[1]
Induri, M.; Mantripragada, B.R.; Yejella, R.P.; Kunda, P.R.; Arugula, M.; Boddu, R. Simultaneous quantification of paracetamol and meloxicam in tablets by high performance liquid chromatography. Trop. J. Pharm. Res., 2011, 10(4), 475-481.
[2]
Ouarezki, R.; Guermouche, M.H. Liquid chromatographic determination of meloxicam in serum after solid phase extraction. Chem. Pap., 2010, 64(4), 429-433.
[3]
Shirako, J.; Kawasaki, M.; Komine, K.; Kunisue, Y.; Terada, M.; Sasaki, C.; Shinozuka, T. Simultaneous determination for oxicam non-steroidal anti-inflammatory drugs in human serum by liquid chromatography-tandem mass spectrometry. Forensic Sci. Int., 2013, 227(1), 100-102.
[4]
Pomykalski, A.; Hopkała, H. Comparison of classic and derivative UV spectrophotometric methods for quantification of meloxicam and mefenamic acid in pharmaceutical preparations. Acta Pol. Pharm., 2010, 68(3), 317-323.
[5]
Dhandapani, B.; Murali, S.E.; Susrutha, N.; Swetha, R.; Rani, S.K.S. Spectrophotometric estimation of meloxicam in bulk and its pharmaceutical formulations. Int. J. Pharm. Sci. Res., 2010, 4, 217-221.
[6]
Gurupadayya, B.M.; Trinath, M.N.; Shilpa, K. Spectrophotometric determination of meloxicam by sodium nitroprusside and 1, 10-phenanthroline reagents in bulk and its pharmaceutical formulation. Indian J. Chem. Technol., 2013, 20, 111-115.
[7]
Induri, M.; Mantripragada, B.R.; Yejella, R.P.; Kunda, P.R.; Nannapaneni, D.T.; Boddu, R. Dissolution studies and quantification of meloxicam in tablet dosage form by spectrophotometry. PJPS, 2012, 25(1), 283-287.
[8]
Radi, A.E.; Ghoneim, M.; Beltagi, A. Cathodic adsorptive stripping square-wave voltammetry of the anti-inflammatory drug meloxicam. Chem. Pharm. Bull., 2001, 49(10), 1257-1260.
[9]
Radi, A.; El Ries, M.A.; El-Anwar, F.; El-Sherif, Z. Electrochemical oxidation of meloxicam and its determination in tablet dosage form. Anal. Lett., 2001, 34(5), 739-748.
[10]
Altınöz, S.; Nemutlu, E.; Kır, S. Polarographic behaviour of meloxicam and its determination in tablet preparations and spiked plasma. Farmaco, 2002, 57(6), 463-468.
[11]
Beltagi, A.M.; Ghoneim, M.M.; Radi, A. Electrochemical reduction of meloxicam at mercury electrode and its determination in tablets. J. Pharm. Biomed. Anal., 2002, 27(5), 795-801.
[12]
Wang, C.Y.; Wang, Z.X.; Guan, J.; Hu, X.Y. Voltammetric determination of meloxicam in pharmaceutical formulation and human serum at glassy carbon electrode modified by cysteic acid formed by electrochemical oxidation of L-cysteine. Sensors, 2006, 6(9), 1139-1152.
[13]
Farhadi, K.; Karimpour, A. Electrochemical determination of meloxicam in pharmaceutical preparation and biological fluids using oxidized glassy carbon electrodes. Chem. Pharm. Bull., 2007, 55(4), 638-642.
[14]
Cristian, A.; Iorgulescu, E.E.; Mihailciuc, C. Electrochemical studies using activated glassy carbon I. Meloxicam. Rev. Roum. Chim., 2010, 55(5), 329-334.
[15]
Azodi-Deilami, S.; Asadi, E.; Abdouss, M.; Ahmadi, F.; Najafabadi, A.H.; Farzaneh, S. Determination of meloxicam in plasma samples using a highly selective and sensitive voltammetric sensor based on carbon paste electrodes modified by molecularly imprinted polymer nanoparticle-multiwall carbon nanotubes. Anal. Methods, 2015, 7(4), 1280-1292.
[16]
Wang, J. Analytical electrochemistry; John Wiley & Sons, 2006.
[17]
Gan, T.; Hu, S. Electrochemical sensors based on graphene materials. Mikrochim. Acta, 2011, 175(1-2), 1.
[18]
Zhu, J.; Chen, X.; Yang, W. A high performance electrochemical sensor for NADH based on graphite nanosheet modified electrode. Sens. Actuators B Chem., 2010, 150(2), 564-568.
[19]
Wang, Y.; Li, Y.; Tang, L.; Lu, J.; Li, J. Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun., 2009, 11(4), 889-892.
[20]
Kim, Y.R.; Bong, S.; Kang, Y.J.; Yang, Y.; Mahajan, R.K.; Kim, J.S.; Kim, H. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens. Bioelectron., 2010, 25(10), 2366-2369.
[21]
Han, D.; Han, T.; Shan, C.; Ivaska, A.; Niu, L. Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan‐graphene modified electrode. Electroanalysis, 2010, 22(17‐18), 2001-2008.
[22]
Tian, X.; Cheng, C.; Yuan, H.; Du, J.; Xiao, D.; Xie, S.; Choi, M.M. Simultaneous determination of l-ascorbic acid, dopamine and uric acid with gold nanoparticles-β-cyclodextrin-graphene-modified electrode by square wave voltammetry. Talanta, 2012, 93, 79-85.
[23]
Li, H.; He, J.; Li, S.; Turner, A.P. Electrochemical immunosensor with N-doped graphene-modified electrode for label-free detection of the breast cancer biomarker CA 15-3. Biosens. Bioelectron., 2013, 43, 25-29.
[24]
Britton, H.T.S.; Robinson, R.A. CXCVIII. Universal buffer solutions and the dissociation constant of veronal. J. Chem. Soc., 1931, 1456-1462.
[25]
Bayraktepe, D.E.; Yazan, Z.; Polat, K. Sensitive and selective voltammetric determination of anti˗ cancer agent shikonin on sepiolite clay/TiO2 nanoparticle/MWCNTs composite carbon paste sensor and investigation of its electro˗ oxidation mechanism. J. Electroanal. Chem., 2016, 780, 38-45.
[26]
Beitollah, H.; Goodarzian, M.; Khalilzadeh, M.A.; Karimi-Maleh, H.; Hassanzadeh, M.; Tajbakhsh, M. Electrochemical behaviors and determination of carbidopa on carbon nanotubes ionic liquid paste electrode. J. Mol. Liq., 2012, 173, 137-143.
[27]
Janeiro, P.; Brett, A.M.O. Catechin electrochemical oxidation mechanisms. Anal. Chim. Acta, 2004, 518(1), 109-115.
[28]
Zare, H.R.; Rajabzadeh, N.; Nasirizadeh, N.; Ardakani, M.M. Voltammetric studies of an oracet blue modified glassy carbon electrode and its application for the simultaneous determination of dopamine, ascorbic acid and uric acid. J. Electroanal. Chem., 2006, 589(1), 60-69.
[29]
Pekin, M.; Bayraktepe, D.E.; Yazan, Z. Electrochemical sensor based on a sepiolite clay nanoparticle-based electrochemical sensor for ascorbic acid detection in real-life samples. Ionics, 2017, 1-9.