General Review Article

基于金属有机框架(MOF)的生物医学纳米材料

卷 26, 期 18, 2019

页: [3341 - 3369] 页: 29

弟呕挨: 10.2174/0929867325666180214123500

价格: $65

摘要

背景:金属有机骨架(MOF)作为一类新型的由金属原子和有机支柱的自组装而成的多孔有机-无机晶体杂化材料,由于其特殊的性能而引起了极大的关注。 最近,更多文献报道了不同类型的纳米级金属有机框架(NMOF),它们是可生物降解的生理pH响应系统,用于体内的光热疗法和放射疗法。 讨论:在这篇综述中,本文旨在描述在生物医学领域中使用MOF纳米颗粒的好处,并结合其他纳米颗粒的特性对其进行了展望。 第一部分简要回顾了MOF的生物材料支架。 第二部分从两类类别中介绍了刺激响应机制和策略的主要类型:内在性(pH,氧化还原状态)和外在性(温度,光辐射和磁场)。 已经详细总结了光热疗法和放射疗法的组合。 最后,还提到了MOF的临床应用,未来的挑战和前景。 结论:这篇综述概述了MOFs设计和生物医学应用的最新进展,从不同的合成到用作智能药物输送系统,生物成像技术或两者的结合。

关键词: 药物传递系统(DDSs),建筑单元(SBU),光学成像(OI), MOFs,纳米材料,生物医学应用。

« Previous
[1]
(a) Batten, S.R.; Champness, N.R.; Chen, X.M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Suh, M.P.; Reedijk, J. Terminology of metal–organic frameworks and coordination polymers. Pure Appl. Chem., 2013, 85(8), 1715-1724.
[http://dx.doi.org/10.1351/PAC-REC-12-11-20]
(b) Cook, T.R.; Zheng, Y.R.; Stang, P.J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev., 2013, 113(1), 734-777.
[http://dx.doi.org/10.1021/cr3002824] [PMID: 23121121]
[2]
Getman, R.B.; Bae, Y.S.; Wilmer, C.E.; Snurr, R.Q. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chem. Rev., 2012, 112(2), 703-723.
[http://dx.doi.org/10.1021/cr200217c] [PMID: 22188435]
[3]
Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R.E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev., 2012, 112(2), 1232-1268.
[http://dx.doi.org/10.1021/cr200256v] [PMID: 22168547]
[4]
Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev., 2012, 112(2), 933-969.
[http://dx.doi.org/10.1021/cr200304e] [PMID: 22098087]
[5]
Zhou, H.C.; Long, J.R.; Yaghi, O.M. Introduction to metal-organic frameworks. Chem. Rev., 2012, 112(2), 673-674.
[http://dx.doi.org/10.1021/cr300014x] [PMID: 22280456]
[6]
Zhou, H.C.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev., 2014, 43(16), 5415-5418.
[http://dx.doi.org/10.1039/C4CS90059F] [PMID: 25011480]
[7]
Gu, Z.G.; Zhan, C.; Zhang, J.; Bu, X. Chiral chemistry of metal-camphorate frameworks. Chem. Soc. Rev., 2016, 45(11), 3122-3144.
[http://dx.doi.org/10.1039/C6CS00051G] [PMID: 27021070]
[8]
Hu, Z.; Deibert, B.J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev., 2014, 43(16), 5815-5840.
[http://dx.doi.org/10.1039/C4CS00010B] [PMID: 24577142]
[9]
Wang, H.; Meng, W.; Wu, J.; Ding, J.; Hou, H.; Fan, Y. Crystalline central-metal transformation in metal-organic frameworks. Coord. Chem. Rev., 2016, 307, 130-146.
[10]
Zhao, Y.; Yang, X.G.; Lu, X.M.; Yang, C.D.; Fan, N.N.; Yang, Z.T.; Wang, L.Y.; Ma, L.F. Zn6 cluster based metal–organic framework with enhanced room-temperature phosphorescence and optoelectronic performances. Inorg. Chem., 2019, 58, 6215-6221.
[11]
Xuan, W.; Zhu, C.; Liu, Y.; Cui, Y. Mesoporous metal-organic framework materials. Chem. Soc. Rev., 2012, 41(5), 1677-1695.
[http://dx.doi.org/10.1039/C1CS15196G] [PMID: 22008884]
[12]
Carné, A.; Carbonell, C.; Imaz, I.; Maspoch, D. Nanoscale metal-organic materials. Chem. Soc. Rev., 2011, 40(1), 291-305.
[http://dx.doi.org/10.1039/C0CS00042F] [PMID: 21107481]
[13]
Chowdhuri, A.R.; Laha, D.; Pal, S.; Karmakar, P.; Sahu, S.K. One-pot synthesis of folic acid encapsulated upconversion nanoscale metal organic frameworks for targeting, imaging and pH responsive drug release. Dalton Trans., 2016, 45(45), 18120-18132.
[http://dx.doi.org/10.1039/C6DT03237K] [PMID: 27785489]
[14]
Vivero-Escoto, J.L.; Huxford-Phillips, R.C.; Lin, W. Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem. Soc. Rev., 2012, 41(7), 2673-2685.
[http://dx.doi.org/10.1039/c2cs15229k] [PMID: 22234515]
[15]
Zhao, H.X.; Zou, Q.; Sun, S.K.; Yu, C.; Zhang, X.; Li, R.J.; Fu, Y.Y. Theranostic metal-organic framework core-shell composites for magnetic resonance imaging and drug delivery. Chem. Sci. (Camb.), 2016, 7(8), 5294-5301.
[http://dx.doi.org/10.1039/C6SC01359G] [PMID: 30155180]
[16]
Huxford, R.C.; Dekrafft, K.E.; Boyle, W.S.; Liu, D.; Lin, W. Lipid-coated nanoscale coordination polymers for targeted delivery of antifolates to cancer cells. Chem. Sci. (Camb.), 2012, 3(1), 198-204.
[http://dx.doi.org/10.1039/C1SC00499A] [PMID: 24288587]
[17]
Wehner, T.; Mandel, K.; Schneider, M.; Sextl, G.; Müller-Buschbaum, K. Superparamagnetic Luminescent M.O.F. @Fe3O4/SiO2Composite particles for signal augmentation by magnetic harvesting as potential water detectors. ACS Appl. Mater. Interfaces, 2016, 8(8), 5445-5452.
[http://dx.doi.org/10.1021/acsami.5b11965] [PMID: 26860449]
[18]
Zheng, J.; Cheng, C.; Fang, W.; Chen, C.; Yan, R.; Huai, H.; Wang, C. Surfactant-free synthesis of a Fe3O4@ZIF-8 core-shell heterostructure for adsorption of methylene blue. CrystEngComm, 2014, 16(19), 396-3964.
[http://dx.doi.org/10.1039/c3ce42648c]
[19]
Li, L.; Wu, Y.Q.; Sun, K.K.; Zhang, R.; Fan, L.; Liang, K.K.; Mao, L.B. Controllable preparation and drug loading properties of core–shell microspheres Fe3O4@MOFs/GO. Mater. Lett., 2016, 162, 207-210.
[http://dx.doi.org/10.1016/j.matlet.2015.09.096]
[20]
Cohen, S.M. Postsynthetic methods for the functionalization of metal-organic frameworks. Chem. Rev., 2012, 112(2), 970-1000.
[http://dx.doi.org/10.1021/cr200179u] [PMID: 21916418]
[21]
Taylor-Pashow, K.M.L.; Della Rocca, J.; Xie, Z.; Tran, S.; Lin, W. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J. Am. Chem. Soc., 2009, 131(40), 14261-14263.
[http://dx.doi.org/10.1021/ja906198y] [PMID: 19807179]
[22]
Liu, L.L.; Yu, C.X.; Sun, J.; Meng, P.P.; Ma, F.J.; Du, J.M.; Ma, L.F. Three coordination polymers constructed from various polynuclear clusters spaced by 2,2′-azodibenzoic acid: Syntheses and fluorescent properties. Dalton Trans., 2014, 43, 2915-2924.
[23]
Xu, X.Y.; Yan, B. Eu(III)-functionalized MIL-124 as fluorescent probe for highly selectively sensing ions and organic small molecules especially for Fe(III) and Fe(II). ACS Appl. Mater. Interfaces, 2015, 7(1), 721-729.
[http://dx.doi.org/10.1021/am5070409] [PMID: 25510710]
[24]
Li, X.Q.; Zhou, Z.; Zhang, C.C.; Zheng, Y.H.; Gao, J.W.; Wang, Q.M. Modulation of assembly and disassembly of a new tetraphenylethene based nanosensor for highly selective detection of hyaluronidase. Sens. Actuators B Chem., 2018, 276, 95-100.
[25]
Zhou, Z.; Gu, J.P.; Qiao, X.G.; Wu, H.X.; Fu, H.R.; Wang, L.; Li, H.Y.; Ma, L.F. Double protected lanthanide fluorescence core@shell colloidal hybrid for the selective and sensitive detection of ClO-. Sens. Actuators B Chem., 2019, 282, 437-442.
[26]
Furukawa, H.; Ko, N.; Go, Y.B.; Aratani, N.; Choi, S.B.; Choi, E.; Yazaydin, A.O.; Snurr, R.Q.; O’Keeffe, M.; Kim, J.; Yaghi, O.M. Ultrahigh porosity in metal-organic frameworks. Science, 2010, 329(5990), 424-428.
[http://dx.doi.org/10.1126/science.1192160] [PMID: 20595583]
[27]
Suh, M.P.; Park, H.J.; Prasad, T.K.; Lim, D.W. Hydrogen storage in metal-organic frameworks. Chem. Rev., 2012, 112(2), 782-835.
[http://dx.doi.org/10.1021/cr200274s] [PMID: 22191516]
[28]
Jayaramulu, K.; Reddy, S.K.; Hazra, A.; Balasubramanian, S.; Maji, T.K. Three-dimensional metal-organic framework with highly polar pore surface: H2 and CO2 storage characteristics. Inorg. Chem., 2012, 51(13), 7103-7111.
[http://dx.doi.org/10.1021/ic202601y] [PMID: 22716229]
[29]
Li, J.R.; Sculley, J.; Zhou, H.C. Metal-organic frameworks for separations. Chem. Rev., 2012, 112(2), 869-932.
[http://dx.doi.org/10.1021/cr200190s] [PMID: 21978134]
[30]
Qin, J.H.; Jia, Y.; Li, H.; Zhao, B.; Wu, D.; Zang, S.Q.; Hou, H.; Fan, Y. Conversion from a heterochiral 2+2 coaxially nested double-helical column to a cationic spiral staircase stimulated by an ionic liquid anion. Inorg. Chem., 2014, 53, 685-687.
[31]
Kumar, P.; Deep, A.; Kim, K. Metal organic frameworks for sensing applications. TrAC Trend. Anal. Chem., 2015, 73, 39-53.
[32]
Liu, S.; Zeng, Y.; Hu, X.; Xue, L.; Han, S.; Jia, J.; Hu, T. Five new Mn(II)/Co(II) coordination polymers constructed from flexible multicarboxylate ligands with varying magnetic properties. J. Solid State Chem., 2013, 204, 197-204.
[http://dx.doi.org/10.1016/j.jssc.2013.05.027]
[33]
Kaur, R.; Kim, K.; Paul, A.K.; Deep, A. Recent advances in the photovoltaic applications of coordination polymers and metal organic frameworks. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(11), 3991-4002.
[http://dx.doi.org/10.1039/C5TA09668E]
[34]
Keskin, S.; Kızılel, S. Biomedical applications of metal organic frameworks. Ind. Eng. Chem. Res., 2011, 50(4), 1799-1812.
[http://dx.doi.org/10.1021/ie101312k]
[35]
Liu, R.; Yu, T.; Shi, Z.; Wang, Z. The preparation of metal-organic frameworks and their biomedical application. Int. J. Nanomedicine, 2016, 11, 1187-1200.
[http://dx.doi.org/10.2147/IJN.S100877] [PMID: 27042066]
[36]
Yang, D.; Yang, G.; Gai, S.; He, F.; An, G.; Dai, Y.; Lv, R.; Yang, P. Au25 cluster functionalized metal-organic nanostructures for magnetically targeted photodynamic/photothermal therapy triggered by single wavelength 808 nm near-infrared light. Nanoscale, 2015, 7(46), 19568-19578.
[http://dx.doi.org/10.1039/C5NR06192J] [PMID: 26540558]
[37]
Wang, W.; Wang, L.; Li, Z.; Xie, Z. BODIPY-containing nanoscale metal-organic frameworks for photodynamic therapy. Chem. Commun. (Camb.), 2016, 52(31), 5402-5405.
[http://dx.doi.org/10.1039/C6CC01048B] [PMID: 27009757]
[38]
Lei, J.; Qian, R.; Ling, P.; Cui, L.; Ju, H. Design and sensing applications of metal–organic framework composites. Trends Analyt. Chem., 2014, 58, 71-78.
[http://dx.doi.org/10.1016/j.trac.2014.02.012]
[39]
(a) Giménez-Marqués, M.; Hidalgo, T.; Serre, C.; Horcajada, P. Nanostructured metal–organic frameworks and their bio-related applications. Coord. Chem. Rev., 2016, 307, 342-360.
[http://dx.doi.org/http://10.1016/j.ccr.2015.08.008]
(b) Wu, M.X.; Yang, Y.W. Metal-organic Framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater., 2017, 29(23), 1601634-1601654.
[http://dx.doi.org/10.1002/adma.201606134] [PMID: 28370555]
[40]
Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev., 2016, 116(9), 5338-5431.
[http://dx.doi.org/10.1021/acs.chemrev.5b00589] [PMID: 27109701]
[41]
Du, X.J.; Wang, J.L.; Liu, W.W.; Yang, J.X.; Sun, C.Y.; Sun, R.; Li, H.J.; Shen, S.; Luo, Y.L.; Ye, X.D.; Zhu, Y.H.; Yang, X.Z.; Wang, J. Regulating the surface poly(ethylene glycol) density of polymeric nanoparticles and evaluating its role in drug delivery in vivo. Biomaterials, 2015, 69, 1-11.
[http://dx.doi.org/10.1016/j.biomaterials.2015.07.048] [PMID: 26275857]
[42]
Đorđević, S.M.; Cekić, N.D.; Savić, M.M.; Isailović, T.M.; Ranđelović, D.V.; Marković, B.D.; Savić, S.R.; Timić Stamenić, T.; Daniels, R.; Savić, S.D. Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation. Int. J. Pharm., 2015, 493(1-2), 40-54.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.007] [PMID: 26209070]
[43]
Atta, S.; Khaliq, S.; Islam, A.; Javeria, I.; Jamil, T.; Athar, M.M.; Shafiq, M.I.; Ghaffar, A. Injectable biopolymer based hydrogels for drug delivery applications. Int. J. Biol. Macromol., 2015, 80, 240-245.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.06.044] [PMID: 26118484]
[44]
Sosnik, A.; Menaker Raskin, M. Polymeric micelles in mucosal drug delivery: Challenges towards clinical translation. Biotechnol. Adv., 2015, 33(6 Pt 3), 1380-1392.
[http://dx.doi.org/10.1016/j.biotechadv.2015.01.003] [PMID: 25597531]
[45]
Kneidl, B.; Peller, M.; Winter, G.; Lindner, L.H.; Hossann, M. Thermosensitive liposomal drug delivery systems: state of the art review. Int. J. Nanomedicine, 2014, 9, 4387-4398.
[PMID: 25258529]
[46]
He, C.; Lu, K.; Liu, D.; Lin, W. Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc., 2014, 136(14), 5181-5184.
[http://dx.doi.org/10.1021/ja4098862] [PMID: 24669930]
[47]
Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N.A.; Balas, F.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc., 2008, 130(21), 6774-6780.
[http://dx.doi.org/10.1021/ja710973k] [PMID: 18454528]
[48]
Miller, S.R.; Heurtaux, D.; Baati, T.; Horcajada, P.; Grenèche, J.M.; Serre, C. Biodegradable therapeutic MOFs for the delivery of bioactive molecules. Chem. Commun. (Camb.), 2010, 46(25), 4526-4528.
[http://dx.doi.org/10.1039/c001181a] [PMID: 20467672]
[49]
Anand, R.; Borghi, F.; Manoli, F.; Manet, I.; Agostoni, V.; Reschiglian, P.; Gref, R.; Monti, S. Host-guest interactions in Fe(III)-trimesate MOF nanoparticles loaded with doxorubicin. J. Phys. Chem. B, 2014, 118(29), 8532-8539.
[http://dx.doi.org/10.1021/jp503809w] [PMID: 24960194]
[50]
Liédana, N.; Lozano, P.; Galve, A.; Téllez, C.; Coronas, J. The template role of caffeine in its one-step encapsulation in MOF NH2-MIL-88B(Fe). J. Mater. Chem. B Mater. Biol. Med., 2014, 2(9), 1144-1151.
[http://dx.doi.org/10.1039/C3TB21707H]
[51]
Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J.F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J.S.; Hwang, Y.K.; Marsaud, V.; Bories, P.N.; Cynober, L.; Gil, S.; Férey, G.; Couvreur, P.; Gref, R. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater., 2010, 9(2), 172-178.
[http://dx.doi.org/10.1038/nmat2608] [PMID: 20010827]
[52]
An, J.; Geib, S.J.; Rosi, N.L. Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. J. Am. Chem. Soc., 2009, 131(24), 8376-8377.
[http://dx.doi.org/10.1021/ja902972w] [PMID: 19489551]
[53]
Sun, C.Y.; Qin, C.; Wang, C.G.; Su, Z.M.; Wang, S.; Wang, X.L.; Yang, G.S.; Shao, K.Z.; Lan, Y.Q.; Wang, E.B. Chiral nanoporous metal-organic frameworks with high porosity as materials for drug delivery. Adv. Mater., 2011, 23(47), 5629-5632.
[http://dx.doi.org/10.1002/adma.201102538] [PMID: 22095878]
[54]
Zhong, D.C.; Liao, L.Q.; Deng, J.H.; Chen, Q.; Lian, P.; Luo, X.Z. A rare (3,4,5)-connected metal-organic framework featuring an unprecedented 1D + 2D → 3D self-interpenetrated array and an O-atom lined pore surface: structure and controlled drug release. Chem. Commun. (Camb.), 2014, 50(99), 15807-15810.
[http://dx.doi.org/10.1039/C4CC08214A] [PMID: 25371973]
[55]
Vasconcelos, I.B.; Silva, T.G.D.; Militão, G.C.G.; Soares, T.A.; Rodrigues, N.M.; Rodrigues, M.O.; Costa, N.B.D.; Freire, R.O.; Junior, S.A. Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8. RSC Advances, 2012, 2(25), 9437-9442.
[http://dx.doi.org/10.1039/c2ra21087h]
[56]
Li, Q.; Wang, J.; Liu, W.; Zhuang, X.; Liu, J.; Fan, G.; Li, B.; Lin, W.; Man, J. A new (4,8)-connected topological MOF as potential drug delivery. Inorg. Chem. Commun., 2015, 55, 8-10.
[http://dx.doi.org/10.1016/j.inoche.2015.02.023]
[57]
Li, F.; Li, B.; Wang, C.; Zeng, Y.; Liu, J.; Gu, C.; Lu, P.; Mei, L. Encapsulation of pharmaceutical ingredient linker in metal–organic framework: combined experimental and theoretical insight into the drug delivery. RSC Advances, 2016, 6(53), 47959-47965.
[http://dx.doi.org/10.1039/C6RA06178H]
[58]
Nagata, S.; Kokado, K.; Sada, K. Metal-organic framework tethering PNIPAM for ON-OFF controlled release in solution. Chem. Commun. (Camb.), 2015, 51(41), 8614-8617.
[http://dx.doi.org/10.1039/C5CC02339D] [PMID: 25896867]
[59]
Tai, S.; Zhang, W.; Zhang, J.; Luo, G.; Jia, Y.; Deng, M.; Ling, Y. Facile preparation of UiO-66 nanoparticles with tunable sizes in a continuous flow microreactor and its application in drug delivery. Microporous Mesoporous Mater., 2016, 220, 148-154.
[http://dx.doi.org/10.1016/j.micromeso.2015.08.037]
[60]
Wei, L.Q.; Chen, Q.; Tang, L.L.; Zhuang, C.; Zhu, W.R.; Lin, N. A porous metal-organic framework with a unique hendecahedron-shaped cage: structure and controlled drug release. Dalton Trans., 2016, 45(9), 3694-3697.
[http://dx.doi.org/10.1039/C5DT04379D] [PMID: 26842630]
[61]
Wang, H.N.; Meng, X.; Yang, G.S.; Wang, X.L.; Shao, K.Z.; Su, Z.M.; Wang, C.G. Stepwise assembly of metal-organic framework based on a metal-organic polyhedron precursor for drug delivery. Chem. Commun. (Camb.), 2011, 47(25), 7128-7130.
[http://dx.doi.org/10.1039/c1cc11932j] [PMID: 21614372]
[62]
Du, P.; Gu, W.; Liu, X. A three-dimensional Nd(iii)-based metal–organic framework as a smart drug carrier. New J. Chem., 2016, 40(11), 9017-9020.
[http://dx.doi.org/10.1039/C6NJ02221A]
[63]
Kundu, T.; Mitra, S.; Patra, P.; Goswami, A.; Díaz Díaz, D.; Banerjee, R. Mechanical downsizing of a gadolinium(III)-based metal-organic framework for anticancer drug delivery. Chemistry, 2014, 20(33), 10514-10518.
[http://dx.doi.org/10.1002/chem.201402244] [PMID: 25044210]
[64]
Li, H.; Lv, N.; Li, X.; Liu, B.; Feng, J.; Ren, X.; Guo, T.; Chen, D.; Fraser Stoddart, J.; Gref, R.; Zhang, J. Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery. Nanoscale, 2017, 9(22), 7454-7463.
[http://dx.doi.org/10.1039/C6NR07593B] [PMID: 28530283]
[65]
Cattaneo, D.; Warrender, S.J.; Duncan, M.J.; Kelsall, C.J.; Doherty, M.K.; Whitfield, P.D.; Megson, I.L.; Morris, R.E. Tuning the nitric oxide release from CPO-27 MOFs. RSC Advances, 2016, 6(17), 14059-14067.
[http://dx.doi.org/10.1039/C5RA24023A] [PMID: 27019705]
[66]
Levine, D.J.; Runčevski, T.; Kapelewski, M.T.; Keitz, B.K.; Oktawiec, J.; Reed, D.A.; Mason, J.A.; Jiang, H.Z.H.; Colwell, K.A.; Legendre, C.M.; FitzGerald, S.A.; Long, J.R. Olsalazine-based metal-organic frameworks as biocompatible platforms for H2 adsorption and drug delivery. J. Am. Chem. Soc., 2016, 138(32), 10143-10150.
[http://dx.doi.org/10.1021/jacs.6b03523] [PMID: 27486905]
[67]
Chalati, T.; Horcajada, P.; Couvreur, P.; Serre, C.; Ben Yahia, M.; Maurin, G.; Gref, R. Porous metal organic framework nanoparticles to address the challenges related to busulfan encapsulation. Nanomedicine (Lond.), 2011, 6(10), 1683-1695.
[http://dx.doi.org/10.2217/nnm.11.69] [PMID: 22122581]
[68]
Cunha, D.; Ben Yahia, M.; Hall, S.; Miller, S.R.; Chevreau, H.; Elkaïm, E.; Maurin, G.; Horcajada, P.; Serre, C. Rationale of drug encapsulation and release from biocompatible porous metal–organic frameworks. Chem. Mater., 2013, 25(14), 2767-2776.
[http://dx.doi.org/10.1021/cm400798p]
[69]
di Nunzio, M.R.; Agostoni, V.; Cohen, B.; Gref, R.; Douhal, A.A. “ship in a bottle” strategy to load a hydrophilic anticancer drug in porous metal organic framework nanoparticles: efficient encapsulation, matrix stabilization, and photodelivery. J. Med. Chem., 2014, 57(2), 411-420.
[http://dx.doi.org/10.1021/jm4017202] [PMID: 24345217]
[70]
Liédana, N.; Galve, A.; Rubio, C.; Téllez, C.; Coronas, J. CAF@ZIF-8: one-step encapsulation of caffeine in MOF. ACS Appl. Mater. Interfaces, 2012, 4(9), 5016-5021.
[http://dx.doi.org/10.1021/am301365h] [PMID: 22834763]
[71]
Loera-Serna, S.; Zarate-Rubio, J.; Medina-Velazquez, D.Y.; Zhang, L.; Ortiz, E. Encapsulation of urea and caffeine in Cu3(BTC)2 metal–organic framework. Surf. Innov., 2016, 4(2), 76-87.
[http://dx.doi.org/10.1680/jsuin.15.00017]
[72]
Demir, S.; Merve Çepni, H.; Topcu, Y.; Hołyńska, M.; Keskin, S. A phytochemical-containing metal–organic framework: Synthesis, characterization and molecular simulations for hydrogen adsorption. Inorg. Chim. Acta, 2015, 427, 138-143.
[http://dx.doi.org/10.1016/j.ica.2014.12.010]
[73]
Burrows, A.D.; Jurcic, M.; Keenan, L.L.; Lane, R.A.; Mahon, M.F.; Warren, M.R.; Nowell, H.; Paradowski, M.; Spencer, J. Incorporation by coordination and release of the iron chelator drug deferiprone from zinc-based metal-organic frameworks. Chem. Commun. (Camb.), 2013, 49(96), 11260-11262.
[http://dx.doi.org/10.1039/c3cc45689g] [PMID: 24135827]
[74]
Wang, H.; Hu, T.; Wen, R.; Wang, Q.; Bu, X. In vitro controlled release of theophylline from metal–drug complexes. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(32), 3879-3882.
[http://dx.doi.org/10.1039/c3tb20633e]
[75]
Swietach, P.; Vaughan-Jones, R.D.; Harris, A.L.; Hulikova, A. The chemistry, physiology and pathology of pH in cancer. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1638)20130099
[http://dx.doi.org/10.1098/rstb.2013.0099] [PMID: 24493747]
[76]
Adhikari, C.; Das, A.; Chakraborty, A. Zeolitic Imidazole Framework (ZIF) nanospheres for easy encapsulation and controlled release of an anticancer drug doxorubicin under different external stimuli: A way toward smart drug delivery system. Mol. Pharm., 2015, 12(9), 3158-3166.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00043] [PMID: 26196058]
[77]
Yang, Y.; Hu, Q.; Zhang, Q.; Jiang, K.; Lin, W.; Yang, Y.; Cui, Y.; Qian, G. A large capacity cationic metal-organic framework nanocarrier for physiological pH responsive drug delivery. Mol. Pharm., 2016, 13(8), 2782-2786.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00374] [PMID: 27414996]
[78]
Xing, L.; Cao, Y.; Che, S. Synthesis of core-shell coordination polymer nanoparticles (CPNs) for pH-responsive controlled drug release. Chem. Commun. (Camb.), 2012, 48(48), 5995-5997.
[http://dx.doi.org/10.1039/c2cc30877k] [PMID: 22576702]
[79]
Lin, W.; Hu, Q.; Jiang, K.; Yang, Y.; Yang, Y.; Cui, Y.; Qian, G. A porphyrin-based metal–organic framework as a pH-responsive drug carrier. J. Solid State Chem., 2016, 237, 307-312.
[http://dx.doi.org/10.1016/j.jssc.2016.02.040]
[80]
Gao, P.F.; Zheng, L.L.; Liang, L.J.; Yang, X.X.; Li, Y.F.; Huang, C.Z. A new type of pH-responsive coordination polymer sphere as a vehicle for targeted anticancer drug delivery and sustained release. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(25), 3202-3208.
[http://dx.doi.org/10.1039/c3tb00026e]
[81]
Zheng, H.; Zhang, Y.; Liu, L.; Wan, W.; Guo, P.; Nyström, A.M.; Zou, X. One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc., 2016, 138(3), 962-968.
[http://dx.doi.org/10.1021/jacs.5b11720] [PMID: 26710234]
[82]
Ricco, R.; Malfatti, L.; Takahashi, M.; Hill, A.J.; Falcaro, P. Applications of magnetic metal–organic framework composites. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(42), 13033-13045.
[http://dx.doi.org/10.1039/c3ta13140h]
[83]
Della Rocca, J.; Lin, W. Nanoscale metal-organic frameworks: magnetic resonance imaging contrast agents and beyond. Eur. J. Inorg. Chem., 2010, 2010(24), 3725-3734.
[http://dx.doi.org/10.1002/ejic.201000496]
[84]
Ke, F.; Yuan, Y.; Qiu, L.; Shen, Y.; Xie, A.; Zhu, J.; Tian, X.; Zhang, L. Facile fabrication of magnetic metal–organic framework nanocomposites for potential targeted drug delivery. J. Mater. Chem., 2011, 21(11), 3843-3848.
[http://dx.doi.org/10.1039/c0jm01770a]
[85]
Wu, Y.N.; Zhou, M.; Li, S.; Li, Z.; Li, J.; Wu, B.; Li, G.; Li, F.; Guan, X. Magnetic metal-organic frameworks: γ-Fe2O3@MOFs via confined in situ pyrolysis method for drug delivery. Small, 2014, 10(14), 2927-2936.
[http://dx.doi.org/10.1002/smll.201400362] [PMID: 24644065]
[86]
Wang, D.; Zhou, J.; Chen, R.; Shi, R.; Xia, G.; Zhou, S.; Liu, Z.; Zhang, N.; Wang, H.; Guo, Z.; Chen, Q. Magnetically guided delivery of DHA and Fe ions for enhanced cancer therapy based on pH-responsive degradation of DHA-loaded Fe3O4@C@MIL-100(Fe) nanoparticles. Biomaterials, 2016, 107, 88-101.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.039] [PMID: 27614161]
[87]
Tofzikovskaya, Z.; Casey, A.; Howe, O.; O’Connor, C.; McNamara, M. In vitro evaluation of the cytotoxicity of a folate-modified β-cyclodextrin as a new anti-cancer drug delivery system. J. Incl. Phenom. Macrocycl. Chem., 2015, 81, 85-94.
[http://dx.doi.org/10.1007/s10847-014-0436-0]
[88]
Chen, C.; Ke, J.; Zhou, X.E.; Yi, W.; Brunzelle, J.S.; Li, J.; Yong, E.L.; Xu, H.E.; Melcher, K. Structural basis for molecular recognition of folic acid by folate receptors. Nature, 2013, 500(7463), 486-489.
[89]
Li, Y.A.; Zhao, X.D.; Yin, H.P.; Chen, G.J.; Yang, S.; Dong, Y.B. A drug-loaded nanoscale metal-organic framework with a tumor targeting agent for highly effective hepatoma therapy. Chem. Commun. (Camb.), 2016, 52(98), 14113-14116.
[http://dx.doi.org/10.1039/C6CC07321B] [PMID: 27858003]
[90]
Au, K.M.; Satterlee, A.; Min, Y.; Tian, X.; Kim, Y.S.; Caster, J.M.; Zhang, L.; Zhang, T. Huang; L.; Wang, A. Z. Folate-targeted pH-responsive calcium zoledronate nanoscale metalorganic frameworks: Turning a bone antiresorptive agent into an anticancer therapeutic. Biomaterials, 2016, 82, 178-193.
[http://dx.doi.org/10.1016/j.biomaterials.2015.12.018] [PMID: 26763733]
[91]
Liu, J.; Zhang, L.; Lei, J.; Shen, H.; Ju, H. Multifunctional metal-organic framework nanoprobe for Cathepsin B-activated cancer cell imaging and chemo-photodynamic therapy. ACS Appl. Mater. Interfaces, 2017, 9(3), 2150-2158.
[http://dx.doi.org/10.1021/acsami.6b14446] [PMID: 28033467]
[92]
Lin, W.; Hu, Q.; Yu, J.; Jiang, K.; Yang, Y.; Xiang, S.; Cui, Y.; Yang, Y.; Wang, Z.; Qian, G. Low cytotoxic metal–organic frameworks as temperature-responsive drug carriers. ChemPlusChem, 2016, 81, 804-810.
[http://dx.doi.org/10.1002/cplu.201600142]
[93]
(a) Morris, W.; Briley, W.E.; Auyeung, E.; Cabezas, M.D.; Mirkin, C.A. Nucleic acid-metal organic framework (MOF) nanoparticle conjugates. J. Am. Chem. Soc., 2014, 136(20), 7261-7264. [http://dx.doi.org/10.1021/ja503215w] [PMID: 24818877]
(b) He, C.; Lu, K.; Liu, D.; Lin, W. Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc., 2014, 136(14), 5181-5184. [http://dx.doi.org/10.1021/ja4098862] [PMID: 24669930]
(c) Cai, W.; Chu, C.C.; Liu, G.; Wáng, Y.X.J. Metal–Organic framework-based nanomedicine platforms for drug delivery and molecular imaging. Small, 2015, 11(37), 4806-4822.
[94]
Wang, C.; Liu, D.; Lin, W. Metal-organic frameworks as a tunable platform for designing functional molecular materials. J. Am. Chem. Soc., 2013, 135(36), 13222-13234.
[http://dx.doi.org/10.1021/ja308229p] [PMID: 23944646]
[95]
(a) Della Rocca, J.; Liu, D.; Lin, W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res., 2011, 44(10), 957-968. [http://dx.doi.org/10.1021/ar200028a] [PMID: 21648429]
(b) He, C.; Liu, D.; Lin, W. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: Nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem. Rev., 2015, 115(19), 11079-11108.
[http://dx.doi.org/10.1021/acs.chemrev.5b00125] [PMID: 26312730]
[96]
Hatakeyama, W.; Sanchez, T.J.; Rowe, M.D.; Serkova, N.J.; Liberatore, M.W.; Boyes, S.G. Synthesis of gadolinium nanoscale metal-organic framework with hydrotropes: Manipulation of particle size and magnetic resonance imaging capability. ACS Appl. Mater. Interfaces, 2011, 3(5), 1502-1510.
[http://dx.doi.org/10.1021/am200075q] [PMID: 21456529]
[97]
Kundu, T.; Mitra, S.; Díaz Díaz, D.; Banerjee, R. Gadolinium(III)-based porous luminescent metal-organic frameworks for bimodal imaging. ChemPlusChem, 2016, 81(8), 728-732.
[http://dx.doi.org/10.1002/cplu.201600233]
[98]
Liu, D.; He, C.; Poon, C.; Lin, W. Theranostic nanoscale coordination polymers for magnetic resonance imaging and bisphosphonate delivery. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(46), 8249-8255.
[http://dx.doi.org/10.1039/C4TB00751D]
[99]
Yuan, G.; Zhu, C.; Liu, Y.; Cui, Y. Nano- and microcrystals of a Mn-based metal-oligomer framework showing size-dependent magnetic resonance behaviors. Chem. Commun. (Camb.), 2011, 47(11), 3180-3182.
[http://dx.doi.org/10.1039/c0cc03981k] [PMID: 21279220]
[100]
Yang, Y.; Liu, J.; Liang, C.; Feng, L.; Fu, T.; Dong, Z.; Chao, Y.; Li, Y.; Lu, G.; Chen, M.; Liu, Z. Nanoscale metal-organic particles with rapid clearance for magnetic resonance imaging-guided photothermal therapy. ACS Nano, 2016, 10(2), 2774-2781.
[http://dx.doi.org/10.1021/acsnano.5b07882] [PMID: 26799993]
[101]
Taylor, K.M.; Jin, A.; Lin, W. Surfactant-assisted synthesis of nanoscale gadolinium metal–organic frameworks for potential multimodal imaging. Angew. Chem. Int. Ed., 2008, 47, 7722-7725.
[http://dx.doi.org/10.1002/anie.200802911]
[102]
Taylor, K.M.; Rieter, W.J.; Lin, W. Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging. J. Am. Chem. Soc., 2008, 130(44), 14358-14359.
[http://dx.doi.org/10.1021/ja803777x] [PMID: 18844356]
[103]
Rieter, W.J.; Taylor, K.M.L.; An, H.; Lin, W.; Lin, W. Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J. Am. Chem. Soc., 2006, 128(28), 9024-9025.
[http://dx.doi.org/10.1021/ja0627444] [PMID: 16834362]
[104]
Liu, D.; Huxford, R.C.; Lin, W. Phosphorescent nanoscale coordination polymers as contrast agents for optical imaging. Angew. Chem. Int. Ed. Engl., 2011, 50(16), 3696-3700.
[http://dx.doi.org/10.1002/anie.201008277] [PMID: 21416573]
[105]
Zhang, T.; Wang, L.; Ma, C.; Wang, W.; Ding, J.; Liu, S.; Zhang, X.; Xie, Z. BODIPY-containing nanoscale metal–organic frameworks as contrast agents for computed tomography. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(12), 2330-2336.
[http://dx.doi.org/10.1039/C7TB00392G]
[106]
deKrafft, K.E.; Xie, Z.; Cao, G.; Tran, S.; Ma, L.; Zhou, O.Z.; Lin, W. Iodinated nanoscale coordination polymers as potential contrast agents for computed tomography. Angew. Chem. Int. Ed. Engl., 2009, 48(52), 9901-9904.
[http://dx.doi.org/10.1002/anie.200904958] [PMID: 19937883]
[107]
Gao, X.; Zhai, M.; Guan, W.; Liu, J.; Liu, Z.; Damirin, A. Controllable synthesis of a smart multifunctional nanoscale metal-organic framework for magnetic resonance/optical imaging and targeted drug delivery. ACS Appl. Mater. Interfaces, 2017, 9(4), 3455-3462.
[http://dx.doi.org/10.1021/acsami.6b14795] [PMID: 28079361]
[108]
Yan, H.; Boamah, P.O.; Gong, J.; Zhang, Q.; Hua, M.; Ye, Y. Gd(III) complex conjugate of low-molecular-weight chitosan as a contrast agent for magnetic resonance/fluorescence dual-modal imaging. Carbohydr. Polym., 2016, 143, 288-295.
[109]
Wang, Y.M.; Liu, W.; Yin, X.B. Self-limiting growth nanoscale coordination polymers for fluorescence and magnetic resonance dual-modality imaging. Adv. Funct. Mater., 2016, •••
[http://dx.doi.org/10.1002/adfm.201602925]
[110]
Biju, V.; Hamada, M.; Ono, K.; Sugino, S.; Ohnishi, T.; Shibu, E.S.; Yamamura, S.; Sawada, M.; Nakanishi, S.; Shigeri, Y.; Wakida, S. Nanoparticles speckled by ready-to-conjugate lanthanide complexes for multimodal imaging. Nanoscale, 2015, 7(36), 14829-14837.
[http://dx.doi.org/10.1039/C5NR00959F] [PMID: 26205500]
[111]
Tian, C.; Zhu, L.; Lin, F.; Boyes, S.G. Poly(acrylic acid) bridged gadolinium metal-organic framework-gold nanoparticle composites as contrast agents for computed tomography and magnetic resonance bimodal imaging. ACS Appl. Mater. Interfaces, 2015, 7(32), 17765-17775.
[http://dx.doi.org/10.1021/acsami.5b03998] [PMID: 26147906]
[112]
Shang, W.; Zeng, C.; Du, Y.; Hui, H.; Liang, X.; Chi, C.; Wang, K.; Wang, Z.; Tian, J. Core–shell gold nanorod@metal–organic framework nanoprobes for multimodality diagnosis of glioma. Adv. Mater., 2017, 29(3)
[http://dx.doi.org/10.1002/adma.201604381]
[113]
Tianyu, D.; Zhao, C.; Rehman, F.U.; Lai, L.; Li, X.; Sun, Y.; Luo, S.; Jiang, H.; Gu, N.; Selke, M.; Wang, X. In situ multimodality imaging of cancerous cells based on a selective performance of Fe2+-adsorbed zeolitic imidazolate framework-8. Adv. Funct. Mater., 2016, 27(5)
[http://dx.doi.org/[https://doi.org/10.1002/adfm.201603926]
[114]
Bian, R.; Wang, T.; Zhang, L.; Li, L.; Wang, C. A combination of tri-modal cancer imaging and in vivo drug delivery by metal-organic framework based composite nanoparticles. Biomater. Sci., 2015, 3(9), 1270-1278.
[http://dx.doi.org/10.1039/C5BM00186B] [PMID: 26236784]
[115]
Xia, Y.; Matham, M.V.; Su, H.; Padmanabhan, P.; Gulyás, B. Nanoparticulate contrast agents for multimodality molecular imaging. J. Biomed. Nanotechnol., 2016, 12(8), 1553-1584.
[http://dx.doi.org/10.1166/jbn.2016.2258] [PMID: 29341579]
[116]
Zhang, Z.; Zheng, Z. Nanostructured and/or nanoscale lanthanide metal-organic frameworks. Struct. Bonding 163, 2015, 297-368.
[http://dx.doi.org/[https://doi.org/10.1007/430_2014_167]
[117]
Hatakeyama, W.; Sanchez, T.J.; Rowe, M.D.; Serkova, N.J.; Liberatore, M.W.; Boyes, S.G. Synthesis of gadolinium nanoscale metal-organic framework with hydrotropes: manipulation of particle size and magnetic resonance imaging capability. ACS Appl. Mater. Interfaces, 2011, 3(5), 1502-1510.
[http://dx.doi.org/10.1021/am200075q] [PMID: 21456529]
[118]
Rowe, M.D.; Thamm, D.H.; Kraft, S.L.; Boyes, S.G. Polymer-modified gadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer. Biomacromolecules, 2009, 10(4), 983-993.
[http://dx.doi.org/10.1021/bm900043e] [PMID: 19290624]
[119]
Li, X.; Anton, N.; Zuber, G.; Vandamme, T. Contrast agents for preclinical targeted X-ray imaging. Adv. Drug Deliv. Rev., 2014, 76, 116-133.
[http://dx.doi.org/[https://doi.org/10.1016/j.addr.2014.07.013]
[120]
Dekrafft, K.E.; Boyle, W.S.; Burk, L.M.; Zhou, O.Z.; Lin, W. Zr- and Hf-based nanoscale metal-organic frameworks as contrast agents for computed tomography. J. Mater. Chem., 2012, 22(35), 18139-18144.
[http://dx.doi.org/10.1039/c2jm32299d] [PMID: 23049169]
[121]
Yin, C.; Hong, B.; Gong, Z.; Zhao, H.; Hu, W.; Lu, X.; Li, J.; Li, X.; Yang, Z.; Fan, Q.; Yao, Y.; Huang, W. Fluorescent oligo(p-phenyleneethynylene) contained amphiphiles-encapsulated magnetic nanoparticles for targeted magnetic resonance and two-photon optical imaging in vitro and in vivo. Nanoscale, 2015, 7(19), 8907-8919.
[http://dx.doi.org/10.1039/C5NR00806A] [PMID: 25916546]
[122]
Wang, X.; Tu, M.; Yan, K.; Li, P.; Pang, L.; Gong, Y.; Li, Q.; Liu, R.; Xu, Z.; Xu, H.; Chu, P.K. Trifunctional polymeric nanocomposites incorporated with Fe3O4/iodine-containing rare earth complex for computed x-ray tomography, magnetic resonance, and optical imaging. ACS Appl. Mater. Interfaces, 2015, 7(44), 24523-24532.
[http://dx.doi.org/10.1021/acsami.5b08802] [PMID: 26484385]
[123]
Dolmans, D.E.J.G.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer, 2003, 3(5), 380-387.
[http://dx.doi.org/10.1038/nrc1071] [PMID: 12724736]
[124]
Lu, K.; He, C.; Lin, W. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc., 2014, 136(48), 16712-16715.
[http://dx.doi.org/10.1021/ja508679h] [PMID: 25407895]
[125]
Lu, K.; He, C.; Lin, W. A Chlorin-based nanoscale metal-organic framework for photodynamic therapy of colon cancers. J. Am. Chem. Soc., 2015, 137(24), 7600-7603.
[http://dx.doi.org/10.1021/jacs.5b04069] [PMID: 26068094]
[126]
Liu, J.; Yang, Y.; Zhu, W.; Yi, X.; Dong, Z.; Xu, X.; Chen, M.; Yang, K.; Lu, G.; Jiang, L.; Liu, Z. Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials, 2016, 97, 1-9.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.034] [PMID: 27155362]
[127]
Tan, J.; Sun, C.; Xu, K.; Wang, C.; Guo, J. Immobilization of ALA-Zn(II) coordination polymer pro-photosensitizers on magnetite colloidal supraparticles for target photodynamic therapy of bladder cancer. Small, 2015, 11(47), 6338-6346.
[http://dx.doi.org/10.1002/smll.201502131] [PMID: 26514273]
[128]
Ma, A.; Luo, Z.; Gu, C.; Li, B.; Liu, J. Cytotoxicity of a metal–organic framework: Drug delivery. Inorg. Chem. Commun., 2017, 77, 68-71.
[http://dx.doi.org/10.1016/j.inoche.2017.01.004]
[129]
Tamames-Tabar, C.; Cunha, D.; Imbuluzqueta, E.; Ragon, F.; Serre, C.; Blanco-Prieto, M.J.; Horcajada, P. Cytotoxicity of nanoscaled metal–organic frameworks. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(3), 262-271.
[http://dx.doi.org/10.1039/C3TB20832J]
[130]
Ruyra, À.; Yazdi, A.; Espín, J.; Carné-Sánchez, A.; Roher, N.; Lorenzo, J.; Imaz, I.; Maspoch, D. Synthesis, culture medium stability, and in vitro and in vivo zebrafish embryo toxicity of metal-organic framework nanoparticles. Chemistry, 2015, 21(6), 2508-2518.
[http://dx.doi.org/10.1002/chem.201405380] [PMID: 25504892]
[131]
Baati, T.; Njim, L.; Neffati, F.; Kerkeni, A.; Bouttemi, M.; Gref, R.; Najjar, M.F.; Zakhama, A.; Couvreur, P.; Serre, C.; Horcajada, P. In depth analysis of the in vivo toxicity of nanoparticles of porous iron(III) metal–organic frameworks. Chem. Sci. (Camb.), 2013, 4(4), 1597-1607.
[http://dx.doi.org/10.1039/c3sc22116d]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy