Thermal Insulation Applications. Adv. Mater. Sci. Eng., 2013, 1-3.
[http://dx.doi.org/10.1155/2013/483651]
[22]
Yang, J.; Lind, J.; Trogler, W.C. Synthesis of Hollow Silica and Titania Nanospheres. Chem. Mater., 2008, 20, 2875-2877.
[http://dx.doi.org/10.1021/cm703264y]
[23]
Yang, J.; Lee, J.; Kang, J.; Lee, K.; Suh, J-S.; Yoon, H-G.; Huh, Y-M.; Haam, S. Hollow silica nanocontainers as drug delivery vehicles. Langmuir, 2008, 24(7), 3417-3421.
[http://dx.doi.org/10.1021/la701688t] [PMID: 18324841]
[24]
Trewyn, B.G.; Whitman, C.M.; Lin, V.S.Y. Morphological Control of Room-Temperature Ionic Liquid Templated Mesoporous Silica Nanoparticles for Controlled Release of Antibacterial Agents. Nano Lett., 2004, 4, 2139-2143.
[http://dx.doi.org/10.1021/nl048774r]
[25]
Rieter, W.J.; Taylor, K.M.; Lin, W. Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. J. Am. Chem. Soc., 2007, 129(32), 9852-9853.
[http://dx.doi.org/10.1021/ja073506r] [PMID: 17645339]
[26]
Meng, Q.; Xiang, S.; Zhang, K.; Wang, M.; Bu, X.; Xue, P.; Liu, L.; Sun, H.; Yang, B. A facile two-step etching method to fabricate porous hollow silica particles. J. Colloid Interface Sci., 2012, 384(1), 22-28.
[http://dx.doi.org/10.1016/j.jcis.2012.06.043] [PMID: 22818793]
[27]
Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350), 548-552.
[http://dx.doi.org/10.1126/science.279.5350.548] [PMID: 9438845]
[28]
Wang, F.; Guo, C.; Yang, L.R.; Liu, C-Z. Magnetic mesoporous silica nanoparticles: fabrication and their laccase immobilization performance. Bioresour. Technol., 2010, 101(23), 8931-8935.
[http://dx.doi.org/10.1016/j.biortech.2010.06.115] [PMID: 20655206]
[29]
Tao, C.; Zhu, Y. Magnetic mesoporous silica nanoparticles for potential delivery of chemotherapeutic drugs and hyperthermia; Dalton Trasactions, 2014, p. 41.
[30]
Yu, X.; Zhu, Y. Preparation of magnetic mesoporous silica nanoparticles as a multifunctional platform for potential drug delivery and hyperthermia. Sci. Technol. Adv. Mater., 2016, 17(1), 229-238.
[http://dx.doi.org/10.1080/14686996.2016.1178055] [PMID: 27877873]
[31]
Lu, F.; Popa, A.; Zhou, S.; Zhu, J-J.; Samia, A.C.S. Iron oxide-loaded hollow mesoporous silica nanocapsules for controlled drug release and hyperthermia. Chem. Commun. (Camb.), 2013, 49(97), 11436-11438.
[http://dx.doi.org/10.1039/c3cc46658b] [PMID: 24169596]
[32]
Byrne, J.D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev., 2008, 60(15), 1615-1626.
[http://dx.doi.org/10.1016/j.addr.2008.08.005] [PMID: 18840489]
[33]
Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release, 2000, 65(1-2), 271-284.
[http://dx.doi.org/10.1016/S0168-3659(99)00248-5] [PMID: 10699287]
[34]
Acharya, S.; Sahoo, S.K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv. Drug Deliv. Rev., 2011, 63(3), 170-183.
[http://dx.doi.org/10.1016/j.addr.2010.10.008] [PMID: 20965219]
[35]
Iyer, A.K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today, 2006, 11(17-18), 812-818.
[http://dx.doi.org/10.1016/j.drudis.2006.07.005] [PMID: 16935749]
[36]
Bae, Y.H. Drug targeting and tumor heterogeneity. J. Control. Release, 2009, 133(1), 2-3.
[http://dx.doi.org/10.1016/j.jconrel.2008.09.074] [PMID: 18848589]
[37]
Yousaf, N.; Howard, J.C.; Williams, B.D. Targeting behavior of rat monoclonal IgG antibodies in vivo: role of antibody isotype, specificity and the target cell antigen density. Eur. J. Immunol., 1991, 21(4), 943-950.
[http://dx.doi.org/10.1002/eji.1830210413] [PMID: 2019290]
[38]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[39]
Dilnawaz, F.; Sahoo, S.K. Augmented Anticancer Efficacy by si-RNA Complexed Drug-Loaded Mesoporous Silica Nanoparticles in Lung Cancer Therapy; ACS Appl. Nano Mater, 2018.
[http://dx.doi.org/10.1021/acsanm.7b00196]
[40]
Lu, J.; Liong, M.; Zink, J.I.; Tamanoi, F. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small, 2007, 3(8), 1341-1346.
[http://dx.doi.org/10.1002/smll.200700005] [PMID: 17566138]
[41]
Song, Y.; Li, Y.; Xu, Q.; Liu, Z. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook. Int. J. Nanomedicine, 2016, 12, 87-110.
[http://dx.doi.org/10.2147/IJN.S117495] [PMID: 28053526]
[42]
Croissant, J.; Maynadier, M.; Gallud, A.; Peindy N’dongo, H.; Nyalosaso, J.L.; Derrien, G.; Charnay, C.; Durand, J.O.; Raehm, L.; Serein-Spirau, F.; Cheminet, N.; Jarrosson, T.; Mongin, O.; Blanchard-Desce, M.; Gary-Bobo, M.; Garcia, M.; Lu, J.; Tamanoi, F.; Tarn, D.; Guardado-Alvarez, T.M.; Zink, J.I. Two-photon-triggered drug delivery in cancer cells using nanoimpellers. Angew. Chem. Int. Ed. Engl., 2013, 52(51), 13813-13817.
[http://dx.doi.org/10.1002/anie.201308647] [PMID: 24214916]
[43]
Lavon, I.; Kost, J. Mass transport enhancement by ultrasound in non-degradable polymeric controlled release systems. J. Control. Release, 1998, 54(1), 1-7.
[http://dx.doi.org/10.1016/S0168-3659(97)00112-0] [PMID: 9741898]
[44]
Tannock, I.F.; Rotin, D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res., 1989, 49(16), 4373-4384.
[PMID: 2545340]
[45]
Feng, W.; Zho, X.; He, C.; Qiu, K.; Nie, W.; Chen, L.; Wang, H.; Mo, X.; Zhang, Y. Polyelectrolyte multilayer functionalized mesoporous silica nanoparticles for pH-responsive drug delivery: layer thickness-dependent release profiles and biocompatibility. J. Mater. Chem. B Mater. Biol. Med., 2013, 9, 5886-5898.
[http://dx.doi.org/10.1039/c3tb21193b]
[46]
Popat, A.; Liu, J.; Lu, G.Q.; Qiao, S.Z. A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. J. Mater. Chem., 2012, 22, 11173-11178.
[http://dx.doi.org/10.1039/c2jm30501a]
[47]
Sun, J.T.; Hong, C.; Pan, C.Y. Fabrication of PDEAEMA-coated mesoporous silica nanoparticles and pH-responsive controlled release. J. Phys. Chem. C, 2010, 114, 12481-12486.
[http://dx.doi.org/10.1021/jp103982a]
[48]
Wen, H.; Guo, J.; Chang, B.; Yang, W. pH-responsive composite microspheres based on magnetic mesoporous silica nanoparticle for drug delivery. Eur. J. Pharm. Biopharm., 2013, 84(1), 91-98.
[http://dx.doi.org/10.1016/j.ejpb.2012.11.019] [PMID: 23207322]
[49]
Xing, R.; Lin, H.; Jiang, P.; Qu, F. Biofunctional mesoporous silica nanoparticles for magnetically oriented target and pH-responsive controlled release of ibuprofen. Colloids Surf. A Physicochem. Eng. Asp., 2012, 402, 7-14.
[http://dx.doi.org/10.1016/j.colsurfa.2012.03.017]
[50]
Zheng, J.; Tian, X.; Sun, Y.; Lu, D.; Yang, W. pH-sensitive poly(glutamic acid) grafted mesoporous silica nanoparticles for drug delivery. Int. J. Pharm., 2013, 450(1-2), 296-303.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.014] [PMID: 23598077]
[51]
Meng, H.; Xue, M.; Xia, T.; Zhao, Y.L.; Tamanoi, F.; Stoddart, J.F.; Zink, J.I.; Nel, A.E. Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J. Am. Chem. Soc., 2010, 132(36), 12690-12697.
[http://dx.doi.org/10.1021/ja104501a] [PMID: 20718462]
[52]
Liu, R.; Zhang, Y.; Zhao, X.; Agarwal, A.; Mueller, L.J.; Feng, P. pH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker. J. Am. Chem. Soc., 2010, 132(5), 1500-1501.
[http://dx.doi.org/10.1021/ja907838s] [PMID: 20085351]
[53]
Muhammad, F.; Guo, M.; Qi, W.; Sun, F.; Wang, A.; Guo, Y.; Zhu, G. pH-Triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. J. Am. Chem. Soc., 2011, 133(23), 8778-8781.
[http://dx.doi.org/10.1021/ja200328s] [PMID: 21574653]
[54]
Geng, H.; Chen, W.; Xu, Z.P.; Qian, G.; An, J.; Zhang, H. Shape-controlled hollow mesoporous silica nanoparticles with multifunctional capping for in vitro cancer treatment. Chemistry, 2017, 23(45), 10878-10885.
[http://dx.doi.org/10.1002/chem.201701806] [PMID: 28580592]
[55]
Liu, J.; Luo, Z.; Zhang, J.; Luo, T.; Zhou, J.; Zhao, X.; Cai, K. Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy. Biomaterials, 2016, 83, 51-65.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.008] [PMID: 26773665]
[56]
Méndez, J.; Monteagudo, A.; Griebenow, K. Stimulus-responsive controlled release system by covalent immobilization of an enzyme into mesoporous silica nanoparticles. Bioconjug. Chem., 2012, 23(4), 698-704.
[http://dx.doi.org/10.1021/bc200301a] [PMID: 22375899]
[57]
Kim, H.; Kim, S.; Park, C.; Lee, H.; Park, H.J.; Kim, C. Glutathione-induced intracellular release of guests from mesoporous silica nanocontainers with cyclodextrin gatekeepers. Adv. Mater., 2010, 22(38), 4280-4283.
[http://dx.doi.org/10.1002/adma.201001417] [PMID: 20803535]
[58]
Zhang, L.; Wang, T.; Yang, L.; Liu, C.; Wang, C.; Liu, H.; Wang, Y.A.; Su, Z. Multifunctional mesoporous silica nanoparticles for cancer-targeted and controlled drug delivery. Adv. Funct. Mater., 2012, 22, 5144-5156.
[http://dx.doi.org/10.1002/adfm.201201316]
[59]
Cheng, Y.J.; Zhang, A.Q.; Hu, J.J.; He, F.; Zeng, X.; Zhang, X.Z. Multifunctional peptide-amphiphile end-capped mesoporous silica nanoparticles for tumor targeting drug delivery. ACS Appl. Mater. Interfaces, 2017, 9(3), 2093-2103.
[http://dx.doi.org/10.1021/acsami.6b12647] [PMID: 28032742]
[60]
Bernardos, A.; Mondragon, L.; Aznar, E.; Marcos, M.D.; Martinez-Mañez, R.; Sancenon, F.; Soto, J.; Barat, J.M.; Perez-Paya, E.; Guillem, C.; Amoros, P. Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with “saccharides”. ACS Nano, 2010, 4(11), 6353-6368.
[http://dx.doi.org/10.1021/nn101499d] [PMID: 20958020]
[61]
van Rijt, S.H.; Bölükbas, D.A.; Argyo, C.; Datz, S.; Lindner, M.; Eickelberg, O.; Königshoff, M.; Bein, T.; Meiners, S. Protease-mediated release of chemotherapeutics from mesoporous silica nanoparticles to ex vivo human and mouse lung tumors. ACS Nano, 2015, 9(3), 2377-2389.
[http://dx.doi.org/10.1021/nn5070343] [PMID: 25703655]
[62]
Guardado-Alvarez, T.M.; Sudha Devi, L.; Russell, M.M.; Schwartz, B.J.; Zink, J.I. Activation of snap-top capped mesoporous silica nanocontainers using two near-infrared photons. J. Am. Chem. Soc., 2013, 135(38), 14000-14003.
[http://dx.doi.org/10.1021/ja407331n] [PMID: 24015927]
[63]
Zhang, L.; Li, Y.; Jin, Z.; Yu, J.C.; Chan, K.M. An NIR-triggered and thermally responsive drug delivery platform through DNA/copper sulfide gates. Nanoscale, 2015, 7(29), 12614-12624.
[http://dx.doi.org/10.1039/C5NR02767E] [PMID: 26147639]
[64]
Liu, H.; Chen, D.; Li, L.; Liu, T.; Tan, L.; Wu, X.; Tang, F. Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew. Chem. Int. Ed. Engl., 2011, 50(4), 891-895.
[http://dx.doi.org/10.1002/anie.201002820] [PMID: 21246685]
[65]
Fang, W.J.; Yang, J.; Gong, J.W.; Zheng, N.F. Photo- and pH-triggered release of anticancer drugs from mesoporous silica-coated Pd@Ag nanoparticles. Adv. Funct. Mater., 2012, 22, 842-848.
[http://dx.doi.org/10.1002/adfm.201101960]
[66]
Frasconi, M.; Liu, Z.; Lei, J.; Wu, Y.; Strekalova, E.; Malin, D.; Ambrogio, M.W.; Chen, X.; Botros, Y.Y.; Cryns, V.L.; Sauvage, J.P.; Stoddart, J.F. Photoexpulsion of surface-grafted ruthenium complexes and subsequent release of cytotoxic cargos to cancer cells from mesoporous silica nanoparticles. J. Am. Chem. Soc., 2013, 135(31), 11603-11613.
[http://dx.doi.org/10.1021/ja405058y] [PMID: 23815127]
[67]
Bansal, A.; Zhang, Y. Photocontrolled nanoparticle delivery systems for biomedical applications. Acc. Chem. Res., 2014, 47(10), 3052-3060.
[http://dx.doi.org/10.1021/ar500217w] [PMID: 25137555]
[68]
Chen, G.; Qiu, H.; Prasad, P.N.; Chen, X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev., 2014, 114(10), 5161-5214.
[http://dx.doi.org/10.1021/cr400425h] [PMID: 24605868]
[69]
Lai, J.; Shah, B.P.; Zhang, Y.; Yang, L.; Lee, K.B. Real-Time Monitoring of ATP-Responsive Drug Release Using Mesoporous-Silica-Coated Multicolor Upconversion Nanoparticles. ACS Nano, 2015, 9(5), 5234-5245.
[http://dx.doi.org/10.1021/acsnano.5b00641] [PMID: 25859611]
[70]
Song, Z.; Shi, J.; Zhang, Z.; Qi, Z.; Han, S.; Cao, S. Mesoporous silica-coated gold nanorods with a thermally responsive polymeric cap for near-infrared-activated drug delivery. J. Mater. Sci., 2018, 53, 7165-7179.
[http://dx.doi.org/10.1007/s10853-018-2117-7]
[71]
Zhang, Z.; Shi, J.; Song, Z.; Zhu, X.; Zhu, Y.; Cao, S. A synergistically enhanced photothermal transition effect from mesoporous silica nanoparticles with gold nanorods wrapped in reduced graphene oxide. J. Mater. Sci., 2018, 53, 1810-1823.
[http://dx.doi.org/10.1007/s10853-017-1628-y]
[72]
Hwang, A.A.; Lu, J.; Tamanoi, F.; Zink, J.I. Functional nanovalves on protein-coated nanoparticles for in vitro and in vivo controlled drug delivery. Small, 2015, 11(3), 319-328.
[http://dx.doi.org/10.1002/smll.201400765] [PMID: 25196485]
[73]
Baeza, A.; Guisasola, E.; Ruiz-Hernandez, E.; Vallet-Regi, M. Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem. Mater., 2012, 24, 517-524.
[http://dx.doi.org/10.1021/cm203000u]
[74]
Huang, P.; Qian, X.; Chen, Y.; Yu, L.; Lin, H.; Wang, L.; Zhu, Y.; Shi, J. Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy. J. Am. Chem. Soc., 2017, 139(3), 1275-1284.
[http://dx.doi.org/10.1021/jacs.6b11846] [PMID: 28024395]
[75]
Knezević, N.Z. Magnetic field-induced accentuation of drug release from core/shell magnetic mesoporous silica nanoparticles for anticancer treatment. J. Nanosci. Nanotechnol., 2016, 16(4), 4195-4199.
[http://dx.doi.org/10.1166/jnn.2016.11762] [PMID: 27451786]
[76]
Moorthy, M.S.; Subramanian, B.; Panchanathan, M.; Mondal, S.; Kim, H.; Dae, K.; Lee, K.D.; Oh, J. Fucoidan-coated core–shell magnetic mesoporous silica nanoparticles for chemotherapy and magnetic hyperthermia-based thermal therapy applications. New J. Chem., 2017, 41, 15334-15346.
[http://dx.doi.org/10.1039/C7NJ03211K]
[77]
Tian, Z.; Yu, X.; Ruan, Z.; Zhu, M.; Zhu, Y.; Hanagata, N. Magnetic mesoporous silica nanoparticles coated with thermo-responsive copolymer for potential chemo- and magnetic hyperthermia therapy. Microporous Mesoporous Mater., 2018, 256, 1-9.
[http://dx.doi.org/10.1016/j.micromeso.2017.07.053]
[78]
Cho, H.K.; Cho, H.J.; Lone, S.; Kim, D.D.; Yeum, J.H.; Cheong, I.W. Preparation and characterization of MRI-active gadolinium nanocomposite particles for neutron capture therapy. J. Mater. Chem., 2011, 21, 15486.
[http://dx.doi.org/10.1039/c1jm11608h]
[79]
Shao, Y.Z.; Liu, L.Z.; Song, S.Q.; Cao, R.H.; Liu, H.; Cui, C.Y.; Li, X.; Bie, M.J.; Li, L. A novel one-step synthesis of Gd3+-incorporated mesoporous SiO2 nanoparticles for use as an efficient MRI contrast agent. Contrast Media Mol. Imaging, 2011, 6(2), 110-118.
[http://dx.doi.org/10.1002/cmmi.412] [PMID: 21504064]
[80]
Paris, J.L.; Cabañas, M.V.; Manzano, M.; Vallet-Regí, M. Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano, 2015, 9(11), 11023-11033.
[http://dx.doi.org/10.1021/acsnano.5b04378] [PMID: 26456489]
[81]
Fan, W.; Lu, N.; Huang, P.; Liu, Y.; Yang, Z.; Wang, S.; Yu, G.; Liu, Y.; Hu, J.; He, Q.; Qu, J.; Wang, T.; Chen, X. Glucose-Responsive Sequential Generation of Hydrogen Peroxide and Nitric Oxide for Synergistic Cancer Starving-Like/Gas Therapy. Angew. Chem. Int. Ed. Engl., 2017, 56(5), 1229-1233.
[http://dx.doi.org/10.1002/anie.201610682] [PMID: 27936311]
[82]
Srivastava, P.; Hira, S.K.; Srivastava, D.V.; Gupta, U.; Sen, P.; Singh, R.A.; Manna, P.P. Protease-Responsive Targeted Delivery of Doxorubicin from Bilirubin-BSA-Capped Mesoporous Silica Nanoparticles against Colon Cancer. ACS Biomater. Sci. Eng,
[http://dx.doi.org/10.1021/acsbiomaterials.7b00635]]
[83]
He, X.; Zhao, Y.; He, D.; Wang, K.; Xu, F.; Tang, J. ATP-responsive controlled release system using aptamer-functionalized mesoporous silica nanoparticles. Langmuir, 2012, 28(35), 12909-12915.
[http://dx.doi.org/10.1021/la302767b] [PMID: 22889263]
[84]
Zhu, C.L.; Lu, C.H.; Song, X.Y.; Yang, H.H.; Wang, X.R. Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate. J. Am. Chem. Soc., 2011, 133(5), 1278-1281.
[http://dx.doi.org/10.1021/ja110094g] [PMID: 21214180]
[85]
Zitvogel, L.; Apetoh, L.; Ghiringhelli, F.; Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol., 2008, 8(1), 59-73.
[http://dx.doi.org/10.1038/nri2216] [PMID: 18097448]
[86]
Yang, Y.; Lu, Y.; Abbaraju, P.L.; Zhang, J.; Zhang, M.; Xiang, G.; Yu, C. Multi-shelled dendritic mesoporous organosilica hollow spheres: roles of composition and architecture in cancer immunotherapy. Angew. Chem. Int. Ed. Engl., 2017, 56(29), 8446-8450.
[http://dx.doi.org/10.1002/anie.201701550] [PMID: 28467690]
[87]
Kong, M.; Tang, J.; Qiao, Q.; Wu, T.; Qi, Y.; Tan, S.; Gao, X.; Zhang, Z. Biodegradable hollow mesoporous silica nanoparticles for regulating tumor microenvironment and enhancing antitumor efficiency. Theranostics, 2017, 7(13), 3276-3292.
[http://dx.doi.org/10.7150/thno.19987] [PMID: 28900509]
[88]
Wang, X.; Li, X.; Yoshiyuki, K.; Watanabe, Y.; Sogo, Y.; Ohno, T.; Tsuji, N.M.; Ito, A. Cancer immunotherapy: comprehensive mechanism analysis of mesoporous-silica-nanoparticle-induced cancer immunotherapy (Adv. Healthcare Mater. 10/2016). Adv. Healthc. Mater., 2016, 5(10), 1246.
[http://dx.doi.org/10.1002/adhm.201670051] [PMID: 27226038]
[89]
Zheng, H.; Wen, S.; Zhang, Y.; Sun, Z. Organosilane and polyethylene glycol functionalized magnetic mesoporous silica nanoparticles as carriers for CPG immunotherapy in vitro and in vivo. PLoS One, 2015, 10(10)e0140265
[http://dx.doi.org/10.1371/journal.pone.0140265] [PMID: 26451735]
[90]
Li, X.; Wang, X.; Sogo, Y.; Ohno, T.; Onuma, K.; Ito, A. Mesoporous silica-calcium phosphate-tuberculin purified protein derivative composites as an effective adjuvant for cancer immunotherapy. Adv. Healthc. Mater., 2013, 2(6), 863-871.
[http://dx.doi.org/10.1002/adhm.201200149] [PMID: 23296515]
[91]
Zheng, D.W.; Chen, J.L.; Zhu, J.Y.; Rong, L.; Li, B.; Lei, Q.; Fan, J.X.; Zou, M.Z.; Li, C.; Cheng, S.X.; Xu, Z.; Zhang, X.Z. Highly Integrated Nano-Platform for Breaking the Barrier between Chemotherapy and Immunotherapy. Nano Lett., 2016, 16(7), 4341-4347.
[http://dx.doi.org/10.1021/acs.nanolett.6b01432] [PMID: 27327876]
[92]
Xie, J. Yang, C.; Liu, Q.; Li, J.; Liang, R.; Shen, C.; Zhang, Y.; Wang, K.; Liu, L.; Shezad, K.; Sullivan, M.; Xu, Y.; Shen, G.; Tao, J.; Zhu, J.; Zhang, Z. Encapsulation of Hydrophilic and Hydrophobic Peptides into Hollow Mesoporous Silica Nanoparticles for Enhancement of Antitumor Immune Response. Small, 2017, 13(40)
[http://dx.doi.org/10.1002/smll.201701741] [PMID: 28861951]
[93]
Hu, X.; Gao, X. Silica-polymer dual layer-encapsulated quantum dots with remarkable stability. ACS Nano, 2010, 4(10), 6080-6086.
[http://dx.doi.org/10.1021/nn1017044] [PMID: 20863118]
[94]
Idris, N.M.; Gnanasammandhan, M.K.; Zhang, J.; Ho, P.C.; Mahendran, R.; Zhang, Y. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med., 2012, 18(10), 1580-1585.
[http://dx.doi.org/10.1038/nm.2933] [PMID: 22983397]
[95]
Qian, H.S.; Guo, H.C.; Ho, P.C.L.; Mahendran, R.; Zhang, Y. Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small, 2009, 5(20), 2285-2290.
[http://dx.doi.org/10.1002/smll.200900692] [PMID: 19598161]
[96]
Croissant, J.G.; Zhang, D.; Alsaiari, S.; Lu, J.; Deng, L.; Tamanoi, F.; AlMalik, A.M.; Zink, J.I.; Khashab, N.M. Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging. J. Control. Release, 2016, 229, 183-191.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.030] [PMID: 27016140]
[97]
Chen, G.; Teng, Z.; Su, X.; Liu, Y.; Lu, G. Unique biological degradation behavior of stöber mesoporous silica nanoparticles from their interiors to their exteriors. J. Biomed. Nanotechnol., 2015, 11(4), 722-729.
[http://dx.doi.org/10.1166/jbn.2015.2072] [PMID: 26310078]
[98]
Huang, P.; Chen, Y.; Lin, H.; Yu, L.; Zhang, L.; Wang, L.; Zhu, Y.; Shi, J. Molecularly organic/inorganic hybrid hollow mesoporous organosilica nanocapsules with tumor-specific biodegradability and enhanced chemotherapeutic functionality. Biomaterials, 2017, 125, 23-37.
[http://dx.doi.org/10.1016/j.biomaterials.2017.02.018] [PMID: 28226244]
[99]
Chen, H.; Zhen, Z.; Tang, W.; Todd, T.; Chuang, Y.J.; Wang, L.; Pan, Z.; Xie, J. Label-free luminescent mesoporous silica nanoparticles for imaging and drug delivery. Theranostics, 2013, 3(9), 650-657.
[http://dx.doi.org/10.7150/thno.6668] [PMID: 24052805]
[100]
Ni, D.; Jiang, D.; Ehlerding, E.B.; Huang, P.; Cai, W. Radiolabeling Silica-Based Nanoparticles via Coordination Chemistry: Basic Principles, Strategies, and Applications. Acc. Chem. Res., 2018, 51(3), 778-788.
[http://dx.doi.org/10.1021/acs.accounts.7b00635] [PMID: 29489335]
[101]
Huang, X.; Zhang, F.; Wang, H.; Niu, G.; Choi, K.Y.; Swierczewska, M.; Zhang, G.; Gao, H.; Wang, Z.; Zhu, L.; Choi, H.S.; Lee, S.; Chen, X. Mesenchymal stem cell-based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery. Biomaterials, 2013, 34(7), 1772-1780.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.032] [PMID: 23228423]
[102]
Portilho, F.L.; Helal-Neto, E.; Cabezas, S.S.; Pinto, S.R.; Dos Santos, S.N.; Pozzo, L.; Sancenón, F.; Martínez-Máñez, R.; Santos-Oliveira, R. Magnetic core mesoporous silica nanoparticles doped with dacarbazine and labelled with 99mTc for early and differential detection of metastatic melanoma by single photon emission computed tomography. Artif. Cells Nanomed. Biotechnol, 2018. 46(sup1), 1080-1087.
[http://dx.doi.org/10.1080/21691401.2018.1443941] [PMID: 29482360]
[103]
Yuan, F.; Li, J.L.; Cheng, H.; Zeng, X.; Zhang, X.Z. A redox-responsive mesoporous silica based nanoplatform for in vitro tumor-specific fluorescence imaging and enhanced photodynamic therapy. Biomater. Sci., 2017, 6(1), 96-100.
[http://dx.doi.org/10.1039/C7BM00793K] [PMID: 29186237]
[104]
Luo, G.F.; Chen, W.H.; Lei, Q.; Qiu, W.X.; Liu, Y.X.; Cheng, Y.J.; Zhang, X.Z. A triplecollaborative strategy for high-performance tumor therapy by multifunctional mesoporous silica-coated gold nanorods. Adv. Funct. Mater., 2016, 26, 4339-4350.
[http://dx.doi.org/10.1002/adfm.201505175]
[105]
Song, Z.; Liu, Y.; Shi, J.; Ma, T.; Zhang, Z.; Ma, H.; Cao, S. Hydroxyapatite/mesoporous silica coated gold nanorods with improved degradability as a multi-responsive drug delivery platform. Mater. Sci. Eng. C, 2018, 83, 90-98.
[http://dx.doi.org/10.1016/j.msec.2017.11.012] [PMID: 29208292]
[106]
Sun, Q.; You, Q.; Wang, J.; Liu, L.; Wang, Y.; Song, Y.; Cheng, Y.; Wang, S.; Tan, F.; Li, N. Theranostic nanoplatform: triple-modal imaging-guided synergistic cancer therapy based on liposome-conjugated mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces, 2018, 10(2), 1963-1975.
[http://dx.doi.org/10.1021/acsami.7b13651] [PMID: 29276824]
[107]
Shao, L.; Zhang, R.; Lu, J.; Zhao, C.; Deng, X.; Wu, Y. Mesoporous silica coated polydopamine functionalized reduced graphene oxide for synergistic targeted chemo-photothermal therapy. ACS Appl. Mater. Interfaces, 2017, 9(2), 1226-1236.
[http://dx.doi.org/10.1021/acsami.6b11209] [PMID: 28004583]
[108]
Rosenholm, J.M.; Gulin-Sarfraz, T.; Mamaeva, V.; Niemi, R.; Özliseli, E.; Desai, D.; Antfolk, D.; von Haartman, E.; Lindberg, D.; Prabhakar, N.; Näreoja, T.; Sahlgren, C. Prolonged dye release from mesoporous silica-based imaging probes facilitates long-term optical tracking of cell populations in vivo. Small, 2016, 12(12), 1578-1592.
[http://dx.doi.org/10.1002/smll.201503392] [PMID: 26807551]
[109]
Dréau, D.; Moore, L.J.; Alvarez-Berrios, M.P.; Tarannum, M.; Mukherjee, P.; Vivero-Escoto, J.L. Mucin-1-Antibody-Conjugated mesoporous silica nanoparticles for selective breast cancer detection in a Mucin-1 transgenic murine mouse model. J. Biomed. Nanotechnol., 2016, 12(12), 2172-2184.
[http://dx.doi.org/10.1166/jbn.2016.2318] [PMID: 28522938]
[110]
Sá, L.T.; Pessoa, C.; Meira, A.S.; da Silva, M.I.; Missailidis, S.; Santos-Oliveira, R. Development of nanoaptamers using a mesoporous silica model labeled with (99m)tc for cancer targeting. Oncology, 2012, 82(4), 213-217.
[http://dx.doi.org/10.1159/000337226] [PMID: 22508189]
[111]
Martin, K.R. The health benefits of a metalloid. In: Interrelations Between Essential Metal Ions and Human Diseases; Sigel, A.; Sigel, H.; & Roland, K.O., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, 2014.
[112]
Ehrlich, H.; Demadis, K.D.; Pokrovsky, O.S.; Koutsoukos, P.G. Modern views on desilicification: biosilica and abiotic silica dissolution in natural and artificial environments. Chem. Rev., 2010, 110(8), 4656-4689.
[http://dx.doi.org/10.1021/cr900334y] [PMID: 20441201]
[113]
Zhang, K.; Loong, S.L.; Connor, S.; Yu, S.W.; Tan, S.Y.; Ng, R.T.; Lee, K.M.; Canham, L.; Chow, P.K. Complete tumor response following intratumoral 32P BioSilicon on human hepatocellular and pancreatic carcinoma xenografts in nude mice. Clin. Cancer Res., 2005, 11(20), 7532-7537.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0400] [PMID: 16243828]
[114]
Croissant, J.G.; Fatieiev, Y.; Khashab, N.M. Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv. Mater., 2017, 29(9), 1-51.
[http://dx.doi.org/10.1002/adma.201604634] [PMID: 28084658]
[115]
Phillips, E.; Penate-Medina, O.; Zanzonico, P.B.; Carvajal, R.D.; Mohan, P.; Ye, Y.; Humm, J.; Gönen, M.; Kalaigian, H.; Schöder, H.; Strauss, H.W.; Larson, S.M.; Wiesner, U.; Bradbury, M.S. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med., 2014, 6(260)260ra149
[http://dx.doi.org/10.1126/scitranslmed.3009524] [PMID: 25355699]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy