Review Article

荧光素启发的近红外化学计量仪用于发光生物成像。

卷 26, 期 21, 2019

页: [4029 - 4041] 页: 13

弟呕挨: 10.2174/0929867324666171024101715

价格: $65

摘要

发光生物成像技术广泛用于实时,高时空分辨率地对生物目标进行无创监测。为了在体内进行有效的生物成像,开发智能有机染料平台至关重要。荧光素(FL)是一种传统染料,已广泛用于生物学和临床研究。然而,可见的激发和发射限制了它们在体内生物成像中的进一步应用。近红外(NIR)染料显示出生物成像的优势,因为它们对生物样品的吸收和光损伤最小,并且组织的穿透力很强,并且自活体背景产生的自发光低。因此,近红外荧光素启发的染料的一些重大发展已经出现,可以用于体外和体内生物应用。在这篇综述中,我们重点介绍了基于荧光素激发的染料萘荧光素(NPF)和花菁荧光素(Cy-FL)的修饰,用于检测和生物成像的近红外化学计量仪的开发进展。

关键词: 近红外,萘-荧光素,花青-荧光素,发光,化学计量仪,生物成像。

[1]
Stephens, D.J.; Allan, V.J. Light microscopy techniques for live cell imaging. Science, 2003, 300(5616), 82-86.
[http://dx.doi.org/10.1126/science.1082160] [PMID: 12677057]
[2]
Yang, Y.; Zhao, Q.; Feng, W.; Li, F. Luminescent chemodosimeters for bioimaging. Chem. Rev., 2013, 113(1), 192-270.
[http://dx.doi.org/10.1021/cr2004103] [PMID: 22702347]
[3]
Chan, J.; Dodani, S.C.; Chang, C.J. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat. Chem., 2012, 4(12), 973-984.
[http://dx.doi.org/10.1038/nchem.1500] [PMID: 23174976]
[4]
Zhou, Y.; Zhang, J.F.; Yoon, J. Fluorescence and colorimetric chemosensors for fluoride-ion detection. Chem. Rev., 2014, 114(10), 5511-5571.
[http://dx.doi.org/10.1021/cr400352m] [PMID: 24661114]
[5]
Li, X.; Gao, X.; Shi, W.; Ma, H. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem. Rev., 2014, 114(1), 590-659.
[http://dx.doi.org/10.1021/cr300508p] [PMID: 24024656]
[6]
Chen, X.; Pradhan, T.; Wang, F.; Kim, J.S.; Yoon, J. Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem. Rev., 2012, 112(3), 1910-1956.
[http://dx.doi.org/10.1021/cr200201z] [PMID: 22040233]
[7]
Zhu, X.; Su, Q.; Feng, W.; Li, F. Anti-Stokes shift luminescent materials for bio-applications. Chem. Soc. Rev., 2017, 46(4), 1025-1039.
[http://dx.doi.org/10.1039/C6CS00415F] [PMID: 27966684]
[8]
Chen, H.; Dong, B.; Tang, Y.; Lin, W. A unique “integration” strategy for the rational design of optically tunable near-infrared fluorophores. Acc. Chem. Res., 2017, 50(6), 1410-1422.
[http://dx.doi.org/10.1021/acs.accounts.7b00087] [PMID: 28492303]
[9]
Yuan, L.; Lin, W.; Zheng, K.; He, L.; Huang, W. Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem. Soc. Rev., 2013, 42(2), 622-661.
[http://dx.doi.org/10.1039/C2CS35313J] [PMID: 23093107]
[10]
Sun, Y.Q.; Liu, J.; Lv, X.; Liu, Y.; Zhao, Y.; Guo, W. Rhodamine-inspired far-red to near-infrared dyes and their application as fluorescence probes. Angew. Chem. Int. Ed. Engl., 2012, 51(31), 7634-7636.
[http://dx.doi.org/10.1002/anie.201202264] [PMID: 22674799]
[11]
Liu, Y.; Chen, M.; Cao, T.; Sun, Y.; Li, C.; Liu, Q.; Yang, T.; Yao, L.; Feng, W.; Li, F. A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury. J. Am. Chem. Soc., 2013, 135(26), 9869-9876.
[http://dx.doi.org/10.1021/ja403798m] [PMID: 23763640]
[12]
Guo, Z.; Park, S.; Yoon, J.; Shin, I. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem. Soc. Rev., 2014, 43(1), 16-29.
[http://dx.doi.org/10.1039/C3CS60271K] [PMID: 24052190]
[13]
Kim, H.N.; Guo, Z.; Zhu, W.; Yoon, J.; Tian, H. Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem. Soc. Rev., 2011, 40(1), 79-93.
[http://dx.doi.org/10.1039/C0CS00058B] [PMID: 21107482]
[14]
Kundu, K.; Knight, S.F.; Willett, N.; Lee, S.; Taylor, W.R.; Murthy, N. Hydrocyanines: a class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, and in vivo. Angew. Chem. Int. Ed. Engl., 2009, 48(2), 299-303.
[http://dx.doi.org/10.1002/anie.200804851] [PMID: 19065548]
[15]
Oushiki, D.; Kojima, H.; Terai, T.; Arita, M.; Hanaoka, K.; Urano, Y.; Nagano, T. Development and application of a near-infrared fluorescence probe for oxidative stress based on differential reactivity of linked cyanine dyes. J. Am. Chem. Soc., 2010, 132(8), 2795-2801.
[http://dx.doi.org/10.1021/ja910090v] [PMID: 20136129]
[16]
Chen, P.; Li, J.; Qian, Z.; Zheng, D.; Okasaki, T.; Hayami, M. Study on the photooxidation of a near-infrared-absorbing benzothiazolone cyanine dye. Dyes Pigments, 1998, 37(3), 213-222.
[http://dx.doi.org/10.1016/S0143-7208(97)00059-4]
[17]
Toutchkine, A.; Nguyen, D.V.; Hahn, K.M. Merocyanine dyes with improved photostability. Org. Lett., 2007, 9(15), 2775-2777.
[http://dx.doi.org/10.1021/ol070780h] [PMID: 17583344]
[18]
Yuan, L.; Lin, W.; Zhao, S.; Gao, W.; Chen, B.; He, L.; Zhu, S. A unique approach to development of near-infrared fluorescent sensors for in vivo imaging. J. Am. Chem. Soc., 2012, 134(32), 13510-13523.
[http://dx.doi.org/10.1021/ja305802v] [PMID: 22816866]
[19]
Yuan, L.; Lin, W.; Chen, H. Analogs of changsha near-infrared dyes with large stokes shifts for bioimaging. Biomaterials, 2013, 34(37), 9566-9571.
[http://dx.doi.org/10.1016/j.biomaterials.2013.08.081] [PMID: 24054843]
[20]
Yuan, L.; Lin, W.; Yang, Y.; Chen, H. A unique class of near-infrared functional fluorescent dyes with carboxylic-acid-modulated fluorescence ON/OFF switching: rational design, synthesis, optical properties, theoretical calculations, and applications for fluorescence imaging in living animals. J. Am. Chem. Soc., 2012, 134(2), 1200-1211.
[http://dx.doi.org/10.1021/ja209292b] [PMID: 22176300]
[21]
Liu, Y.; Su, Q.; Zou, X.; Chen, M.; Feng, W.; Shi, Y.; Li, F. Near-infrared in vivo bioimaging using a molecular upconversion probe. Chem. Commun. (Camb.), 2016, 52(47), 7466-7469.
[http://dx.doi.org/10.1039/C6CC03401B] [PMID: 27198867]
[22]
Xie, X.; Yang, X.; Wu, T.; Li, Y.; Li, M.; Tan, Q.; Wang, X.; Tang, B. Rational design of an α-ketoamide-based near-infrared luminescent probe specific for hydrogen peroxide in living systems. Anal. Chem., 2016, 88(16), 8019-8025.
[http://dx.doi.org/10.1021/acs.analchem.6b01256] [PMID: 27442152]
[23]
Liu, Y.; Su, Q.; Chen, M.; Dong, Y.; Shi, Y.; Feng, W.; Wu, Z.Y.; Li, F. Near-infrared upconversion chemodosimeter for in vivo detection of Cu2+ in Wilson disease. Adv. Mater., 2016, 28(31), 6625-6630.
[http://dx.doi.org/10.1002/adma.201601140] [PMID: 27185083]
[24]
Gu, K.; Xu, Y.; Li, H.; Guo, Z.; Zhu, S.; Zhu, S.; Shi, P.; James, T.D.; Tian, H.; Zhu, W.H. Real-time tracking and in vivo visualization of β-galactosidase activity in colorectal tumor with a ratiometric near-infrared luminescent probe. J. Am. Chem. Soc., 2016, 138(16), 5334-5340.
[http://dx.doi.org/10.1021/jacs.6b01705] [PMID: 27054782]
[25]
Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P.L.; Urano, Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev., 2010, 110(5), 2620-2640.
[http://dx.doi.org/10.1021/cr900263j] [PMID: 20000749]
[26]
Gonçalves, M.S. Fluorescent labeling of biomolecules with organic probes. Chem. Rev., 2009, 109(1), 190-212.
[http://dx.doi.org/10.1021/cr0783840] [PMID: 19105748]
[27]
Hilderbrand, S.A.; Weissleder, R. One-pot synthesis of new symmetric and asymmetric xanthene dyes. Tetrahedron Lett., 2007, 48(25), 4383-4385.
[http://dx.doi.org/10.1016/j.tetlet.2007.04.088] [PMID: 19834587]
[28]
Shepherd, J.; Hilderbrand, S.A.; Waterman, P.; Heinecke, J.W.; Weissleder, R.; Libby, P. A fluorescent probe for the detection of myeloperoxidase activity in atherosclerosis-associated macrophages. Chem. Biol., 2007, 14(11), 1221-1231.
[http://dx.doi.org/10.1016/j.chembiol.2007.10.005] [PMID: 18022561]
[29]
Albers, A.E.; Dickinson, B.C.; Miller, E.W.; Chang, C.J. A red-emitting naphthofluorescein-based fluorescent probe for selective detection of hydrogen peroxide in living cells. Bioorg. Med. Chem. Lett., 2008, 18(22), 5948-5950.
[http://dx.doi.org/10.1016/j.bmcl.2008.08.035] [PMID: 18762422]
[30]
Chen, H.; Lin, W.; Cui, H.; Jiang, W. Development of unique xanthene-cyanine fused near-infrared fluorescent fluorophores with superior chemical stability for biological fluorescence imaging. Chemistry, 2015, 21(2), 733-745.
[http://dx.doi.org/10.1002/chem.201404718] [PMID: 25388080]
[31]
Li, Y.; Wang, Y.; Yang, S.; Zhao, Y.; Yuan, L.; Zheng, J.; Yang, R. Hemicyanine-based high resolution ratiometric near-infrared fluorescent probe for monitoring pH changes in vivo. Anal. Chem., 2015, 87(4), 2495-2503.
[http://dx.doi.org/10.1021/ac5045498] [PMID: 25635470]
[32]
Wan, Q.; Chen, S.; Shi, W.; Li, L.; Ma, H. Lysosomal pH rise during heat shock monitored by a lysosome-targeting near-infrared ratiometric luminescent probe. Angew. Chem., 2014, 126(41), 11096-11100.
[http://dx.doi.org/10.1002/ange.201405742]
[33]
Yang, X.; He, L.; Xu, K.; Lin, W. A fluorescent dyad with large emission shift for discrimination of cysteine/homocysteine from glutathione and hydrogen sulfide and the application of bioimaging. Anal. Chim. Acta, 2017, 981, 86-93.
[http://dx.doi.org/10.1016/j.aca.2017.05.016] [PMID: 28693733]
[34]
Han, C.; Yang, H.; Chen, M.; Su, Q.; Feng, W.; Li, F. Mitochondria-targeted near-infrared luminescent off–on probe for selective detection of cysteine in living cells and in vivo. ACS Appl. Mater. Interfaces, 2015, 7(50), 27968-27975.
[http://dx.doi.org/10.1021/acsami.5b10607] [PMID: 26618279]
[35]
Zhang, J.; Wang, J.; Liu, J.; Ning, L.; Zhu, X.; Yu, B.; Liu, X.; Yao, X.; Zhang, H. Near-infrared and naked-eye fluorescence probe for direct and highly selective detection of cysteine and its application in living cells. Anal. Chem., 2015, 87(9), 4856-4863.
[http://dx.doi.org/10.1021/acs.analchem.5b00377] [PMID: 25875053]
[36]
Ma, J.; Fan, J.; Li, H.; Yao, Q.; Xu, F.; Wang, J.; Peng, X. A NIR luminescent chemodosimeter for imaging endogenous hydrogen polysulfides via the CSE enzymatic pathway. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(14), 2574-2579.
[http://dx.doi.org/10.1039/C7TB00098G]
[37]
Wrobel, A.T.; Johnstone, T.C.; Deliz Liang, A.; Lippard, S.J.; Rivera-Fuentes, P. A fast and selective near-infrared fluorescent sensor for multicolor imaging of biological nitroxyl (HNO). J. Am. Chem. Soc., 2014, 136(12), 4697-4705.
[http://dx.doi.org/10.1021/ja500315x] [PMID: 24564324]
[38]
Gong, X.; Yang, X.; Zhong, Y.; Chen, Y.; Li, Z. A mitochondria-targetable near-infrared luminescent probe for imaging nitroxyl (HNO) in living cells. Dyes Pigments, 2016, 131, 24-32.
[http://dx.doi.org/10.1016/j.dyepig.2016.03.046]
[39]
Dong, B.; Zheng, K.; Tang, Y.; Lin, W. Development of green to near-infrared turn-on luminescent probes for the multicolour imaging of nitroxyl in living systems. J. Mate. Chem. B, 2016, 4(7), 1263-1269.
[http://dx.doi.org/10.1039/C5TB02073E]
[40]
Xu, F.; Li, H.; Yao, Q.; Fan, J.; Wang, J.; Peng, X. A NIR luminescent probe: Imaging endogenous hydrogen peroxide during an autophagy process induced by rapamycin. J. Mate. Chem. B, 2016, 4(46), 7363-7367.
[http://dx.doi.org/10.1039/C6TB02463G]
[41]
Zhang, J.; Li, C.; Zhang, R.; Zhang, F.; Liu, W.; Liu, X.; Lee, S.M.; Zhang, H. A phosphinate-based near-infrared fluorescence probe for imaging the superoxide radical anion in vitro and in vivo. Chem. Commun. (Camb.), 2016, 52(13), 2679-2682.
[http://dx.doi.org/10.1039/C5CC09976E] [PMID: 26783733]
[42]
Li, L.; Li, Z.; Shi, W.; Li, X.; Ma, H. Sensitive and selective near-infrared fluorescent off-on probe and its application to imaging different levels of β-lactamase in Staphylococcus aureus. Anal. Chem., 2014, 86(12), 6115-6120.
[http://dx.doi.org/10.1021/ac501288e] [PMID: 24844761]
[43]
Li, Z.; He, X.; Wang, Z.; Yang, R.; Shi, W.; Ma, H. In vivo imaging and detection of nitroreductase in zebrafish by a new near-infrared fluorescence off-on probe. Biosens. Bioelectron., 2015, 63, 112-116.
[http://dx.doi.org/10.1016/j.bios.2014.07.024] [PMID: 25064818]
[44]
Wu, X.; Li, L.; Shi, W.; Gong, Q.; Ma, H. Near-Infrared luminescent probe with new recognition moiety for specific detection of tyrosinase activity: Design, synthesis, and application in living cells and zebrafish. Angew. Chem. Int. Ed. Engl., 2016, 55(47), 14728-14732.
[http://dx.doi.org/10.1002/anie.201609895] [PMID: 27775216]
[45]
Zhang, J.; Li, C.; Dutta, C.; Fang, M.; Zhang, S.; Tiwari, A.; Werner, T.; Luo, F.T.; Liu, H. A novel near-infrared fluorescent probe for sensitive detection of β-galactosidase in living cells. Anal. Chim. Acta, 2017, 968, 97-104.
[http://dx.doi.org/10.1016/j.aca.2017.02.039] [PMID: 28395779]
[46]
Zhang, C.; Zhai, B.; Peng, T.; Zhong, Z.; Xu, L.; Zhang, Q.; Li, L.; Yi, L.; Xi, Z. Design and synthesis of near-infrared luminescence-enhancement probes for the cancer-specific enzyme hNQO1. Dyes Pigments, 2017, 143, 245-251.
[http://dx.doi.org/10.1016/j.dyepig.2017.04.043]
[47]
Li, S.J.; Li, C.Y.; Li, Y.F.; Fei, J.; Wu, P.; Yang, B.; Ou-Yang, J.; Nie, S.X. Facile and sensitive near-infrared luminescence pobe for the detection of endogenous alkaline phosphatase activity in vivo. Anal. Chem., 2017, 89(12), 6854-6860.
[http://dx.doi.org/10.1021/acs.analchem.7b01351] [PMID: 28516761]
[48]
Yang, S.H.; Sun, Q.; Xiong, H.; Liu, S.Y.; Moosavi, B.; Yang, W.C.; Yang, G.F. Discovery of a butyrylcholinesterase-specific probe via a structure-based design strategy. Chem. Commun. (Camb.), 2017, 53(28), 3952-3955.
[http://dx.doi.org/10.1039/C7CC00577F] [PMID: 28322391]
[49]
Li, D.; Li, Z.; Chen, W.; Yang, X. Imaging and detection of carboxylesterase in living cells and zebrafish pretreated with pesticides by a new near-infrared luminescence off-on probe. J. Agric. Food Chem., 2017, 65(20), 4209-4215.
[http://dx.doi.org/10.1021/acs.jafc.7b00959] [PMID: 28475833]
[50]
Yang, Q.; Jia, C.; Chen, Q.; Du, W.; Wang, Y.; Zhang, Q. A NIR luminescent probe for the detection of fluoride ions and its application in in vivo bioimaging. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(10), 2002-2009.
[http://dx.doi.org/10.1039/C6TB03193E]
[51]
Chen, H.; Lin, W.; Yuan, L. Construction of a near-infrared fluorescence turn-on and ratiometric probe for imaging palladium in living cells. Org. Biomol. Chem., 2013, 11(12), 1938-1941.
[http://dx.doi.org/10.1039/c3ob27507h] [PMID: 23403484]
[52]
Zhang, J.; Ning, L.; Liu, J.; Wang, J.; Yu, B.; Liu, X.; Yao, X.; Zhang, Z.; Zhang, H. Naked-eye and near-infrared fluorescence probe for hydrazine and its applications in in vitro and in vivo bioimaging. Anal. Chem., 2015, 87(17), 9101-9107.
[http://dx.doi.org/10.1021/acs.analchem.5b02527] [PMID: 26274784]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy