Abstract
Background: The Hoary Edge Skipper (Achalarus lyciades) is an eastern North America endemic butterfly from the Eudaminae subfamily of skippers named for an underside whitish patch near the hindwing edge. Its caterpillars feed on legumes, in contrast to Grass skippers (subfamily Hesperiinae) which feed exclusively on monocots.
Results: To better understand the evolution and phenotypic diversification of Skippers (family Hesperiidae), we sequenced, assembled and annotated a complete genome draft and transcriptome of a wild-caught specimen of A. lyciades and compared it with the available genome of the Clouded Skipper (Lerema accius) from the Grass skipper subfamily. The genome of A. lyciades is nearly twice the size of L. accius (567 Mbp vs. 298 Mbp), however it encodes a smaller number of proteins (15881 vs. 17411). Gene expansions we identified previously in L. accius apparently did not occur in the genome of A. lyciades. For instance, a family of hypothetical cellulases that diverged from an endochitinase (possibly associated with feeding of L. accius caterpillars on nutrient-poor grasses) is absent in A. lyciades. While L. accius underwent gene expansion in pheromone binding proteins, A. lyciades has more opsins. This difference may be related to the mate recognition mechanisms of the two species: visual cues might be more important for the Eudaminae skippers (which have more variable wing patterns), whereas odor might be more important for Grass skippers (that are hardly distinguishable by their wings). Phylogenetically, A. lyciades is a sister species of L. accius, the only other Hesperiidae with a complete genome. Conclusions: A new reference genome of a dicot-feeding skippers, the first from the Eudaminae subfamily, reveals its larger size and suggests hypotheses about phenotypic traits and differences from monocot-feeding skippers.Keywords: Lepidoptera, Butterflies, Cellulase, Opsin, Catalase, Achalarus lyciades.
Graphical Abstract
Current Genomics
Title:Complete Genome of Achalarus lyciades, The First Representative of the Eudaminae Subfamily of Skippers
Volume: 18 Issue: 4
Author(s): Jinhui Shen, Qian Cong, Dominika Borek, Zbyszek Otwinowski and Nick V. Grishin*
Affiliation:
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9050,United States
Keywords: Lepidoptera, Butterflies, Cellulase, Opsin, Catalase, Achalarus lyciades.
Abstract: Background: The Hoary Edge Skipper (Achalarus lyciades) is an eastern North America endemic butterfly from the Eudaminae subfamily of skippers named for an underside whitish patch near the hindwing edge. Its caterpillars feed on legumes, in contrast to Grass skippers (subfamily Hesperiinae) which feed exclusively on monocots.
Results: To better understand the evolution and phenotypic diversification of Skippers (family Hesperiidae), we sequenced, assembled and annotated a complete genome draft and transcriptome of a wild-caught specimen of A. lyciades and compared it with the available genome of the Clouded Skipper (Lerema accius) from the Grass skipper subfamily. The genome of A. lyciades is nearly twice the size of L. accius (567 Mbp vs. 298 Mbp), however it encodes a smaller number of proteins (15881 vs. 17411). Gene expansions we identified previously in L. accius apparently did not occur in the genome of A. lyciades. For instance, a family of hypothetical cellulases that diverged from an endochitinase (possibly associated with feeding of L. accius caterpillars on nutrient-poor grasses) is absent in A. lyciades. While L. accius underwent gene expansion in pheromone binding proteins, A. lyciades has more opsins. This difference may be related to the mate recognition mechanisms of the two species: visual cues might be more important for the Eudaminae skippers (which have more variable wing patterns), whereas odor might be more important for Grass skippers (that are hardly distinguishable by their wings). Phylogenetically, A. lyciades is a sister species of L. accius, the only other Hesperiidae with a complete genome. Conclusions: A new reference genome of a dicot-feeding skippers, the first from the Eudaminae subfamily, reveals its larger size and suggests hypotheses about phenotypic traits and differences from monocot-feeding skippers.Export Options
About this article
Cite this article as:
Shen Jinhui, Cong Qian, Borek Dominika, Otwinowski Zbyszek and Grishin V. Nick*, Complete Genome of Achalarus lyciades, The First Representative of the Eudaminae Subfamily of Skippers, Current Genomics 2017; 18 (4) . https://dx.doi.org/10.2174/1389202918666170426113315
DOI https://dx.doi.org/10.2174/1389202918666170426113315 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements