Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Metal–Organic Framework (MOF)-based Nanomaterials for Biomedical Applications

Author(s): Zhidong Luo, Shuran Fan, Chuying Gu, Weicong Liu, Jinxiang Chen, Baohong Li* and Jianqiang Liu*

Volume 26, Issue 18, 2019

Page: [3341 - 3369] Pages: 29

DOI: 10.2174/0929867325666180214123500

Price: $65

Abstract

Background: Metal-organic frameworks (MOFs), as a new class of porous organic-inorganic crystalline hybrid materials that governed by the self-assembled of metal atoms and organic struts have attracted tremendous attention because of their special properties. Recently, some more documents have reported different types of nanoscale metal-organic frameworks (NMOFs) as biodegradable and physiological pH-responsive systems for photothermal therapy and radiation therapy in the body.

Discussion: In this review paper aims at describing the benefits of using MOF nanoparticles in the field of biomedicine, and putting into perspective their properties in the context of the ones of other NPs. The first section briefly reviews the biomaterial scaffolds of MOFs. The second section presents the main types of stimuli-responsive mechanisms and strategies from two categories: intrinsic (pH, redox state) and extrinsic (temperature, light irradiation and magnetic field) ones. The combinations of photothermal therapy and radiation therapy have been concluded in detail. Finally, clinical applications of MOFs, future challenges and perspectives are also mentioned.

Conclusion: This review outlines the most recent advances MOFs design and biomedical applications, from different synthesis to their use as smart drug delivery systems, bioimaging technology or a combination of both.

Keywords: Drug delivery systems (DDSs), building units (SBU), optical imaging (OI), MOFs, nanomaterial, biomedical application.

« Previous
[1]
(a) Batten, S.R.; Champness, N.R.; Chen, X.M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Suh, M.P.; Reedijk, J. Terminology of metal–organic frameworks and coordination polymers. Pure Appl. Chem., 2013, 85(8), 1715-1724.
[http://dx.doi.org/10.1351/PAC-REC-12-11-20]
(b) Cook, T.R.; Zheng, Y.R.; Stang, P.J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev., 2013, 113(1), 734-777.
[http://dx.doi.org/10.1021/cr3002824] [PMID: 23121121]
[2]
Getman, R.B.; Bae, Y.S.; Wilmer, C.E.; Snurr, R.Q. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chem. Rev., 2012, 112(2), 703-723.
[http://dx.doi.org/10.1021/cr200217c] [PMID: 22188435]
[3]
Horcajada, P.; Gref, R.; Baati, T.; Allan, P.K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R.E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev., 2012, 112(2), 1232-1268.
[http://dx.doi.org/10.1021/cr200256v] [PMID: 22168547]
[4]
Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev., 2012, 112(2), 933-969.
[http://dx.doi.org/10.1021/cr200304e] [PMID: 22098087]
[5]
Zhou, H.C.; Long, J.R.; Yaghi, O.M. Introduction to metal-organic frameworks. Chem. Rev., 2012, 112(2), 673-674.
[http://dx.doi.org/10.1021/cr300014x] [PMID: 22280456]
[6]
Zhou, H.C.; Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev., 2014, 43(16), 5415-5418.
[http://dx.doi.org/10.1039/C4CS90059F] [PMID: 25011480]
[7]
Gu, Z.G.; Zhan, C.; Zhang, J.; Bu, X. Chiral chemistry of metal-camphorate frameworks. Chem. Soc. Rev., 2016, 45(11), 3122-3144.
[http://dx.doi.org/10.1039/C6CS00051G] [PMID: 27021070]
[8]
Hu, Z.; Deibert, B.J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev., 2014, 43(16), 5815-5840.
[http://dx.doi.org/10.1039/C4CS00010B] [PMID: 24577142]
[9]
Wang, H.; Meng, W.; Wu, J.; Ding, J.; Hou, H.; Fan, Y. Crystalline central-metal transformation in metal-organic frameworks. Coord. Chem. Rev., 2016, 307, 130-146.
[10]
Zhao, Y.; Yang, X.G.; Lu, X.M.; Yang, C.D.; Fan, N.N.; Yang, Z.T.; Wang, L.Y.; Ma, L.F. Zn6 cluster based metal–organic framework with enhanced room-temperature phosphorescence and optoelectronic performances. Inorg. Chem., 2019, 58, 6215-6221.
[11]
Xuan, W.; Zhu, C.; Liu, Y.; Cui, Y. Mesoporous metal-organic framework materials. Chem. Soc. Rev., 2012, 41(5), 1677-1695.
[http://dx.doi.org/10.1039/C1CS15196G] [PMID: 22008884]
[12]
Carné, A.; Carbonell, C.; Imaz, I.; Maspoch, D. Nanoscale metal-organic materials. Chem. Soc. Rev., 2011, 40(1), 291-305.
[http://dx.doi.org/10.1039/C0CS00042F] [PMID: 21107481]
[13]
Chowdhuri, A.R.; Laha, D.; Pal, S.; Karmakar, P.; Sahu, S.K. One-pot synthesis of folic acid encapsulated upconversion nanoscale metal organic frameworks for targeting, imaging and pH responsive drug release. Dalton Trans., 2016, 45(45), 18120-18132.
[http://dx.doi.org/10.1039/C6DT03237K] [PMID: 27785489]
[14]
Vivero-Escoto, J.L.; Huxford-Phillips, R.C.; Lin, W. Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem. Soc. Rev., 2012, 41(7), 2673-2685.
[http://dx.doi.org/10.1039/c2cs15229k] [PMID: 22234515]
[15]
Zhao, H.X.; Zou, Q.; Sun, S.K.; Yu, C.; Zhang, X.; Li, R.J.; Fu, Y.Y. Theranostic metal-organic framework core-shell composites for magnetic resonance imaging and drug delivery. Chem. Sci. (Camb.), 2016, 7(8), 5294-5301.
[http://dx.doi.org/10.1039/C6SC01359G] [PMID: 30155180]
[16]
Huxford, R.C.; Dekrafft, K.E.; Boyle, W.S.; Liu, D.; Lin, W. Lipid-coated nanoscale coordination polymers for targeted delivery of antifolates to cancer cells. Chem. Sci. (Camb.), 2012, 3(1), 198-204.
[http://dx.doi.org/10.1039/C1SC00499A] [PMID: 24288587]
[17]
Wehner, T.; Mandel, K.; Schneider, M.; Sextl, G.; Müller-Buschbaum, K. Superparamagnetic Luminescent M.O.F. @Fe3O4/SiO2Composite particles for signal augmentation by magnetic harvesting as potential water detectors. ACS Appl. Mater. Interfaces, 2016, 8(8), 5445-5452.
[http://dx.doi.org/10.1021/acsami.5b11965] [PMID: 26860449]
[18]
Zheng, J.; Cheng, C.; Fang, W.; Chen, C.; Yan, R.; Huai, H.; Wang, C. Surfactant-free synthesis of a Fe3O4@ZIF-8 core-shell heterostructure for adsorption of methylene blue. CrystEngComm, 2014, 16(19), 396-3964.
[http://dx.doi.org/10.1039/c3ce42648c]
[19]
Li, L.; Wu, Y.Q.; Sun, K.K.; Zhang, R.; Fan, L.; Liang, K.K.; Mao, L.B. Controllable preparation and drug loading properties of core–shell microspheres Fe3O4@MOFs/GO. Mater. Lett., 2016, 162, 207-210.
[http://dx.doi.org/10.1016/j.matlet.2015.09.096]
[20]
Cohen, S.M. Postsynthetic methods for the functionalization of metal-organic frameworks. Chem. Rev., 2012, 112(2), 970-1000.
[http://dx.doi.org/10.1021/cr200179u] [PMID: 21916418]
[21]
Taylor-Pashow, K.M.L.; Della Rocca, J.; Xie, Z.; Tran, S.; Lin, W. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J. Am. Chem. Soc., 2009, 131(40), 14261-14263.
[http://dx.doi.org/10.1021/ja906198y] [PMID: 19807179]
[22]
Liu, L.L.; Yu, C.X.; Sun, J.; Meng, P.P.; Ma, F.J.; Du, J.M.; Ma, L.F. Three coordination polymers constructed from various polynuclear clusters spaced by 2,2′-azodibenzoic acid: Syntheses and fluorescent properties. Dalton Trans., 2014, 43, 2915-2924.
[23]
Xu, X.Y.; Yan, B. Eu(III)-functionalized MIL-124 as fluorescent probe for highly selectively sensing ions and organic small molecules especially for Fe(III) and Fe(II). ACS Appl. Mater. Interfaces, 2015, 7(1), 721-729.
[http://dx.doi.org/10.1021/am5070409] [PMID: 25510710]
[24]
Li, X.Q.; Zhou, Z.; Zhang, C.C.; Zheng, Y.H.; Gao, J.W.; Wang, Q.M. Modulation of assembly and disassembly of a new tetraphenylethene based nanosensor for highly selective detection of hyaluronidase. Sens. Actuators B Chem., 2018, 276, 95-100.
[25]
Zhou, Z.; Gu, J.P.; Qiao, X.G.; Wu, H.X.; Fu, H.R.; Wang, L.; Li, H.Y.; Ma, L.F. Double protected lanthanide fluorescence core@shell colloidal hybrid for the selective and sensitive detection of ClO-. Sens. Actuators B Chem., 2019, 282, 437-442.
[26]
Furukawa, H.; Ko, N.; Go, Y.B.; Aratani, N.; Choi, S.B.; Choi, E.; Yazaydin, A.O.; Snurr, R.Q.; O’Keeffe, M.; Kim, J.; Yaghi, O.M. Ultrahigh porosity in metal-organic frameworks. Science, 2010, 329(5990), 424-428.
[http://dx.doi.org/10.1126/science.1192160] [PMID: 20595583]
[27]
Suh, M.P.; Park, H.J.; Prasad, T.K.; Lim, D.W. Hydrogen storage in metal-organic frameworks. Chem. Rev., 2012, 112(2), 782-835.
[http://dx.doi.org/10.1021/cr200274s] [PMID: 22191516]
[28]
Jayaramulu, K.; Reddy, S.K.; Hazra, A.; Balasubramanian, S.; Maji, T.K. Three-dimensional metal-organic framework with highly polar pore surface: H2 and CO2 storage characteristics. Inorg. Chem., 2012, 51(13), 7103-7111.
[http://dx.doi.org/10.1021/ic202601y] [PMID: 22716229]
[29]
Li, J.R.; Sculley, J.; Zhou, H.C. Metal-organic frameworks for separations. Chem. Rev., 2012, 112(2), 869-932.
[http://dx.doi.org/10.1021/cr200190s] [PMID: 21978134]
[30]
Qin, J.H.; Jia, Y.; Li, H.; Zhao, B.; Wu, D.; Zang, S.Q.; Hou, H.; Fan, Y. Conversion from a heterochiral 2+2 coaxially nested double-helical column to a cationic spiral staircase stimulated by an ionic liquid anion. Inorg. Chem., 2014, 53, 685-687.
[31]
Kumar, P.; Deep, A.; Kim, K. Metal organic frameworks for sensing applications. TrAC Trend. Anal. Chem., 2015, 73, 39-53.
[32]
Liu, S.; Zeng, Y.; Hu, X.; Xue, L.; Han, S.; Jia, J.; Hu, T. Five new Mn(II)/Co(II) coordination polymers constructed from flexible multicarboxylate ligands with varying magnetic properties. J. Solid State Chem., 2013, 204, 197-204.
[http://dx.doi.org/10.1016/j.jssc.2013.05.027]
[33]
Kaur, R.; Kim, K.; Paul, A.K.; Deep, A. Recent advances in the photovoltaic applications of coordination polymers and metal organic frameworks. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(11), 3991-4002.
[http://dx.doi.org/10.1039/C5TA09668E]
[34]
Keskin, S.; Kızılel, S. Biomedical applications of metal organic frameworks. Ind. Eng. Chem. Res., 2011, 50(4), 1799-1812.
[http://dx.doi.org/10.1021/ie101312k]
[35]
Liu, R.; Yu, T.; Shi, Z.; Wang, Z. The preparation of metal-organic frameworks and their biomedical application. Int. J. Nanomedicine, 2016, 11, 1187-1200.
[http://dx.doi.org/10.2147/IJN.S100877] [PMID: 27042066]
[36]
Yang, D.; Yang, G.; Gai, S.; He, F.; An, G.; Dai, Y.; Lv, R.; Yang, P. Au25 cluster functionalized metal-organic nanostructures for magnetically targeted photodynamic/photothermal therapy triggered by single wavelength 808 nm near-infrared light. Nanoscale, 2015, 7(46), 19568-19578.
[http://dx.doi.org/10.1039/C5NR06192J] [PMID: 26540558]
[37]
Wang, W.; Wang, L.; Li, Z.; Xie, Z. BODIPY-containing nanoscale metal-organic frameworks for photodynamic therapy. Chem. Commun. (Camb.), 2016, 52(31), 5402-5405.
[http://dx.doi.org/10.1039/C6CC01048B] [PMID: 27009757]
[38]
Lei, J.; Qian, R.; Ling, P.; Cui, L.; Ju, H. Design and sensing applications of metal–organic framework composites. Trends Analyt. Chem., 2014, 58, 71-78.
[http://dx.doi.org/10.1016/j.trac.2014.02.012]
[39]
(a) Giménez-Marqués, M.; Hidalgo, T.; Serre, C.; Horcajada, P. Nanostructured metal–organic frameworks and their bio-related applications. Coord. Chem. Rev., 2016, 307, 342-360.
[http://dx.doi.org/http://10.1016/j.ccr.2015.08.008]
(b) Wu, M.X.; Yang, Y.W. Metal-organic Framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater., 2017, 29(23), 1601634-1601654.
[http://dx.doi.org/10.1002/adma.201606134] [PMID: 28370555]
[40]
Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev., 2016, 116(9), 5338-5431.
[http://dx.doi.org/10.1021/acs.chemrev.5b00589] [PMID: 27109701]
[41]
Du, X.J.; Wang, J.L.; Liu, W.W.; Yang, J.X.; Sun, C.Y.; Sun, R.; Li, H.J.; Shen, S.; Luo, Y.L.; Ye, X.D.; Zhu, Y.H.; Yang, X.Z.; Wang, J. Regulating the surface poly(ethylene glycol) density of polymeric nanoparticles and evaluating its role in drug delivery in vivo. Biomaterials, 2015, 69, 1-11.
[http://dx.doi.org/10.1016/j.biomaterials.2015.07.048] [PMID: 26275857]
[42]
Đorđević, S.M.; Cekić, N.D.; Savić, M.M.; Isailović, T.M.; Ranđelović, D.V.; Marković, B.D.; Savić, S.R.; Timić Stamenić, T.; Daniels, R.; Savić, S.D. Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: Design, characterization and in vivo pharmacokinetic evaluation. Int. J. Pharm., 2015, 493(1-2), 40-54.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.007] [PMID: 26209070]
[43]
Atta, S.; Khaliq, S.; Islam, A.; Javeria, I.; Jamil, T.; Athar, M.M.; Shafiq, M.I.; Ghaffar, A. Injectable biopolymer based hydrogels for drug delivery applications. Int. J. Biol. Macromol., 2015, 80, 240-245.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.06.044] [PMID: 26118484]
[44]
Sosnik, A.; Menaker Raskin, M. Polymeric micelles in mucosal drug delivery: Challenges towards clinical translation. Biotechnol. Adv., 2015, 33(6 Pt 3), 1380-1392.
[http://dx.doi.org/10.1016/j.biotechadv.2015.01.003] [PMID: 25597531]
[45]
Kneidl, B.; Peller, M.; Winter, G.; Lindner, L.H.; Hossann, M. Thermosensitive liposomal drug delivery systems: state of the art review. Int. J. Nanomedicine, 2014, 9, 4387-4398.
[PMID: 25258529]
[46]
He, C.; Lu, K.; Liu, D.; Lin, W. Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc., 2014, 136(14), 5181-5184.
[http://dx.doi.org/10.1021/ja4098862] [PMID: 24669930]
[47]
Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N.A.; Balas, F.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc., 2008, 130(21), 6774-6780.
[http://dx.doi.org/10.1021/ja710973k] [PMID: 18454528]
[48]
Miller, S.R.; Heurtaux, D.; Baati, T.; Horcajada, P.; Grenèche, J.M.; Serre, C. Biodegradable therapeutic MOFs for the delivery of bioactive molecules. Chem. Commun. (Camb.), 2010, 46(25), 4526-4528.
[http://dx.doi.org/10.1039/c001181a] [PMID: 20467672]
[49]
Anand, R.; Borghi, F.; Manoli, F.; Manet, I.; Agostoni, V.; Reschiglian, P.; Gref, R.; Monti, S. Host-guest interactions in Fe(III)-trimesate MOF nanoparticles loaded with doxorubicin. J. Phys. Chem. B, 2014, 118(29), 8532-8539.
[http://dx.doi.org/10.1021/jp503809w] [PMID: 24960194]
[50]
Liédana, N.; Lozano, P.; Galve, A.; Téllez, C.; Coronas, J. The template role of caffeine in its one-step encapsulation in MOF NH2-MIL-88B(Fe). J. Mater. Chem. B Mater. Biol. Med., 2014, 2(9), 1144-1151.
[http://dx.doi.org/10.1039/C3TB21707H]
[51]
Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J.F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J.S.; Hwang, Y.K.; Marsaud, V.; Bories, P.N.; Cynober, L.; Gil, S.; Férey, G.; Couvreur, P.; Gref, R. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater., 2010, 9(2), 172-178.
[http://dx.doi.org/10.1038/nmat2608] [PMID: 20010827]
[52]
An, J.; Geib, S.J.; Rosi, N.L. Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. J. Am. Chem. Soc., 2009, 131(24), 8376-8377.
[http://dx.doi.org/10.1021/ja902972w] [PMID: 19489551]
[53]
Sun, C.Y.; Qin, C.; Wang, C.G.; Su, Z.M.; Wang, S.; Wang, X.L.; Yang, G.S.; Shao, K.Z.; Lan, Y.Q.; Wang, E.B. Chiral nanoporous metal-organic frameworks with high porosity as materials for drug delivery. Adv. Mater., 2011, 23(47), 5629-5632.
[http://dx.doi.org/10.1002/adma.201102538] [PMID: 22095878]
[54]
Zhong, D.C.; Liao, L.Q.; Deng, J.H.; Chen, Q.; Lian, P.; Luo, X.Z. A rare (3,4,5)-connected metal-organic framework featuring an unprecedented 1D + 2D → 3D self-interpenetrated array and an O-atom lined pore surface: structure and controlled drug release. Chem. Commun. (Camb.), 2014, 50(99), 15807-15810.
[http://dx.doi.org/10.1039/C4CC08214A] [PMID: 25371973]
[55]
Vasconcelos, I.B.; Silva, T.G.D.; Militão, G.C.G.; Soares, T.A.; Rodrigues, N.M.; Rodrigues, M.O.; Costa, N.B.D.; Freire, R.O.; Junior, S.A. Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8. RSC Advances, 2012, 2(25), 9437-9442.
[http://dx.doi.org/10.1039/c2ra21087h]
[56]
Li, Q.; Wang, J.; Liu, W.; Zhuang, X.; Liu, J.; Fan, G.; Li, B.; Lin, W.; Man, J. A new (4,8)-connected topological MOF as potential drug delivery. Inorg. Chem. Commun., 2015, 55, 8-10.
[http://dx.doi.org/10.1016/j.inoche.2015.02.023]
[57]
Li, F.; Li, B.; Wang, C.; Zeng, Y.; Liu, J.; Gu, C.; Lu, P.; Mei, L. Encapsulation of pharmaceutical ingredient linker in metal–organic framework: combined experimental and theoretical insight into the drug delivery. RSC Advances, 2016, 6(53), 47959-47965.
[http://dx.doi.org/10.1039/C6RA06178H]
[58]
Nagata, S.; Kokado, K.; Sada, K. Metal-organic framework tethering PNIPAM for ON-OFF controlled release in solution. Chem. Commun. (Camb.), 2015, 51(41), 8614-8617.
[http://dx.doi.org/10.1039/C5CC02339D] [PMID: 25896867]
[59]
Tai, S.; Zhang, W.; Zhang, J.; Luo, G.; Jia, Y.; Deng, M.; Ling, Y. Facile preparation of UiO-66 nanoparticles with tunable sizes in a continuous flow microreactor and its application in drug delivery. Microporous Mesoporous Mater., 2016, 220, 148-154.
[http://dx.doi.org/10.1016/j.micromeso.2015.08.037]
[60]
Wei, L.Q.; Chen, Q.; Tang, L.L.; Zhuang, C.; Zhu, W.R.; Lin, N. A porous metal-organic framework with a unique hendecahedron-shaped cage: structure and controlled drug release. Dalton Trans., 2016, 45(9), 3694-3697.
[http://dx.doi.org/10.1039/C5DT04379D] [PMID: 26842630]
[61]
Wang, H.N.; Meng, X.; Yang, G.S.; Wang, X.L.; Shao, K.Z.; Su, Z.M.; Wang, C.G. Stepwise assembly of metal-organic framework based on a metal-organic polyhedron precursor for drug delivery. Chem. Commun. (Camb.), 2011, 47(25), 7128-7130.
[http://dx.doi.org/10.1039/c1cc11932j] [PMID: 21614372]
[62]
Du, P.; Gu, W.; Liu, X. A three-dimensional Nd(iii)-based metal–organic framework as a smart drug carrier. New J. Chem., 2016, 40(11), 9017-9020.
[http://dx.doi.org/10.1039/C6NJ02221A]
[63]
Kundu, T.; Mitra, S.; Patra, P.; Goswami, A.; Díaz Díaz, D.; Banerjee, R. Mechanical downsizing of a gadolinium(III)-based metal-organic framework for anticancer drug delivery. Chemistry, 2014, 20(33), 10514-10518.
[http://dx.doi.org/10.1002/chem.201402244] [PMID: 25044210]
[64]
Li, H.; Lv, N.; Li, X.; Liu, B.; Feng, J.; Ren, X.; Guo, T.; Chen, D.; Fraser Stoddart, J.; Gref, R.; Zhang, J. Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery. Nanoscale, 2017, 9(22), 7454-7463.
[http://dx.doi.org/10.1039/C6NR07593B] [PMID: 28530283]
[65]
Cattaneo, D.; Warrender, S.J.; Duncan, M.J.; Kelsall, C.J.; Doherty, M.K.; Whitfield, P.D.; Megson, I.L.; Morris, R.E. Tuning the nitric oxide release from CPO-27 MOFs. RSC Advances, 2016, 6(17), 14059-14067.
[http://dx.doi.org/10.1039/C5RA24023A] [PMID: 27019705]
[66]
Levine, D.J.; Runčevski, T.; Kapelewski, M.T.; Keitz, B.K.; Oktawiec, J.; Reed, D.A.; Mason, J.A.; Jiang, H.Z.H.; Colwell, K.A.; Legendre, C.M.; FitzGerald, S.A.; Long, J.R. Olsalazine-based metal-organic frameworks as biocompatible platforms for H2 adsorption and drug delivery. J. Am. Chem. Soc., 2016, 138(32), 10143-10150.
[http://dx.doi.org/10.1021/jacs.6b03523] [PMID: 27486905]
[67]
Chalati, T.; Horcajada, P.; Couvreur, P.; Serre, C.; Ben Yahia, M.; Maurin, G.; Gref, R. Porous metal organic framework nanoparticles to address the challenges related to busulfan encapsulation. Nanomedicine (Lond.), 2011, 6(10), 1683-1695.
[http://dx.doi.org/10.2217/nnm.11.69] [PMID: 22122581]
[68]
Cunha, D.; Ben Yahia, M.; Hall, S.; Miller, S.R.; Chevreau, H.; Elkaïm, E.; Maurin, G.; Horcajada, P.; Serre, C. Rationale of drug encapsulation and release from biocompatible porous metal–organic frameworks. Chem. Mater., 2013, 25(14), 2767-2776.
[http://dx.doi.org/10.1021/cm400798p]
[69]
di Nunzio, M.R.; Agostoni, V.; Cohen, B.; Gref, R.; Douhal, A.A. “ship in a bottle” strategy to load a hydrophilic anticancer drug in porous metal organic framework nanoparticles: efficient encapsulation, matrix stabilization, and photodelivery. J. Med. Chem., 2014, 57(2), 411-420.
[http://dx.doi.org/10.1021/jm4017202] [PMID: 24345217]
[70]
Liédana, N.; Galve, A.; Rubio, C.; Téllez, C.; Coronas, J. CAF@ZIF-8: one-step encapsulation of caffeine in MOF. ACS Appl. Mater. Interfaces, 2012, 4(9), 5016-5021.
[http://dx.doi.org/10.1021/am301365h] [PMID: 22834763]
[71]
Loera-Serna, S.; Zarate-Rubio, J.; Medina-Velazquez, D.Y.; Zhang, L.; Ortiz, E. Encapsulation of urea and caffeine in Cu3(BTC)2 metal–organic framework. Surf. Innov., 2016, 4(2), 76-87.
[http://dx.doi.org/10.1680/jsuin.15.00017]
[72]
Demir, S.; Merve Çepni, H.; Topcu, Y.; Hołyńska, M.; Keskin, S. A phytochemical-containing metal–organic framework: Synthesis, characterization and molecular simulations for hydrogen adsorption. Inorg. Chim. Acta, 2015, 427, 138-143.
[http://dx.doi.org/10.1016/j.ica.2014.12.010]
[73]
Burrows, A.D.; Jurcic, M.; Keenan, L.L.; Lane, R.A.; Mahon, M.F.; Warren, M.R.; Nowell, H.; Paradowski, M.; Spencer, J. Incorporation by coordination and release of the iron chelator drug deferiprone from zinc-based metal-organic frameworks. Chem. Commun. (Camb.), 2013, 49(96), 11260-11262.
[http://dx.doi.org/10.1039/c3cc45689g] [PMID: 24135827]
[74]
Wang, H.; Hu, T.; Wen, R.; Wang, Q.; Bu, X. In vitro controlled release of theophylline from metal–drug complexes. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(32), 3879-3882.
[http://dx.doi.org/10.1039/c3tb20633e]
[75]
Swietach, P.; Vaughan-Jones, R.D.; Harris, A.L.; Hulikova, A. The chemistry, physiology and pathology of pH in cancer. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1638)20130099
[http://dx.doi.org/10.1098/rstb.2013.0099] [PMID: 24493747]
[76]
Adhikari, C.; Das, A.; Chakraborty, A. Zeolitic Imidazole Framework (ZIF) nanospheres for easy encapsulation and controlled release of an anticancer drug doxorubicin under different external stimuli: A way toward smart drug delivery system. Mol. Pharm., 2015, 12(9), 3158-3166.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00043] [PMID: 26196058]
[77]
Yang, Y.; Hu, Q.; Zhang, Q.; Jiang, K.; Lin, W.; Yang, Y.; Cui, Y.; Qian, G. A large capacity cationic metal-organic framework nanocarrier for physiological pH responsive drug delivery. Mol. Pharm., 2016, 13(8), 2782-2786.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00374] [PMID: 27414996]
[78]
Xing, L.; Cao, Y.; Che, S. Synthesis of core-shell coordination polymer nanoparticles (CPNs) for pH-responsive controlled drug release. Chem. Commun. (Camb.), 2012, 48(48), 5995-5997.
[http://dx.doi.org/10.1039/c2cc30877k] [PMID: 22576702]
[79]
Lin, W.; Hu, Q.; Jiang, K.; Yang, Y.; Yang, Y.; Cui, Y.; Qian, G. A porphyrin-based metal–organic framework as a pH-responsive drug carrier. J. Solid State Chem., 2016, 237, 307-312.
[http://dx.doi.org/10.1016/j.jssc.2016.02.040]
[80]
Gao, P.F.; Zheng, L.L.; Liang, L.J.; Yang, X.X.; Li, Y.F.; Huang, C.Z. A new type of pH-responsive coordination polymer sphere as a vehicle for targeted anticancer drug delivery and sustained release. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(25), 3202-3208.
[http://dx.doi.org/10.1039/c3tb00026e]
[81]
Zheng, H.; Zhang, Y.; Liu, L.; Wan, W.; Guo, P.; Nyström, A.M.; Zou, X. One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc., 2016, 138(3), 962-968.
[http://dx.doi.org/10.1021/jacs.5b11720] [PMID: 26710234]
[82]
Ricco, R.; Malfatti, L.; Takahashi, M.; Hill, A.J.; Falcaro, P. Applications of magnetic metal–organic framework composites. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(42), 13033-13045.
[http://dx.doi.org/10.1039/c3ta13140h]
[83]
Della Rocca, J.; Lin, W. Nanoscale metal-organic frameworks: magnetic resonance imaging contrast agents and beyond. Eur. J. Inorg. Chem., 2010, 2010(24), 3725-3734.
[http://dx.doi.org/10.1002/ejic.201000496]
[84]
Ke, F.; Yuan, Y.; Qiu, L.; Shen, Y.; Xie, A.; Zhu, J.; Tian, X.; Zhang, L. Facile fabrication of magnetic metal–organic framework nanocomposites for potential targeted drug delivery. J. Mater. Chem., 2011, 21(11), 3843-3848.
[http://dx.doi.org/10.1039/c0jm01770a]
[85]
Wu, Y.N.; Zhou, M.; Li, S.; Li, Z.; Li, J.; Wu, B.; Li, G.; Li, F.; Guan, X. Magnetic metal-organic frameworks: γ-Fe2O3@MOFs via confined in situ pyrolysis method for drug delivery. Small, 2014, 10(14), 2927-2936.
[http://dx.doi.org/10.1002/smll.201400362] [PMID: 24644065]
[86]
Wang, D.; Zhou, J.; Chen, R.; Shi, R.; Xia, G.; Zhou, S.; Liu, Z.; Zhang, N.; Wang, H.; Guo, Z.; Chen, Q. Magnetically guided delivery of DHA and Fe ions for enhanced cancer therapy based on pH-responsive degradation of DHA-loaded Fe3O4@C@MIL-100(Fe) nanoparticles. Biomaterials, 2016, 107, 88-101.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.039] [PMID: 27614161]
[87]
Tofzikovskaya, Z.; Casey, A.; Howe, O.; O’Connor, C.; McNamara, M. In vitro evaluation of the cytotoxicity of a folate-modified β-cyclodextrin as a new anti-cancer drug delivery system. J. Incl. Phenom. Macrocycl. Chem., 2015, 81, 85-94.
[http://dx.doi.org/10.1007/s10847-014-0436-0]
[88]
Chen, C.; Ke, J.; Zhou, X.E.; Yi, W.; Brunzelle, J.S.; Li, J.; Yong, E.L.; Xu, H.E.; Melcher, K. Structural basis for molecular recognition of folic acid by folate receptors. Nature, 2013, 500(7463), 486-489.
[89]
Li, Y.A.; Zhao, X.D.; Yin, H.P.; Chen, G.J.; Yang, S.; Dong, Y.B. A drug-loaded nanoscale metal-organic framework with a tumor targeting agent for highly effective hepatoma therapy. Chem. Commun. (Camb.), 2016, 52(98), 14113-14116.
[http://dx.doi.org/10.1039/C6CC07321B] [PMID: 27858003]
[90]
Au, K.M.; Satterlee, A.; Min, Y.; Tian, X.; Kim, Y.S.; Caster, J.M.; Zhang, L.; Zhang, T. Huang; L.; Wang, A. Z. Folate-targeted pH-responsive calcium zoledronate nanoscale metalorganic frameworks: Turning a bone antiresorptive agent into an anticancer therapeutic. Biomaterials, 2016, 82, 178-193.
[http://dx.doi.org/10.1016/j.biomaterials.2015.12.018] [PMID: 26763733]
[91]
Liu, J.; Zhang, L.; Lei, J.; Shen, H.; Ju, H. Multifunctional metal-organic framework nanoprobe for Cathepsin B-activated cancer cell imaging and chemo-photodynamic therapy. ACS Appl. Mater. Interfaces, 2017, 9(3), 2150-2158.
[http://dx.doi.org/10.1021/acsami.6b14446] [PMID: 28033467]
[92]
Lin, W.; Hu, Q.; Yu, J.; Jiang, K.; Yang, Y.; Xiang, S.; Cui, Y.; Yang, Y.; Wang, Z.; Qian, G. Low cytotoxic metal–organic frameworks as temperature-responsive drug carriers. ChemPlusChem, 2016, 81, 804-810.
[http://dx.doi.org/10.1002/cplu.201600142]
[93]
(a) Morris, W.; Briley, W.E.; Auyeung, E.; Cabezas, M.D.; Mirkin, C.A. Nucleic acid-metal organic framework (MOF) nanoparticle conjugates. J. Am. Chem. Soc., 2014, 136(20), 7261-7264. [http://dx.doi.org/10.1021/ja503215w] [PMID: 24818877]
(b) He, C.; Lu, K.; Liu, D.; Lin, W. Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc., 2014, 136(14), 5181-5184. [http://dx.doi.org/10.1021/ja4098862] [PMID: 24669930]
(c) Cai, W.; Chu, C.C.; Liu, G.; Wáng, Y.X.J. Metal–Organic framework-based nanomedicine platforms for drug delivery and molecular imaging. Small, 2015, 11(37), 4806-4822.
[94]
Wang, C.; Liu, D.; Lin, W. Metal-organic frameworks as a tunable platform for designing functional molecular materials. J. Am. Chem. Soc., 2013, 135(36), 13222-13234.
[http://dx.doi.org/10.1021/ja308229p] [PMID: 23944646]
[95]
(a) Della Rocca, J.; Liu, D.; Lin, W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res., 2011, 44(10), 957-968. [http://dx.doi.org/10.1021/ar200028a] [PMID: 21648429]
(b) He, C.; Liu, D.; Lin, W. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: Nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem. Rev., 2015, 115(19), 11079-11108.
[http://dx.doi.org/10.1021/acs.chemrev.5b00125] [PMID: 26312730]
[96]
Hatakeyama, W.; Sanchez, T.J.; Rowe, M.D.; Serkova, N.J.; Liberatore, M.W.; Boyes, S.G. Synthesis of gadolinium nanoscale metal-organic framework with hydrotropes: Manipulation of particle size and magnetic resonance imaging capability. ACS Appl. Mater. Interfaces, 2011, 3(5), 1502-1510.
[http://dx.doi.org/10.1021/am200075q] [PMID: 21456529]
[97]
Kundu, T.; Mitra, S.; Díaz Díaz, D.; Banerjee, R. Gadolinium(III)-based porous luminescent metal-organic frameworks for bimodal imaging. ChemPlusChem, 2016, 81(8), 728-732.
[http://dx.doi.org/10.1002/cplu.201600233]
[98]
Liu, D.; He, C.; Poon, C.; Lin, W. Theranostic nanoscale coordination polymers for magnetic resonance imaging and bisphosphonate delivery. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(46), 8249-8255.
[http://dx.doi.org/10.1039/C4TB00751D]
[99]
Yuan, G.; Zhu, C.; Liu, Y.; Cui, Y. Nano- and microcrystals of a Mn-based metal-oligomer framework showing size-dependent magnetic resonance behaviors. Chem. Commun. (Camb.), 2011, 47(11), 3180-3182.
[http://dx.doi.org/10.1039/c0cc03981k] [PMID: 21279220]
[100]
Yang, Y.; Liu, J.; Liang, C.; Feng, L.; Fu, T.; Dong, Z.; Chao, Y.; Li, Y.; Lu, G.; Chen, M.; Liu, Z. Nanoscale metal-organic particles with rapid clearance for magnetic resonance imaging-guided photothermal therapy. ACS Nano, 2016, 10(2), 2774-2781.
[http://dx.doi.org/10.1021/acsnano.5b07882] [PMID: 26799993]
[101]
Taylor, K.M.; Jin, A.; Lin, W. Surfactant-assisted synthesis of nanoscale gadolinium metal–organic frameworks for potential multimodal imaging. Angew. Chem. Int. Ed., 2008, 47, 7722-7725.
[http://dx.doi.org/10.1002/anie.200802911]
[102]
Taylor, K.M.; Rieter, W.J.; Lin, W. Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging. J. Am. Chem. Soc., 2008, 130(44), 14358-14359.
[http://dx.doi.org/10.1021/ja803777x] [PMID: 18844356]
[103]
Rieter, W.J.; Taylor, K.M.L.; An, H.; Lin, W.; Lin, W. Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents. J. Am. Chem. Soc., 2006, 128(28), 9024-9025.
[http://dx.doi.org/10.1021/ja0627444] [PMID: 16834362]
[104]
Liu, D.; Huxford, R.C.; Lin, W. Phosphorescent nanoscale coordination polymers as contrast agents for optical imaging. Angew. Chem. Int. Ed. Engl., 2011, 50(16), 3696-3700.
[http://dx.doi.org/10.1002/anie.201008277] [PMID: 21416573]
[105]
Zhang, T.; Wang, L.; Ma, C.; Wang, W.; Ding, J.; Liu, S.; Zhang, X.; Xie, Z. BODIPY-containing nanoscale metal–organic frameworks as contrast agents for computed tomography. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(12), 2330-2336.
[http://dx.doi.org/10.1039/C7TB00392G]
[106]
deKrafft, K.E.; Xie, Z.; Cao, G.; Tran, S.; Ma, L.; Zhou, O.Z.; Lin, W. Iodinated nanoscale coordination polymers as potential contrast agents for computed tomography. Angew. Chem. Int. Ed. Engl., 2009, 48(52), 9901-9904.
[http://dx.doi.org/10.1002/anie.200904958] [PMID: 19937883]
[107]
Gao, X.; Zhai, M.; Guan, W.; Liu, J.; Liu, Z.; Damirin, A. Controllable synthesis of a smart multifunctional nanoscale metal-organic framework for magnetic resonance/optical imaging and targeted drug delivery. ACS Appl. Mater. Interfaces, 2017, 9(4), 3455-3462.
[http://dx.doi.org/10.1021/acsami.6b14795] [PMID: 28079361]
[108]
Yan, H.; Boamah, P.O.; Gong, J.; Zhang, Q.; Hua, M.; Ye, Y. Gd(III) complex conjugate of low-molecular-weight chitosan as a contrast agent for magnetic resonance/fluorescence dual-modal imaging. Carbohydr. Polym., 2016, 143, 288-295.
[109]
Wang, Y.M.; Liu, W.; Yin, X.B. Self-limiting growth nanoscale coordination polymers for fluorescence and magnetic resonance dual-modality imaging. Adv. Funct. Mater., 2016, •••
[http://dx.doi.org/10.1002/adfm.201602925]
[110]
Biju, V.; Hamada, M.; Ono, K.; Sugino, S.; Ohnishi, T.; Shibu, E.S.; Yamamura, S.; Sawada, M.; Nakanishi, S.; Shigeri, Y.; Wakida, S. Nanoparticles speckled by ready-to-conjugate lanthanide complexes for multimodal imaging. Nanoscale, 2015, 7(36), 14829-14837.
[http://dx.doi.org/10.1039/C5NR00959F] [PMID: 26205500]
[111]
Tian, C.; Zhu, L.; Lin, F.; Boyes, S.G. Poly(acrylic acid) bridged gadolinium metal-organic framework-gold nanoparticle composites as contrast agents for computed tomography and magnetic resonance bimodal imaging. ACS Appl. Mater. Interfaces, 2015, 7(32), 17765-17775.
[http://dx.doi.org/10.1021/acsami.5b03998] [PMID: 26147906]
[112]
Shang, W.; Zeng, C.; Du, Y.; Hui, H.; Liang, X.; Chi, C.; Wang, K.; Wang, Z.; Tian, J. Core–shell gold nanorod@metal–organic framework nanoprobes for multimodality diagnosis of glioma. Adv. Mater., 2017, 29(3)
[http://dx.doi.org/10.1002/adma.201604381]
[113]
Tianyu, D.; Zhao, C.; Rehman, F.U.; Lai, L.; Li, X.; Sun, Y.; Luo, S.; Jiang, H.; Gu, N.; Selke, M.; Wang, X. In situ multimodality imaging of cancerous cells based on a selective performance of Fe2+-adsorbed zeolitic imidazolate framework-8. Adv. Funct. Mater., 2016, 27(5)
[http://dx.doi.org/[https://doi.org/10.1002/adfm.201603926]
[114]
Bian, R.; Wang, T.; Zhang, L.; Li, L.; Wang, C. A combination of tri-modal cancer imaging and in vivo drug delivery by metal-organic framework based composite nanoparticles. Biomater. Sci., 2015, 3(9), 1270-1278.
[http://dx.doi.org/10.1039/C5BM00186B] [PMID: 26236784]
[115]
Xia, Y.; Matham, M.V.; Su, H.; Padmanabhan, P.; Gulyás, B. Nanoparticulate contrast agents for multimodality molecular imaging. J. Biomed. Nanotechnol., 2016, 12(8), 1553-1584.
[http://dx.doi.org/10.1166/jbn.2016.2258] [PMID: 29341579]
[116]
Zhang, Z.; Zheng, Z. Nanostructured and/or nanoscale lanthanide metal-organic frameworks. Struct. Bonding 163, 2015, 297-368.
[http://dx.doi.org/[https://doi.org/10.1007/430_2014_167]
[117]
Hatakeyama, W.; Sanchez, T.J.; Rowe, M.D.; Serkova, N.J.; Liberatore, M.W.; Boyes, S.G. Synthesis of gadolinium nanoscale metal-organic framework with hydrotropes: manipulation of particle size and magnetic resonance imaging capability. ACS Appl. Mater. Interfaces, 2011, 3(5), 1502-1510.
[http://dx.doi.org/10.1021/am200075q] [PMID: 21456529]
[118]
Rowe, M.D.; Thamm, D.H.; Kraft, S.L.; Boyes, S.G. Polymer-modified gadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer. Biomacromolecules, 2009, 10(4), 983-993.
[http://dx.doi.org/10.1021/bm900043e] [PMID: 19290624]
[119]
Li, X.; Anton, N.; Zuber, G.; Vandamme, T. Contrast agents for preclinical targeted X-ray imaging. Adv. Drug Deliv. Rev., 2014, 76, 116-133.
[http://dx.doi.org/[https://doi.org/10.1016/j.addr.2014.07.013]
[120]
Dekrafft, K.E.; Boyle, W.S.; Burk, L.M.; Zhou, O.Z.; Lin, W. Zr- and Hf-based nanoscale metal-organic frameworks as contrast agents for computed tomography. J. Mater. Chem., 2012, 22(35), 18139-18144.
[http://dx.doi.org/10.1039/c2jm32299d] [PMID: 23049169]
[121]
Yin, C.; Hong, B.; Gong, Z.; Zhao, H.; Hu, W.; Lu, X.; Li, J.; Li, X.; Yang, Z.; Fan, Q.; Yao, Y.; Huang, W. Fluorescent oligo(p-phenyleneethynylene) contained amphiphiles-encapsulated magnetic nanoparticles for targeted magnetic resonance and two-photon optical imaging in vitro and in vivo. Nanoscale, 2015, 7(19), 8907-8919.
[http://dx.doi.org/10.1039/C5NR00806A] [PMID: 25916546]
[122]
Wang, X.; Tu, M.; Yan, K.; Li, P.; Pang, L.; Gong, Y.; Li, Q.; Liu, R.; Xu, Z.; Xu, H.; Chu, P.K. Trifunctional polymeric nanocomposites incorporated with Fe3O4/iodine-containing rare earth complex for computed x-ray tomography, magnetic resonance, and optical imaging. ACS Appl. Mater. Interfaces, 2015, 7(44), 24523-24532.
[http://dx.doi.org/10.1021/acsami.5b08802] [PMID: 26484385]
[123]
Dolmans, D.E.J.G.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer, 2003, 3(5), 380-387.
[http://dx.doi.org/10.1038/nrc1071] [PMID: 12724736]
[124]
Lu, K.; He, C.; Lin, W. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc., 2014, 136(48), 16712-16715.
[http://dx.doi.org/10.1021/ja508679h] [PMID: 25407895]
[125]
Lu, K.; He, C.; Lin, W. A Chlorin-based nanoscale metal-organic framework for photodynamic therapy of colon cancers. J. Am. Chem. Soc., 2015, 137(24), 7600-7603.
[http://dx.doi.org/10.1021/jacs.5b04069] [PMID: 26068094]
[126]
Liu, J.; Yang, Y.; Zhu, W.; Yi, X.; Dong, Z.; Xu, X.; Chen, M.; Yang, K.; Lu, G.; Jiang, L.; Liu, Z. Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials, 2016, 97, 1-9.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.034] [PMID: 27155362]
[127]
Tan, J.; Sun, C.; Xu, K.; Wang, C.; Guo, J. Immobilization of ALA-Zn(II) coordination polymer pro-photosensitizers on magnetite colloidal supraparticles for target photodynamic therapy of bladder cancer. Small, 2015, 11(47), 6338-6346.
[http://dx.doi.org/10.1002/smll.201502131] [PMID: 26514273]
[128]
Ma, A.; Luo, Z.; Gu, C.; Li, B.; Liu, J. Cytotoxicity of a metal–organic framework: Drug delivery. Inorg. Chem. Commun., 2017, 77, 68-71.
[http://dx.doi.org/10.1016/j.inoche.2017.01.004]
[129]
Tamames-Tabar, C.; Cunha, D.; Imbuluzqueta, E.; Ragon, F.; Serre, C.; Blanco-Prieto, M.J.; Horcajada, P. Cytotoxicity of nanoscaled metal–organic frameworks. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(3), 262-271.
[http://dx.doi.org/10.1039/C3TB20832J]
[130]
Ruyra, À.; Yazdi, A.; Espín, J.; Carné-Sánchez, A.; Roher, N.; Lorenzo, J.; Imaz, I.; Maspoch, D. Synthesis, culture medium stability, and in vitro and in vivo zebrafish embryo toxicity of metal-organic framework nanoparticles. Chemistry, 2015, 21(6), 2508-2518.
[http://dx.doi.org/10.1002/chem.201405380] [PMID: 25504892]
[131]
Baati, T.; Njim, L.; Neffati, F.; Kerkeni, A.; Bouttemi, M.; Gref, R.; Najjar, M.F.; Zakhama, A.; Couvreur, P.; Serre, C.; Horcajada, P. In depth analysis of the in vivo toxicity of nanoparticles of porous iron(III) metal–organic frameworks. Chem. Sci. (Camb.), 2013, 4(4), 1597-1607.
[http://dx.doi.org/10.1039/c3sc22116d]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy