摘要
生物相容的,可生物降解的和生物可利用的赋形剂对于药物递送系统是至关重要的。 纤维素及其衍生物基赋形剂由于其绿色/天然和独特的包封/结合特性而得到了充分研究。 它们通常用于受控/持续的药物递送系统。 在这些应用中,纤维素及其衍生物的功能通常可以改变药物的溶解度/胶凝行为,从而产生控制药物释放曲线的不同机制。 本文简要回顾了目前常规纤维素衍生物的结构和化学知识及其在药物传递系统中的应用。 还讨论了在持续药物递送的应用中开发创新的基于纤维素的材料,包括微纤维素(MC)和纳米纤维素(NC)。
关键词: 纤维素及其衍生物,生物利用度,赋形剂,药物递送系统,生物相容性,可生物降解,纤维素基材料。
[1]
Edgar, K.J. Cellulose esters in drug delivery. Cellulose, 2007, 14(1), 49-64. [http://dx.doi.org/10.1007/s10570-006-9087-7].
[2]
Morgan, T.T.; Muddana, H.S.; Altinoglu, E.I.; Rouse, S.M.; Tabakovic, A.; Tabouillot, T.; Russin, T.J.; Shanmugavelandy, S.S.; Butler, P.J.; Eklund, P.C. Encapsulation of organic molecules in calcium phosphate nanocomposite particles for intracellular imaging and drug delivery. Nano Lett., 2008, 8(12), 4108-4115. [http://dx.doi.org/10.1021/nl8019888].
[3]
(a) Zhang, Y.; Chan, H.F.; Leong, K.W. Advanced materials and processing for drug delivery: The past and the future. Adv. Drug Deliv. Rev., 2013, 65(1), 104-120. http://dx.doi.org/10.1016/j.addr.2012.10.003]
(b) Shi, J.; Votruba, A.R.; Farokhzad, O.C.; Langer, R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett., 2010, 10(9), 3223-3230. http://dx.doi.org/10.1021/nl102184c]
(c) Lin, N.; Dufresne, A. Nanocellulose in biomedicine: Current status and future prospect. Eur. Polym. J., 2014, 59, 302-325. [http://dx.doi.org/10.1016/j.eurpolymj.2014.07.025].
(b) Shi, J.; Votruba, A.R.; Farokhzad, O.C.; Langer, R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett., 2010, 10(9), 3223-3230. http://dx.doi.org/10.1021/nl102184c]
(c) Lin, N.; Dufresne, A. Nanocellulose in biomedicine: Current status and future prospect. Eur. Polym. J., 2014, 59, 302-325. [http://dx.doi.org/10.1016/j.eurpolymj.2014.07.025].
[4]
(a) Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S. Drug delivery systems: An updated review. Int. J. Pharm. Investig., 2012, 2(1), 2-11. http://dx.doi.org/10.4103/2230-973X.96920]
(b) Deshpande, A.A.; Rhodes, C.T.; Shah, N.H.; Malick, A.W. Controlled-release drug delivery systems for prolonged gastric residence: An overview. Drug Dev. Ind. Pharm., 1996, 22(6), 531-539. [http://dx.doi.org/10.3109/03639049609108355].
(b) Deshpande, A.A.; Rhodes, C.T.; Shah, N.H.; Malick, A.W. Controlled-release drug delivery systems for prolonged gastric residence: An overview. Drug Dev. Ind. Pharm., 1996, 22(6), 531-539. [http://dx.doi.org/10.3109/03639049609108355].
[5]
Chen, X.; Wen, H.; Park, K. Challenges and New Technologies
of Oral Controlled Release. Oral Control. Rel.
Formul. Des. Drug Deliv., 2010, 257-277. [http://dx.doi.org/10.1002/9780470640487.ch16].
b) Reddy, K.R.; Mutalik, S.; Reddy, S. Once-daily sustained- release matrix tablets of nicorandil: Formulation and in vitro evaluation. AAPS Pharm. Sci. Tech., 2003, 4(4), 480-488.
b) Reddy, K.R.; Mutalik, S.; Reddy, S. Once-daily sustained- release matrix tablets of nicorandil: Formulation and in vitro evaluation. AAPS Pharm. Sci. Tech., 2003, 4(4), 480-488.
[6]
Kojima, H.; Yoshihara, K.; Sawada, T.; Kondo, H.; Sako, K. Extended release of a large amount of highly water-soluble diltiazem hydrochloride by utilizing counter polymer in polyethylene oxides (PEO)/polyethylene glycol (PEG) matrix tablets. Eur. J. Pharm. Biopharm., 2008, 70(2), 556-562. [http://dx.doi.org/10.1016/j.ejpb.2008.05.032].
[7]
Deshpande, A.; Rhodes, C.; Shah, N.; Malick, A. Controlled-release drug delivery systems for prolonged gastric residence: an overview. Drug Dev. Ind. Pharm., 1996, 22(6), 531-539. [http://dx.doi.org/10.3109/03639049609108355].
[8]
Maderuelo, C.; Zarzuelo, A.; Lanao, J.M. Critical factors in the release of drugs from sustained release hydrophilic matrices. J. Control. Release, 2011, 154(1), 2-19. [http://dx.doi.org/10.1016/j.jconrel.2011.04.002].
[9]
Sahoo, S.K.; Labhasetwar, V. Nanotech approaches to drug delivery and imaging. Drug Discov. Today, 2003, 8(24), 1112-1120. [http://dx.doi.org/10.1016/S1359-6446(03)02903-9].
[10]
(a) Bhise, N.S.; Shmueli, R.B.; Sunshine, J.C.; Tzeng, S.Y.; Green, J.J. Drug delivery strategies for therapeutic angiogenesis and antiangiogenesis. Expert Opin. Drug Deliv., 2011, 8(4), 485-504.
http://dx.doi.org/10.1517/17425247.2011.558082](b) Du, J.D.; Fong, W-K.; Caliph, S.; Boyd, B.J. Lipid-based drug delivery systems in the treatment of wet age-related macular degeneration. Drug Deliv. Transl. Res., 2016, 6(6), 781-792. http://dx.doi.org/10.1007/s13346-016-0299-6]
(c) Wen, H.; Park, K. Introduction and Overview of Oral Controlled Release Formulation Design. Oral Control. Rel. Formul. Des. Drug Deliv., 2010, pp. 1-19. [http://dx.doi.org/10.1002/9780470640487.ch1]
(d) Moodley, K.; Pillay, V.; Choonara, Y.E.; du Toit, L.C.; Ndesendo, V.M.; Kumar, P.; Cooppan, S.; Bawa, P. Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery. Int. J. Mol. Sci., 2012, 13(1) [http://dx.doi.org/10.3390/ijms13010018].
http://dx.doi.org/10.1517/17425247.2011.558082](b) Du, J.D.; Fong, W-K.; Caliph, S.; Boyd, B.J. Lipid-based drug delivery systems in the treatment of wet age-related macular degeneration. Drug Deliv. Transl. Res., 2016, 6(6), 781-792. http://dx.doi.org/10.1007/s13346-016-0299-6]
(c) Wen, H.; Park, K. Introduction and Overview of Oral Controlled Release Formulation Design. Oral Control. Rel. Formul. Des. Drug Deliv., 2010, pp. 1-19. [http://dx.doi.org/10.1002/9780470640487.ch1]
(d) Moodley, K.; Pillay, V.; Choonara, Y.E.; du Toit, L.C.; Ndesendo, V.M.; Kumar, P.; Cooppan, S.; Bawa, P. Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery. Int. J. Mol. Sci., 2012, 13(1) [http://dx.doi.org/10.3390/ijms13010018].
[11]
(a) Bae, Y.H.; Park, K. Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release, 2011, 153(3), 198-205. http://dx.doi.org/10.1016/j.jconrel.2011.06.001
(b) Wishart, D.S. Identifying putative drug targets and potential drug leads. Methods Mol. Biol., 2008, pp 333-351. [http://dx.doi.org/10.1007/978-1-59745-177-2_17].
(b) Wishart, D.S. Identifying putative drug targets and potential drug leads. Methods Mol. Biol., 2008, pp 333-351. [http://dx.doi.org/10.1007/978-1-59745-177-2_17].
[12]
Varshosaz, J.; Hajian, M. Characterization of drug release and diffusion mechanism through hydroxyethylmethacrylate/methacrylic acid ph-sensitive hydrogel. Drug Deliv., 2004, 11(1), 53-58. [http://dx.doi.org/10.1080/10717540490265298].
[13]
Sriamornsak, P.; Thirawong, N.; Weerapol, Y.; Nunthanid, J.; Sungthongjeen, S. Swelling and erosion of pectin matrix tablets and their impact on drug release behavior. Eur. J. Pharm. Biopharm., 2007, 67(1), 211-219. [http://dx.doi.org/10.1016/j.ejpb.2006.12.014].
[14]
Foged, C.; Nielsen, H.M. Cell-penetrating peptides for drug delivery across membrane barriers. Expert Opin. Drug Deliv., 2008, 5(1), 105-117. [http://dx.doi.org/10.1517/17425247.5.1.105].
[15]
Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res., 2015, 6(2), 105-121. [http://dx.doi.org/10.1016/j.jare.2013.07.006].
[16]
Szekely, J.; Neumann, A.; Chuang, Y. The rate of capillary penetration and the applicability of the Washburn equation. J. Colloid Interface Sci., 1971, 35(2), 273-278. [http://dx.doi.org/10.1016/0021-9797(71)90120-2].
[17]
(a) Jones, M.D.; Price, R. The influence of fine excipient particles on the performance of carrier-based dry powder inhalation formulations. Pharm. Res., 2006, 23(8), 1665-1674. http://dx.doi.org/10.1007/s11095-006-9012-7
(b) Shirwaikar, A.; Shirwaikar, A.; Prabhu, S.; Kumar, G. Herbal excipients in novel drug delivery systems. Indian J. Pharm. Sci., 2008, 70(4), 415. [http://dx.doi.org/10.4103/0250-474X.44587].
(b) Shirwaikar, A.; Shirwaikar, A.; Prabhu, S.; Kumar, G. Herbal excipients in novel drug delivery systems. Indian J. Pharm. Sci., 2008, 70(4), 415. [http://dx.doi.org/10.4103/0250-474X.44587].
[18]
Vangara, K.K.; Yellepeddi, V.K. Excipients in pediatric
formulations: Biopharmaceutical and toxicological considerations.
In. Excip. Appl. Formul. Des. Drug Deliv., Kiran
K. Vangara & Venkata Kashyap Yellepeddi, Ed.; Springer:
Cham. 2015, pp. 497-519. [http://dx.doi.org/10.1007/978-3-319-20206-8_16]
[19]
Dickinson, E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll., 2003, 17(1), 25-39. [http://dx.doi.org/10.1016/S0268-005X(01)00120-5].
[20]
Mezdour, S.; Lepine, A.; Erazo-Majewicz, P.; Ducept, F.; Michon, C. Oil/water surface rheological properties of hydroxypropyl cellulose (HPC) alone and mixed with lecithin: Contribution to emulsion stability. Colloids Surf. A Physicochem. Eng. Asp., 2008, 331(1–2), 76-83. [http://dx.doi.org/10.1016/j.colsurfa.2008.07.023].
[21]
Alvarez-Lorenzo, C.; Concheiro, A. Molecularly imprinted materials as advanced excipients for drug delivery systems., 2006. [http://dx.doi.org/10.1016/S1387-2656(06)12007-4]
[22]
Kolakovic, R.; Peltonen, L.; Laukkanen, A.; Hirvonen, J.; Laaksonen, T. Nanofibrillar cellulose films for controlled drug delivery. Eur. J. Pharm. Biopharm., 2012, 82(2), 308-315. [http://dx.doi.org/10.1016/j.ejpb.2012.06.011].
[23]
Khadka, P.; Ro, J.; Kim, H.; Kim, I.; Kim, J.T.; Kim, H.; Cho, J.M.; Yun, G.; Lee, J. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharmaceut. Sci., 2014, 9(6), 304-316. [http://dx.doi.org/10.1016/j.ajps.2014.05.005].
[24]
Sanders, L.M. Drug delivery systems and routes of administration of peptide and protein drugs. Eur. J. Drug Metab. Pharmacokinet., 1990, 15(2), 95-102. [http://dx.doi.org/10.1007/BF03190192].
[25]
Hoelder, S.; Clarke, P.A.; Workman, P. Discovery of small molecule cancer drugs: Successes, challenges and opportunities. Mol. Oncol., 2012, 6(2), 155-176. [http://dx.doi.org/10.1016/j.molonc.2012.02.004].
[26]
Amoozgar, Z.; Yeo, Y. Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2012, 4(2), 219-233. [http://dx.doi.org/10.1002/wnan.1157].
[27]
Kim, J-Y.; Kim, S-h.; Rhee, Y-S.; Park, C-W.; Park, E-S. Preparation of hydroxypropylmethyl cellulose-based porous matrix for gastroretentive delivery of gabapentin using the freeze-drying method. Cellulose, 2013, 20(6), 3143-3154. [http://dx.doi.org/10.1007/s10570-013-0048-7].
[28]
Lee, C.K.; Diesendruck, C.E.; Lu, E.; Pickett, A.N.; May, P.A.; Moore, J.S.; Braun, P.V. Solvent swelling activation of a mechanophore in a polymer network. Macromolecules, 2014, 47(8), 2690-2694. [http://dx.doi.org/10.1021/ma500195h].
[29]
(a) Shen, J.; Fatehi, P.; Ni, Y. Biopolymers for surface engineering of paper-based products. Cellulose, 2014, 21(5), 3145-3160. http://dx.doi.org/10.1007/s10570-014-0380-6
(b) Fan, J.; Li, T.; Ren, Y.; Qian, X.; Wang, Q.; Shen, J.; Ni, Y. Interaction between two oppositely charged starches in an aqueous medium containing suspended mineral particles as a basis for the generation of cellulose-compatible composites. Ind. Crops Prod., 2017, 97, 417-424. [http://dx.doi.org/10.1016/j.indcrop.2016.12.048].
(b) Fan, J.; Li, T.; Ren, Y.; Qian, X.; Wang, Q.; Shen, J.; Ni, Y. Interaction between two oppositely charged starches in an aqueous medium containing suspended mineral particles as a basis for the generation of cellulose-compatible composites. Ind. Crops Prod., 2017, 97, 417-424. [http://dx.doi.org/10.1016/j.indcrop.2016.12.048].
[30]
(a) Kono, H.; Erata, T.; Takai, M. CP/MAS 13C NMR study of cellulose and cellulose derivatives. 2. complete assignment of the 13C resonance for the ring carbons of cellulose triacetate polymorphs. J. Am. Chem. Soc., 2002, 124(25), 7512-7518. http://dx.doi.org/10.1021/ja010705g
(b) Deng, H.; Wang, C.; Xiao, H.; Khan, A. Preparation and chemical characterization of banana/orange composite wine. J. Bioresour. Bioproduc., 2016, 1(2)
(b) Deng, H.; Wang, C.; Xiao, H.; Khan, A. Preparation and chemical characterization of banana/orange composite wine. J. Bioresour. Bioproduc., 2016, 1(2)
[31]
Kennedy, J.F. Cellulose and its derivatives: Chemistry, biochemistry, and applications; Halsted Press: Chicago, 1985. [https://doi.org/10.1002/pi.4980170414]
[32]
Cook, J.G. Handbook of textile fibres: Man-made fibres; Elsevier: Amsterdam, 1984. [http://dx.doi.org/10.1533/9781855734852]
[33]
Kulasinski, K.; Keten, S.; Churakov, S.V.; Derome, D.; Carmeliet, J. A comparative molecular dynamics study of crystalline, paracrystalline and amorphous states of cellulose. Cellulose, 2014, 21(3), 1103-1116. [http://dx.doi.org/10.1007/s10570-014-0213-7].
[34]
Koch, U.; Popelier, P.L. Characterization of C-H-O hydrogen bonds on the basis of the charge density. J. Phys. Chem., 1995, 99(24), 9747-9754. [http://dx.doi.org/10.1021/j100024a016].
[35]
Hebeish, A.; Guthrie, J. The chemistry and technology of cellulosic copolymers; , 2012, Vol. 4, .
[36]
Roy, D.; Semsarilar, M.; Guthrie, J.T.; Perrier, S. Cellulose modification by polymer grafting: A review. Chem. Soc. Rev., 2009, 38(7), 2046-2064. [http://dx.doi.org/10.1039/b808639g].
[37]
(a) Farrán, A.; Cai, C.; Sandoval, M.; Xu, Y.; Liu, J.; Hernáiz, M.J.; Linhardt, R.J. Green solvents in carbohydrate chemistry: from raw materials to fine chemicals. Chem. Rev., 2015, 115(14), 6811-6853. http://dx.doi.org/10.1021/cr500719h
(b) Sun, B.; Hou, Q.; Liu, Z.; He, Z.; Ni, Y. Stability and efficiency improvement of ASA in internal sizing of cellulosic paper by using cationically modified cellulose nanocrystals. Cellulose, 2014, 21(4), 2879-2887. [http://dx.doi.org/10.1007/s10570-014-0283-6].
(b) Sun, B.; Hou, Q.; Liu, Z.; He, Z.; Ni, Y. Stability and efficiency improvement of ASA in internal sizing of cellulosic paper by using cationically modified cellulose nanocrystals. Cellulose, 2014, 21(4), 2879-2887. [http://dx.doi.org/10.1007/s10570-014-0283-6].
[38]
Vuoti, S.; Laatikainen, E.; Heikkinen, H.; Johansson, L-S.; Saharinen, E.; Retulainen, E. Chemical modification of cellulosic fibers for better convertibility in packaging applications. Carbohydr. Polym., 2013, 96(2), 549-559. [http://dx.doi.org/10.1016/j.carbpol.2012.07.053].
[39]
Kamel, S.; Ali, N.; Jahangir, K.; Shah, S.; El-Gendy, A. Pharmaceutical significance of cellulose: A review. Express Polym. Lett., 2008, 2(11), 758-778. [http://dx.doi.org/10.3144/expresspolymlett.2008.90].
[40]
Siepmann, J.; Kranz, H.; Bodmeier, R.; Peppas, N.A. HPMC-Matrices for Controlled Drug Delivery: A New Model Combining Diffusion, Swelling, and Dissolution Mechanisms and Predicting the Release Kinetics. Pharm. Res., 1999, 16(11), 1748-1756. [http://dx.doi.org/10.1023/A:1018914301328].
[41]
Kozioł, E.; Skalicka-Woźniak, K. Imperatorin-pharmacological meaning and analytical clues: profound investigation. Phytochem. Rev., 2016, 15(4), 627-649. [http://dx.doi.org/10.1007/s11101-016-9456-2].
[42]
Hon, D. N.-S. Cellulose and its derivatives: Structures,
reactions, and medical uses. Polysaccharides in medical
application., 1996, 87-105.
[43]
Park, J-B.; Lee, G-H.; Kang, J-W.; Jeon, I-S.; Kim, J-M.; Kim, K-B.; Kang, C-Y. Improvement of photostability and dissolution profile of isradipine using inclusion complex. J. Pharm. Investig., 2013, 43(1), 55-61. [http://dx.doi.org/10.1007/s40005-013-0052-9].
[44]
Khanmirzaei, M.H.; Ramesh, S.; Ramesh, K. Hydroxypropyl cellulose based non-volatile gel polymer electrolytes for dye-sensitized solar cell applications using 1-methyl-3-propylimidazolium iodide ionic liquid. Sci. Rep., 2015, 5, 18056. [http://dx.doi.org/10.1038/srep18056].
[45]
Yamada, T.; Saito, N.; Imai, T.; Otagiri, M. Effect of grinding with hydroxypropyl cellulose on the dissolution and particle size of a poorly water-soluble drug. Chem. Pharm. Bull. (Tokyo), 1999, 47(9), 1311-1313. [http://dx.doi.org/10.1248/cpb.47.1311].
[46]
Desai, D.; Rinaldi, F.; Kothari, S.; Paruchuri, S.; Li, D.; Lai, M.; Fung, S.; Both, D. Effect of hydroxypropyl cellulose (HPC) on dissolution rate of hydrochlorothiazide tablets. Int. J. Pharm., 2006, 308(1-2), 40-45. [http://dx.doi.org/10.1016/j.ijpharm.2005.10.011].
[47]
Pham, A.T.; Lee, P.I. Probing the mechanisms of drug release from hydroxypropylmethyl cellulose matrices. Pharm. Res., 1994, 11(10), 1379-1384. [http://dx.doi.org/10.1023/A:1018975318805].
[48]
Barakat, N.S.; Elbagory, I.M.; Almurshedi, A.S. Controlled-Release Carbamazepine Granules and Tablets Comprising Lipophilic and Hydrophilic Matrix Components. AAPS PharmSciTech, 2008, 9(4), 1054-1062. [http://dx.doi.org/10.1208/s12249-008-9140-y].
[49]
Baviskar, D.; Sharma, R.; Jain, D. Modulation of drug release by utilizing pH-independent matrix system comprising water soluble drug verapamil hydrochloride. Pak. J. Pharm. Sci., 2013, 26(1), 137-144. [PMID: 23261739].
[50]
Skoug, J.W.; Mikelsons, M.V.; Vigneron, C.N.; Stemm, N.L. Qualitative evaluation of the mechanism of release of matrix sustained release dosage forms by measurement of polymer release. J. Control. Release, 1993, 27(3), 227-245. [http://dx.doi.org/10.1016/0168-3659(93)90154-W].
[51]
Reynolds, T.D.; Mitchell, S.A.; Balwinski, K.M. Investigation of the effect of tablet surface area/volume on drug release from hydroxypropylmethylcellulose controlled-release matrix tablets. Drug Dev. Ind. Pharm., 2002, 28(4), 457-466. [http://dx.doi.org/10.1081/DDC-120003007].
[52]
Anlar, Ş.; Çapan, Y.; Güven, O.; Göğüş, A.; Dalkara, T.; Hincal, A. Formulation and in vitro–in vivo evaluation of buccoadhesive morphine sulfate tablets. Pharm. Res., 1994, 11(2), 231-236. [http://dx.doi.org/10.1023/A:1018951323522].
[53]
Macleod, G.S.; Fell, J.T.; Collett, J.H.; Sharma, H.L.; Smith, A-M. Selective drug delivery to the colon using pectin: chitosan: hydroxypropyl methylcellulose film coated tablets. Int. J. Pharm., 1999, 187(2), 251-257. [http://dx.doi.org/10.1016/S0378-5173(99)00196-9].
[54]
Kang, M.K.; Kim, J-C. pH-dependent release from ethylcellulose microparticles containing alginate and calcium carbonate. Colloid Polym. Sci., 2010, 288(3), 265-270. [http://dx.doi.org/10.1007/s00396-009-2153-6].
[55]
Carvalho, I.T.; Estevinho, B.N.; Santos, L. Application of microencapsulated essential oils in cosmetic and personal healthcare products - a review. Int. J. Cosmet. Sci., 2016, 38(2), 109-119. [http://dx.doi.org/10.1111/ics.12232].
[56]
Sovilj, V.J.; Petrović, L.B. Influence of molecular characteristics of nonionic cellulose ethers on their interaction with ionic surfactant investigated by conductometry. Colloid Polym. Sci., 2005, 284(3), 334-339. [http://dx.doi.org/10.1007/s00396-005-1376-4].
[57]
Remuñán-López, C.; Portero, A.; Vila-Jato, J.L.; Alonso, M.J. Design and evaluation of chitosan/ethylcellulose mucoadhesive bilayered devices for buccal drug delivery. J. Control. Release, 1998, 55(2–3), 143-152. [http://dx.doi.org/10.1016/S0168-3659(98)00044-3].
[58]
Donbrow, M.; Samuelov, Y. Zero order drug delivery from double‐layered porous films: release rate profiles from ethyl cellulose, hydroxypropyl cellulose and polyethylene glycol mixtures. J. Pharm. Pharmacol., 1980, 32(1), 463-470. [http://dx.doi.org/10.1111/j.2042-7158.1980.tb12970.x].
[59]
Bussemer, T.; Dashevsky, A.; Bodmeier, R. A pulsatile drug delivery system based on rupturable coated hard gelatin capsules. J. Control. Release, 2003, 93(3), 331-339. [http://dx.doi.org/10.1016/j.jconrel.2003.08.012].
[60]
Petzold-Welcke, K.; Kötteritzsch, M.; Heinze, T. 2,3-O-Methyl cellulose: studies on synthesis and structure characterization. Cellulose, 2010, 17(2), 449-457. [http://dx.doi.org/10.1007/s10570-009-9367-0].
[61]
Barakat, N.S.; Elbagory, I.M.; Almurshedi, A.S. Formulation, release characteristics and bioavailability study of oral monolithic matrix tablets containing carbamazepine. AAPS PharmSciTech, 2008, 9(3), 931-938. [http://dx.doi.org/10.1208/s12249-008-9108-y].
[62]
Ehrenpreis, E.D.; Chang, D.; Eichenwald, E. Pharmacotherapy for Fecal Incontinence: A Review. Dis. Colon Rectum, 2007, 50(5), 641-649. [http://dx.doi.org/10.1007/s10350-006-0778-9].
[63]
Ozeki, T.; Yuasa, H.; Okada, H. Controlled release of drug via methylcellulose-carboxyvinylpolymer interpolymer complex solid dispersion. AAPS PharmSciTech, 2005, 6(2), E231-E236. [http://dx.doi.org/10.1208/pt060233].
[64]
El-Kamel, A. In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int. J. Pharm., 2002, 241(1), 47-55. [http://dx.doi.org/10.1016/S0378-5173(02)00234-X].
[65]
S.; Haglund, B. O.; Himmelstein, K. J., In situ-forming gels for ophthalmic drug delivery. J. Ocul. Pharmacol. Ther., 1994, 10(1), 47-56. [http://dx.doi.org/10.1089/jop.1994.10.47].
[66]
Gavini, E.; Sanna, V.; Juliano, C.; Bonferoni, M.C.; Giunchedi, P. Mucoadhesive vaginal tablets as veterinary delivery system for the controlled release of an antimicrobial drug, acriflavine. AAPS PharmSciTech, 2002, 3(3), 32-38. [http://dx.doi.org/10.1208/pt030320].
[67]
Liu, P.; Zhai, M.; Li, J.; Peng, J.; Wu, J. Radiation preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels. Radiat. Phys. Chem., 2002, 63(3–6), 525-528. [http://dx.doi.org/10.1016/S0969-806X(01)00649-1].
[68]
Lee, J.H.; Yang, J.; Park, J.Y.; Lee, C.J.; Jang, N.K.; Shin, J.H.; Lim, D-K.; Khang, G. Controlled release behavior and characterization of ropinirole hydrochloride using multi-layer formulation. J. Pharm. Investig., 2015, 45(2), 201-208. [http://dx.doi.org/10.1007/s40005-014-0166-8].
[69]
Shah, N.H.; Lazarus, J.H.; Sheth, P.R.; Jarowski, C.I. Carboxymethylcellulose: Effect of degree of polymerization and substitution on tablet disintegration and dissolution. J. Pharm. Sci., 1981, 70(6), 611-613. [http://dx.doi.org/10.1002/jps.2600700609].
[70]
Shahidi, F.; Zhong, Y. Lipid oxidation and improving the oxidative stability. Chem. Soc. Rev., 2010, 39(11), 4067-4079. [http://dx.doi.org/10.1039/b922183m].
[71]
Kocabay, O.; Emregul, E.; Aras, S.; Emregul, K.C. Carboxymethylcellulose–gelatin–superoxidase dismutase electrode for amperometric superoxide radical sensing. Bioprocess Biosyst. Eng., 2012, 35(6), 923-930. [http://dx.doi.org/10.1007/s00449-011-0677-x].
[72]
Barkhordari, S.; Yadollahi, M.; Namazi, H. pH sensitive nanocomposite hydrogel beads based on carboxymethyl cellulose/layered double hydroxide as drug delivery systems. J. Polym. Res., 2014, 21(6), 454. [http://dx.doi.org/10.1007/s10965-014-0454-z].
[73]
Krishna, R.; Pandit, J.K. Carboxymethylcellulose-sodium based transdermal drug delivery system for propranolol. J. Pharm. Pharmacol., 1996, 48(4), 367-370. [http://dx.doi.org/10.1111/j.2042-7158.1996.tb05934.x].
[74]
Kaity, S.; Ghosh, A. Carboxymethylation of locust bean gum: Application in interpenetrating polymer network microspheres for controlled drug delivery. Ind. Eng. Chem. Res., 2013, 52(30), 10033-10045. [http://dx.doi.org/10.1021/ie400445h].
[75]
Praserthdam, S.; Jongsomjit, B. Observation on different turnover number in two-phase acid-catalyzed esterification of dilute acetic acid and 1-Heptanol. Catal. Lett., 2009, 130(3), 583-587. [http://dx.doi.org/10.1007/s10562-009-9915-0].
[76]
Shanbhag, A.; Barclay, B.; Koziara, J.; Shivanand, P. Application of cellulose acetate butyrate-based membrane for osmotic drug delivery. Cellulose, 2007, 14(1), 65-71. [http://dx.doi.org/10.1007/s10570-006-9091-y].
[77]
Silva, R.R.; Salvi, D.T.; Santos, M.V.; Barud, H.S.; Marques, L.F.; Santagneli, S.H.; Tercjak, A.; Ribeiro, S.J. Multifunctional organic–inorganic hybrids based on cellulose acetate and 3-glycidoxypropyltrimethoxysilane. J. Sol-Gel Sci. Technol., 2017, 18(1), 114-126. [https://doi.org/10.1007/s10971-016-4089-x].
[78]
Rao, P.R.; Diwan, P.V. Permeability studies of cellulose acetate free films for transdermal use: influence of plasticizers. Pharm. Acta Helv., 1997, 72(1), 47-51. [http://dx.doi.org/10.1016/S0031-6865(96)00060-X].
[79]
Liu, J.; Chan, S.Y.; Ho, P.C. Polymer‐coated microparticles for the sustained release of nitrofurantoin. J. Pharm. Pharmacol., 2002, 54(9), 1205-1212. [http://dx.doi.org/10.1211/002235702320402044].
[80]
Vaithiyalingam, S.; Nutan, M.; Reddy, I.; Khan, M. Preparation and characterization of a customized cellulose acetate butyrate dispersion for controlled drug delivery. J. Pharm. Sci., 2002, 91(6), 1512-1522. [http://dx.doi.org/10.1002/jps.10155].
[81]
Kim, I.H.; Park, J.H.; Cheong, I.W.; Kim, J.H. Swelling and drug release behavior of tablets coated with aqueous hydroxypropyl methylcellulose phthalate (HPMCP) nanoparticles. J. Control. Release, 2003, 89(2), 225-233. [http://dx.doi.org/10.1016/S0168-3659(03)00089-0].
[82]
(a) Martina, B.; Kateřina, K.; Miloslava, R.; Jan, G.; Ruta, M. Oxycellulose: Significant characteristics in relation to its pharmaceutical and medical applications. Adv. Polym. Technol., 2009, 28(3), 199-208. http://dx.doi.org/10.1002/adv.20161
(b) Zimnitsky, D.S.; Yurkshtovich, T.L.; Bychkovsky, P.M. Synthesis and characterization of oxidized cellulose. J. Polym. Sci. A Polym. Chem., 2004, 42(19), 4785-4791. [http://dx.doi.org/10.1002/pola.20302].
(b) Zimnitsky, D.S.; Yurkshtovich, T.L.; Bychkovsky, P.M. Synthesis and characterization of oxidized cellulose. J. Polym. Sci. A Polym. Chem., 2004, 42(19), 4785-4791. [http://dx.doi.org/10.1002/pola.20302].
[83]
Nabar, G.M.; Padmanabhan, C.V. Studies in oxycellulose. Proc. Indian Acad. Sci. Sect. A Phys. Sci., 1950, 32(4), 212. [http://dx.doi.org/10.1007/BF03170824].
[84]
Sun, B.; Hou, Q.; Liu, Z.; Ni, Y. Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose, 2015, 22(2), 1135-1146. [http://dx.doi.org/10.1007/s10570-015-0575-5].
[85]
Sabzalian, Z.; Alam, M.N.; van de Ven, T.G. Hydrophobization and characterization of internally crosslink-reinforced cellulose fibers. Cellulose, 2014, 21(3), 1381-1393.
[86]
Saito, T.; Isogai, A. TEMPO-Mediated Oxidation of Native Cellulose. The Effect of Oxidation Conditions on Chemical and Crystal Structures of the Water-Insoluble Fractions. Biomacromolecules, 2004, 5(5), 1983-1989. [http://dx.doi.org/10.1021/bm0497769].
[87]
Schmidt, R.; Bogan, D.; Moore, J. Use of oxidized cellulose
as free radical scavenger. EU Patent Office. Pat, 2001, (1153618).
[88]
Gajdziok, J.; Bajerová, M.; Chalupová, Z.; Rabišková, M. Oxycellulose as mucoadhesive polymer in buccal tablets. Drug Dev. Ind. Pharm., 2010, 36(9), 1115-1130. [http://dx.doi.org/10.3109/03639041003690031].
[89]
Cheng, W.; He, J.; Wu, Y.; Song, C.; Xie, S.; Huang, Y.; Fu, B. Preparation and characterization of oxidized regenerated cellulose film for hemostasis and the effect of blood on its surface. Cellulose, 2013, 20(5), 2547-2558. [http://dx.doi.org/10.1007/s10570-013-0005-5].
[90]
Bajerová, M.; Krejčová, K.; Rabišková, M.; Muselík, J.; Dvořáčková, K.; Gajdziok, J.; Masteiková, R. Oxycellulose beads with drug exhibiting pH-dependent solubility. AAPS PharmSciTech, 2011, 12(4), 1348-1357. [http://dx.doi.org/10.1208/s12249-011-9696-9].
[91]
(a) Bai, W.; Holbery, J.; Li, K. A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose, 2009, 16(3), 455-465. http://dx.doi.org/10.1007/s10570-009-9277-1
(b) Tang, Y.; Yang, S.; Zhang, N.; Zhang, J. Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose, 2014, 21(1), 335-346. http://dx.doi.org/10.1007/s10570-013-0158-2
(c) Ibrahim, M.M.; El-Zawawy, W.K.; Jüttke, Y.; Koschella, A.; Heinze, T. Cellulose and microcrystalline cellulose from rice straw and banana plant waste: Preparation and characterization. Cellulose, 2013, 20(5), 2403-2416. [http://dx.doi.org/10.1007/s10570-013-9992-5].
(b) Tang, Y.; Yang, S.; Zhang, N.; Zhang, J. Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose, 2014, 21(1), 335-346. http://dx.doi.org/10.1007/s10570-013-0158-2
(c) Ibrahim, M.M.; El-Zawawy, W.K.; Jüttke, Y.; Koschella, A.; Heinze, T. Cellulose and microcrystalline cellulose from rice straw and banana plant waste: Preparation and characterization. Cellulose, 2013, 20(5), 2403-2416. [http://dx.doi.org/10.1007/s10570-013-9992-5].
[92]
Lopes, V.R.; Sanchez-Martinez, C.; Strømme, M.; Ferraz, N. In vitro biological responses to nanofibrillated cellulose by human dermal, lung and immune cells: surface chemistry aspect. Part. Fibre Toxicol., 2017, 14(1), 1. [http://dx.doi.org/10.1186/s12989-016-0182-0].
[93]
Ahvenainen, P.; Kontro, I.; Svedström, K. Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose, 2016, 23(2), 1073-1086. [http://dx.doi.org/10.1007/s10570-016-0881-6].
[94]
Cataldi, A.; Dorigato, A.; Deflorian, F.; Pegoretti, A. Thermo-mechanical properties of innovative microcrystalline cellulose filled composites for art protection and restoration. J. Mater. Sci., 2014, 49(5), 2035-2044. [http://dx.doi.org/10.1007/s10853-013-7892-6].
[95]
Li, J.; Mei, X. Applications of cellulose and cellulose derivatives
in immediate release solid dosage. In: Polysaccharides
for Drug Delivery and Pharmaceutical Applications., Robert H. Marchessault1 François Ravenelle, Xiao Xia
Zhu, Ed.; American Chemical Society: Washington, D.C. 2006, Vol. 934, pp. 19-55. [http://dx.doi.org/10.1021/bk-2006-0934.ch002].
[96]
Thoorens, G.; Krier, F.; Leclercq, B.; Carlin, B.; Evrard, B. Microcrystalline cellulose, a direct compression binder in a quality by design environment-a review. Int. J. Pharm., 2014, 473(1–2), 64-72. [http://dx.doi.org/10.1016/j.ijpharm.2014.06.055].
[97]
Sun, B.; Hou, Q.; He, Z.; Liu, Z.; Ni, Y. Cellulose nanocrystals (CNC) as carriers for a spirooxazine dye and its effect on photochromic efficiency. Carbohydr. Polym., 2014, 111, 419-424. [http://dx.doi.org/10.1016/j.carbpol.2014.03.051].
[98]
Krögel, I.; Bodmeier, R. Floating or pulsatile drug delivery systems based on coated effervescent cores. Int. J. Pharm., 1999, 187(2), 175-184. [http://dx.doi.org/10.1016/S0378-5173(99)00189-1].
[99]
Suzuki, Y.; Makino, Y. Mucosal drug delivery using cellulose derivatives as a functional polymer. J. Control. Release, 1999, 62(1), 101-107. [http://dx.doi.org/10.1016/S0168-3659(99)00184-4].
[100]
Lourdin, D.; Peixinho, J.; Bréard, J.; Cathala, B.; Leroy, E.; Duchemin, B. Concentration driven cocrystallisation and percolation in all-cellulose nanocomposites. Cellulose, 2016, 23(1), 529-543. [http://dx.doi.org/10.1007/s10570-015-0805-x].
[101]
Luukkonen, P.; Schæfer, T.; Hellén, L.; Juppo, A.M.; Yliruusi, J. Rheological characterization of microcrystalline cellulose and silicified microcrystalline cellulose wet masses using a mixer torque rheometer. Int. J. Pharm., 1999, 188(2), 181-192. [http://dx.doi.org/10.1016/S0378-5173(99)00219-7].
[102]
(a) Edge, S.; Steele, D.F.; Chen, A.; Tobyn, M.J.; Staniforth, J.N. The mechanical properties of compacts of microcrystalline cellulose and silicified microcrystalline cellulose. Int. J. Pharm., 2000, 200(1), 67-72. http://dx.doi.org/10.1016/S0378-5173(00)00343-4
(b) van Veen, B.; Bolhuis, G.K.; Wu, Y.S.; Zuurman, K.; Frijlink, H.W. Compaction mechanism and tablet strength of unlubricated and lubricated (silicified) microcrystalline cellulose. Eur. J. Pharm. Biopharm., 2005, 59(1), 133-138. [http://dx.doi.org/10.1016/j.ejpb.2004.05.009].
(b) van Veen, B.; Bolhuis, G.K.; Wu, Y.S.; Zuurman, K.; Frijlink, H.W. Compaction mechanism and tablet strength of unlubricated and lubricated (silicified) microcrystalline cellulose. Eur. J. Pharm. Biopharm., 2005, 59(1), 133-138. [http://dx.doi.org/10.1016/j.ejpb.2004.05.009].
[103]
Chang, C.K.; Alvarez–Nunez, F.A.; Rinella, J.V., Jr; Magnusson, L-E.; Sueda, K. Roller compaction, granulation and capsule product dissolution of drug formulations containing a lactose or mannitol filler, starch, and talc. AAPS PharmSciTech, 2008, 9(2), 597-604. [http://dx.doi.org/10.1208/s12249-008-9088-y].
[104]
McConville, J.T.; Ross, A.C.; Florence, A.J.; Stevens, H.N. Erosion characteristics of an erodible tablet incorporated in a time-delayed capsule device. Drug Dev. Ind. Pharm., 2005, 31(1), 79-89. [http://dx.doi.org/10.1081/DDC-44010].
[105]
(a) Wei, B.; Xue, Y.; Wen, Y.; Li, J. Improving the physical properties of nano-cellulose by chemical grafting for potential use in enhancing oil recovery. J. Bioresour. Bioproducts, 2016, 1(4), 186-191.
(b) Li, J.; Xie, J. Smart drug delivery system based on nanocelluloses. J. Bioresour. Bioproduc., 2017, 2(1), 1-3.
(b) Li, J.; Xie, J. Smart drug delivery system based on nanocelluloses. J. Bioresour. Bioproduc., 2017, 2(1), 1-3.
[106]
Joshi, M.K.; Tiwari, A.P.; Pant, H.R.; Shrestha, B.K.; Kim, H.J.; Park, C.H.; Kim, C.S. In situ generation of cellulose nanocrystals in polycaprolactone nanofibers: Effects on crystallinity, mechanical strength, biocompatibility, and biomimetic mineralization. ACS Appl. Mater. Interfaces, 2015, 7(35), 19672-19683. [http://dx.doi.org/10.1021/acsami.5b04682].
[107]
Syverud, K.; Pettersen, S.R.; Draget, K.; Chinga-Carrasco, G. Controlling the elastic modulus of cellulose nanofibril hydrogels-scaffolds with potential in tissue engineering. Cellulose, 2015, 22(1), 473-481. [http://dx.doi.org/10.1007/s10570-014-0470-5].
[108]
Fardioui, M.; Mekhzoum, M.E.; Qaiss, A.K.; Bouhfid, R. Bionanocomposite materials based on chitosan reinforced with nanocrystalline cellulose and organo-modified montmorillonite.In: Nanoclay. Reinforced Polymer Composites: Nanocomposites and Bionanocomposites; Jawaid, M.; Qaiss, A.; Bouhfid, R., Eds.; Springer: Singapore, 2016, pp. 167-194. [http://dx.doi.org/10.1007/978-981-10-1953-1_7]
[109]
Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem. Rev., 2010, 110(6), 3479-3500. [http://dx.doi.org/10.1021/cr900339w].
[110]
(a) Valo, H.; Arola, S.; Laaksonen, P.; Torkkeli, M.; Peltonen, L.; Linder, M.B.; Serimaa, R.; Kuga, S.; Hirvonen, J.; Laaksonen, T. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur. J. Pharm. Sci., 2013, 50(1), 69-77. http://dx.doi.org/10.1016/j.ejps.2013.02.023
(b) Lin, N.; Gèze, A.; Wouessidjewe, D.; Huang, J.; Dufresne, A. Biocompatible Double-Membrane b) Hydrogels from Cationic Cellulose Nanocrystals and Anionic Alginate as Complexing Drugs Codelivery. ACS Appl. Mater. Interfaces, 2016, 8(11), 6880-6889. [http://dx.doi.org/10.1021/acsami.6b00555].
(b) Lin, N.; Gèze, A.; Wouessidjewe, D.; Huang, J.; Dufresne, A. Biocompatible Double-Membrane b) Hydrogels from Cationic Cellulose Nanocrystals and Anionic Alginate as Complexing Drugs Codelivery. ACS Appl. Mater. Interfaces, 2016, 8(11), 6880-6889. [http://dx.doi.org/10.1021/acsami.6b00555].
[111]
Kolakovic, R.; Laaksonen, T.; Peltonen, L.; Laukkanen, A.; Hirvonen, J. Spray-dried nanofibrillar cellulose microparticles for sustained drug release. Int. J. Pharm., 2012, 430(1), 47-55. [http://dx.doi.org/10.1016/j.ijpharm.2012.03.031].
[112]
Huang, L.; Chen, X.; Nguyen, T.X.; Tang, H.; Zhang, L.; Yang, G. Nano-cellulose 3D-networks as controlled-release drug carriers. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(23), 2976-2984. [http://dx.doi.org/10.1039/c3tb20149j].
[113]
Jackson, J.K.; Letchford, K.; Wasserman, B.Z.; Ye, L.; Hamad, W.Y.; Burt, H.M. The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int. J. Nanomedicine, 2011, 6, 321. [https://doi.org/10.2147/IJN.S16749].
[114]
Valo, H.; Kovalainen, M.; Laaksonen, P.; Häkkinen, M.; Auriola, S.; Peltonen, L.; Linder, M.; Järvinen, K.; Hirvonen, J.; Laaksonen, T. Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices-enhanced stability and release. J. Control. Release, 2011, 156(3), 390-397. [http://dx.doi.org/10.1016/j.jconrel.2011.07.016].
[115]
Akhlaghi, S.P.; Berry, R.C.; Tam, K.C. Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose, 2013, 20(4), 1747-1764. [http://dx.doi.org/10.1007/s10570-013-9954-y].
[116]
Masruchin, N.; Park, B-D.; Causin, V.; Um, I.C. Characteristics of TEMPO-oxidized cellulose fibril-based hydrogels induced by cationic ions and their properties. Cellulose, 2015, 22(3), 1993-2010. [http://dx.doi.org/10.1007/s10570-015-0624-0].
[117]
Abraham, E.; Kam, D.; Nevo, Y.; Slattegard, R.; Rivkin, A.; Lapidot, S.; Shoseyov, O. Highly modified cellulose nanocrystals and formation of epoxy-nanocrystalline cellulose (CNC) nanocomposites. ACS Appl. Mater. Interfaces, 2016, 8(41), 28086-28095. [http://dx.doi.org/10.1021/acsami.6b09852].