Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Electro-Oxidation Mechanism of Meloxicam and Electrochemical Sensing Platform Based on Graphene Nanoparticles for its Sensing Pharmaceutical Sample

Author(s): Mehmet E. Eroğlu, Dilek E. Bayraktepe, Kamran Polat and Zehra Yazan*

Volume 15, Issue 4, 2019

Page: [346 - 354] Pages: 9

DOI: 10.2174/1573412914666180402130716

Price: $65

Abstract

Background: Electrochemical oxidation mechanism and electrochemical determination of meloxicam (M), an anti-artrithtis agent, were investigated by cyclic voltammetry and square wave adsorptive stripping voltammetry, respectively.

Objective: In this study, we aimed to investigate the electrochemical redox mechanism and develop a nano-sensor for sensitive, fast and selective analysis of meloxicam.

Methods: In this study, the three-electrode system was used for all voltammetric measurements. Firstly, the graphene content of GR/CPE sensor was changed in the range of 1.67% to 6.68%. Then, the surface characterization of modified electrode was carried out by using Electrochemical Empedance Spectroscopy and Surface Electron Microscopy methods. Some analytical parameters, such as pH, accumulation potential and accumulation time were optimized and by using optimum parameters, calibration study was established.

Results: The GR/CPE with a graphene content of 3.33 % was found to have the best voltammetric signal with a linear working range of 0.1–10 µM. The sensitivity of the quantitative voltammetric method towards M is fairly good with an LOQ of 0.0088 μmol/L and LOD of 0.0026 µmol/L.

Conclusion: The optimum pH, accumulation time and accumulation potential were found to be 2.0, 150s and 0.0 V, respectively. The height of the voltammetric signal obtained with the GR/CPE electrode was stable with a 4.0 % deviation for a period of not shorter than 1 months.

Keywords: Meloxicam, graphene, carbon paste electrode, voltammetry, anti-arthritis agent, electrochemical sensor.

Graphical Abstract

[1]
Induri, M.; Mantripragada, B.R.; Yejella, R.P.; Kunda, P.R.; Arugula, M.; Boddu, R. Simultaneous quantification of paracetamol and meloxicam in tablets by high performance liquid chromatography. Trop. J. Pharm. Res., 2011, 10(4), 475-481.
[2]
Ouarezki, R.; Guermouche, M.H. Liquid chromatographic determination of meloxicam in serum after solid phase extraction. Chem. Pap., 2010, 64(4), 429-433.
[3]
Shirako, J.; Kawasaki, M.; Komine, K.; Kunisue, Y.; Terada, M.; Sasaki, C.; Shinozuka, T. Simultaneous determination for oxicam non-steroidal anti-inflammatory drugs in human serum by liquid chromatography-tandem mass spectrometry. Forensic Sci. Int., 2013, 227(1), 100-102.
[4]
Pomykalski, A.; Hopkała, H. Comparison of classic and derivative UV spectrophotometric methods for quantification of meloxicam and mefenamic acid in pharmaceutical preparations. Acta Pol. Pharm., 2010, 68(3), 317-323.
[5]
Dhandapani, B.; Murali, S.E.; Susrutha, N.; Swetha, R.; Rani, S.K.S. Spectrophotometric estimation of meloxicam in bulk and its pharmaceutical formulations. Int. J. Pharm. Sci. Res., 2010, 4, 217-221.
[6]
Gurupadayya, B.M.; Trinath, M.N.; Shilpa, K. Spectrophotometric determination of meloxicam by sodium nitroprusside and 1, 10-phenanthroline reagents in bulk and its pharmaceutical formulation. Indian J. Chem. Technol., 2013, 20, 111-115.
[7]
Induri, M.; Mantripragada, B.R.; Yejella, R.P.; Kunda, P.R.; Nannapaneni, D.T.; Boddu, R. Dissolution studies and quantification of meloxicam in tablet dosage form by spectrophotometry. PJPS, 2012, 25(1), 283-287.
[8]
Radi, A.E.; Ghoneim, M.; Beltagi, A. Cathodic adsorptive stripping square-wave voltammetry of the anti-inflammatory drug meloxicam. Chem. Pharm. Bull., 2001, 49(10), 1257-1260.
[9]
Radi, A.; El Ries, M.A.; El-Anwar, F.; El-Sherif, Z. Electrochemical oxidation of meloxicam and its determination in tablet dosage form. Anal. Lett., 2001, 34(5), 739-748.
[10]
Altınöz, S.; Nemutlu, E.; Kır, S. Polarographic behaviour of meloxicam and its determination in tablet preparations and spiked plasma. Farmaco, 2002, 57(6), 463-468.
[11]
Beltagi, A.M.; Ghoneim, M.M.; Radi, A. Electrochemical reduction of meloxicam at mercury electrode and its determination in tablets. J. Pharm. Biomed. Anal., 2002, 27(5), 795-801.
[12]
Wang, C.Y.; Wang, Z.X.; Guan, J.; Hu, X.Y. Voltammetric determination of meloxicam in pharmaceutical formulation and human serum at glassy carbon electrode modified by cysteic acid formed by electrochemical oxidation of L-cysteine. Sensors, 2006, 6(9), 1139-1152.
[13]
Farhadi, K.; Karimpour, A. Electrochemical determination of meloxicam in pharmaceutical preparation and biological fluids using oxidized glassy carbon electrodes. Chem. Pharm. Bull., 2007, 55(4), 638-642.
[14]
Cristian, A.; Iorgulescu, E.E.; Mihailciuc, C. Electrochemical studies using activated glassy carbon I. Meloxicam. Rev. Roum. Chim., 2010, 55(5), 329-334.
[15]
Azodi-Deilami, S.; Asadi, E.; Abdouss, M.; Ahmadi, F.; Najafabadi, A.H.; Farzaneh, S. Determination of meloxicam in plasma samples using a highly selective and sensitive voltammetric sensor based on carbon paste electrodes modified by molecularly imprinted polymer nanoparticle-multiwall carbon nanotubes. Anal. Methods, 2015, 7(4), 1280-1292.
[16]
Wang, J. Analytical electrochemistry; John Wiley & Sons, 2006.
[17]
Gan, T.; Hu, S. Electrochemical sensors based on graphene materials. Mikrochim. Acta, 2011, 175(1-2), 1.
[18]
Zhu, J.; Chen, X.; Yang, W. A high performance electrochemical sensor for NADH based on graphite nanosheet modified electrode. Sens. Actuators B Chem., 2010, 150(2), 564-568.
[19]
Wang, Y.; Li, Y.; Tang, L.; Lu, J.; Li, J. Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun., 2009, 11(4), 889-892.
[20]
Kim, Y.R.; Bong, S.; Kang, Y.J.; Yang, Y.; Mahajan, R.K.; Kim, J.S.; Kim, H. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens. Bioelectron., 2010, 25(10), 2366-2369.
[21]
Han, D.; Han, T.; Shan, C.; Ivaska, A.; Niu, L. Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan‐graphene modified electrode. Electroanalysis, 2010, 22(17‐18), 2001-2008.
[22]
Tian, X.; Cheng, C.; Yuan, H.; Du, J.; Xiao, D.; Xie, S.; Choi, M.M. Simultaneous determination of l-ascorbic acid, dopamine and uric acid with gold nanoparticles-β-cyclodextrin-graphene-modified electrode by square wave voltammetry. Talanta, 2012, 93, 79-85.
[23]
Li, H.; He, J.; Li, S.; Turner, A.P. Electrochemical immunosensor with N-doped graphene-modified electrode for label-free detection of the breast cancer biomarker CA 15-3. Biosens. Bioelectron., 2013, 43, 25-29.
[24]
Britton, H.T.S.; Robinson, R.A. CXCVIII. Universal buffer solutions and the dissociation constant of veronal. J. Chem. Soc., 1931, 1456-1462.
[25]
Bayraktepe, D.E.; Yazan, Z.; Polat, K. Sensitive and selective voltammetric determination of anti˗ cancer agent shikonin on sepiolite clay/TiO2 nanoparticle/MWCNTs composite carbon paste sensor and investigation of its electro˗ oxidation mechanism. J. Electroanal. Chem., 2016, 780, 38-45.
[26]
Beitollah, H.; Goodarzian, M.; Khalilzadeh, M.A.; Karimi-Maleh, H.; Hassanzadeh, M.; Tajbakhsh, M. Electrochemical behaviors and determination of carbidopa on carbon nanotubes ionic liquid paste electrode. J. Mol. Liq., 2012, 173, 137-143.
[27]
Janeiro, P.; Brett, A.M.O. Catechin electrochemical oxidation mechanisms. Anal. Chim. Acta, 2004, 518(1), 109-115.
[28]
Zare, H.R.; Rajabzadeh, N.; Nasirizadeh, N.; Ardakani, M.M. Voltammetric studies of an oracet blue modified glassy carbon electrode and its application for the simultaneous determination of dopamine, ascorbic acid and uric acid. J. Electroanal. Chem., 2006, 589(1), 60-69.
[29]
Pekin, M.; Bayraktepe, D.E.; Yazan, Z. Electrochemical sensor based on a sepiolite clay nanoparticle-based electrochemical sensor for ascorbic acid detection in real-life samples. Ionics, 2017, 1-9.

© 2024 Bentham Science Publishers | Privacy Policy