[1]
Porter, P.L. Global trends in breast cancer incidence and mortality. Salud Publica Mex., 2009, 51(Suppl. 2), s141-s146.
[2]
Hortobagyi, G.N.; de la Garza Salazar, J.; Pritchard, K.; Amadori, D.; Haidinger, R.; Hudis, C.A.; Khaled, H.; Liu, M.C.; Martin, M.; Namer, M. OShaughnessy, J.A.; Shen, Z.Z.; Albain, K.S. The global breast cancer burden: variations in epidemiology and survival. Clin. Breast Cancer, 2005, 6(5), 391-401.
[3]
Li, Y.; Luo, Q.; Yuan, L.; Miao, C.; Mu, X.; Xiao, W.; Li, J.; Sun, T.; Ma, E. JNK-dependent Atg4 upregulation mediates asperphenamate derivative BBP-induced autophagy in MCF-7 cells. Toxicol. Appl. Pharmacol., 2012, 263(1), 21-31.
[4]
Higgins, M.J.; Baselga, J. Targeted therapies for breast cancer. J. Clin. Invest., 2011, 121(10), 3797-3803.
[5]
Holliday, D.L.; Speirs, V. Choosing the right cell line for breast cancer research. Breast Cancer Res., 2011, 13(4), 215.
[6]
Kolibaba, K.S.; Druker, B.J. Protein tyrosine kinases and cancer. Biochim. Biophys. Acta, 1997, 1333(3), F217-F248.
[7]
Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol., 2001, 2(2), 127-137.
[8]
Roskoski, R., Jr The ErbB/HER receptor protein-tyrosine kinases and cancer. Biochem. Biophys. Res. Commun., 2004, 319(1), 1-11.
[9]
Slamon, D.J.; Godolphin, W.; Jones, L.A.; Holt, J.A.; Wong, S.G.; Keith, D.E.; Levin, W.J.; Stuart, S.G.; Udove, J.; Ullrich, A. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science, 1989, 244(4905), 707-712.
[10]
Yan, M.; Parker, B.A.; Schwab, R.; Kurzrock, R. HER2 aberrations in cancer: implications for therapy. Cancer Treat. Rev., 2014, 40(6), 770-780.
[11]
Nahta, R. Molecular mechanisms of trastuzumab-based treatment in HER2-overexpressing breast cancer. ISRN Oncol, 2012. 2012,
428062
[12]
García Rodríguez, J.; García Colmenero, C.; Clèries Soler, R.; Oleaga Sánchez, I. Rev. Esp. Salud Publica, 2010, 84(6), 843-850. [Five years survival of women diagnosed with breast cancer during the period 19971999 in Toledo-Centro and Mancha Area, Spain].
[13]
Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Thun, M. J. Cancer statistics, 2009. CA Cancer J. Clin., 2009, 59(4), 225-249.
[14]
Shi, J.M.; Bai, L.L.; Zhang, D.M.; Yiu, A.; Yin, Z.Q.; Han, W.L.; Liu, J.S.; Li, Y.; Fu, D.Y.; Ye, W.C. Saxifragifolin D induces the interplay between apoptosis and autophagy in breast cancer cells through ROS-dependent endoplasmic reticulum stress. Biochem. Pharmacol., 2013, 85(7), 913-926.
[15]
Pearce, N.J.; Yates, J.W.; Berkhout, T.A.; Jackson, B.; Tew, D.; Boyd, H.; Camilleri, P.; Sweeney, P.; Gribble, A.D.; Shaw, A.; Groot, P.H. The role of ATP citrate-lyase in the metabolic regulation of plasma lipids. Hypolipidaemic effects of SB-204990, a lactone prodrug of the potent ATP citrate-lyase inhibitor SB-201076. Biochem. J., 1998, 334(Pt 1), 113-119.
[16]
Medes, G.; Thomas, A.; Weinhouse, S. Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res., 1953, 13(1), 27-29.
[17]
Kutlu, B.; Cardozo, A.K.; Darville, M.I.; Kruhøffer, M.; Magnusson, N.; Ørntoft, T.; Eizirik, D.L. Discovery of gene networks regulating cytokine-induced dysfunction and apoptosis in insulin-producing INS-1 cells. Diabetes, 2003, 52(11), 2701-2719.
[18]
Furuta, E.; Okuda, H.; Kobayashi, A.; Watabe, K. Metabolic genes in cancer: their roles in tumor progression and clinical implications. Biochim. Biophys. Acta, 2010, 1805(2), 141-152.
[19]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[20]
Warburg, O. On the origin of cancer cells. Science, 1956, 123(3191), 309-314.
[21]
DeBerardinis, R.J.; Cheng, T. Qs next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene, 2010, 29(3), 313-324.
[22]
Baenke, F.; Peck, B.; Miess, H.; Schulze, A. Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis. Model. Mech., 2013, 6(6), 1353-1363.
[23]
Babic, I.; Anderson, E.S.; Tanaka, K.; Guo, D.; Masui, K.; Li, B.; Zhu, S.; Gu, Y.; Villa, G.R.; Akhavan, D.; Nathanson, D.; Gini, B.; Mareninov, S.; Li, R.; Camacho, C.E.; Kurdistani, S.K.; Eskin, A.; Nelson, S.F.; Yong, W.H.; Cavenee, W.K.; Cloughesy, T.F.; Christofk, H.R.; Black, D.L.; Mischel, P.S. EGFR mutation-induced alternative splicing of Max contributes to growth of glycolytic tumors in brain cancer. Cell Metab., 2013, 17(6), 1000-1008.
[24]
Qie, S.; Chu, C.; Li, W.; Wang, C.; Sang, N. ErbB2 activation upregulates glutaminase 1 expression which promotes breast cancer cell proliferation. J. Cell. Biochem., 2014, 115(3), 498-509.
[25]
Guo, D.; Prins, R.M.; Dang, J.; Kuga, D.; Iwanami, A.; Soto, H.; Lin, K.Y.; Huang, T.T.; Akhavan, D.; Hock, M.B.; Zhu, S.; Kofman, A.A.; Bensinger, S.J.; Yong, W.H.; Vinters, H.V.; Horvath, S.; Watson, A.D.; Kuhn, J.G.; Robins, H.I.; Mehta, M.P.; Wen, P.Y.; DeAngelis, L.M.; Prados, M.D.; Mellinghoff, I.K.; Cloughesy, T.F.; Mischel, P.S. EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci. Signal., 2009, 2(101), ra82.
[26]
Cairns, R.A.; Harris, I.S.; Mak, T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer, 2011, 11(2), 85-95.
[27]
Ward, P.S.; Thompson, C.B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell, 2012, 21(3), 297-308.
[28]
Son, J.; Lyssiotis, C.A.; Ying, H.; Wang, X.; Hua, S.; Ligorio, M.; Perera, R.M.; Ferrone, C.R.; Mullarky, E.; Shyh-Chang, N.; Kang, Y.; Fleming, J.B.; Bardeesy, N.; Asara, J.M.; Haigis, M.C.; DePinho, R.A.; Cantley, L.C.; Kimmelman, A.C. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature, 2013, 496(7443), 101-105.
[29]
Currie, E.; Schulze, A.; Zechner, R.; Walther, T.C.; Farese, R.V., Jr Cellular fatty acid metabolism and cancer. Cell Metab., 2013, 18(2), 153-161.
[30]
Griffiths, B.; Lewis, C.A.; Bensaad, K.; Ros, S.; Zhang, Q.; Ferber, E.C.; Konisti, S.; Peck, B.; Miess, H.; East, P.; Wakelam, M.; Harris, A.L.; Schulze, A. Sterol regulatory element binding protein-dependent regulation of lipid synthesis supports cell survival and tumor growth. Cancer Metab., 2013, 1(1), 3.
[31]
Nieman, K.M.; Kenny, H.A.; Penicka, C.V.; Ladanyi, A.; Buell-Gutbrod, R.; Zillhardt, M.R.; Romero, I.L.; Carey, M.S.; Mills, G.B.; Hotamisligil, G.S.; Yamada, S.D.; Peter, M.E.; Gwin, K.; Lengyel, E. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med., 2011, 17(11), 1498-1503.
[32]
Santos, C.R.; Schulze, A. Lipid metabolism in cancer. FEBS J., 2012, 279(15), 2610-2623.
[33]
Kuhajda, F.P.; Jenner, K.; Wood, F.D.; Hennigar, R.A.; Jacobs, L.B.; Dick, J.D.; Pasternack, G.R. Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc. Natl. Acad. Sci. USA, 1994, 91(14), 6379-6383.
[34]
Mashima, T.; Seimiya, H.; Tsuruo, T. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br. J. Cancer, 2009, 100(9), 1369-1372.
[35]
Zaidi, N.; Swinnen, J.V.; Smans, K. ATP-citrate lyase: a key player in cancer metabolism. Cancer Res., 2012, 72(15), 3709-3714.
[36]
Chypre, M.; Zaidi, N.; Smans, K. ATP-citrate lyase: a mini-review. Biochem. Biophys. Res. Commun., 2012, 422(1), 1-4.
[37]
Kaelin, W.G., Jr; McKnight, S.L. Influence of metabolism on epigenetics and disease. Cell, 2013, 153(1), 56-69.
[38]
Witters, L.A.; Widmer, J.; King, A.N.; Fassihi, K.; Kuhajda, F. Identification of human acetyl-CoA carboxylase isozymes in tissue and in breast cancer cells. Int. J. Biochem., 1994, 26(4), 589-594.
[39]
Abu-Elheiga, L.; Almarza-Ortega, D.B.; Baldini, A.; Wakil, S.J. Human acetyl-CoA carboxylase 2. Molecular cloning, characterization, chromosomal mapping, and evidence for two isoforms. J. Biol. Chem., 1997, 272(16), 10669-10677.
[40]
Wakil, S.J.; Stoops, J.K.; Joshi, V.C. Fatty acid synthesis and its regulation. Annu. Rev. Biochem., 1983, 52, 537-579.
[41]
Oh, S.Y.; Lee, M.Y.; Kim, J.M.; Yoon, S.; Shin, S.; Park, Y.N.; Ahn, Y.H.; Kim, K.S. Alternative usages of multiple promoters of the acetyl-CoA carboxylase beta gene are related to differential transcriptional regulation in human and rodent tissues. J. Biol. Chem., 2005, 280(7), 5909-5916.
[42]
Menendez, J.A.; Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer, 2007, 7(10), 763-777.
[43]
Szutowicz, A.; Kwiatkowski, J.; Angielski, S. Lipogenetic and glycolytic enzyme activities in carcinoma and nonmalignant diseases of the human breast. Br. J. Cancer, 1979, 39(6), 681-687.
[44]
Bauer, D.E.; Hatzivassiliou, G.; Zhao, F.; Andreadis, C.; Thompson, C.B. ATP citrate lyase is an important component of cell growth and transformation. Oncogene, 2005, 24(41), 6314-6322.
[45]
Hatzivassiliou, G.; Zhao, F.; Bauer, D.E.; Andreadis, C.; Shaw, A.N.; Dhanak, D.; Hingorani, S.R.; Tuveson, D.A.; Thompson, C.B. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell, 2005, 8(4), 311-321.
[46]
Ma, J.; Yan, R.; Zu, X.; Cheng, J.M.; Rao, K.; Liao, D.F.; Cao, D. Aldo-keto reductase family 1 B10 affects fatty acid synthesis by regulating the stability of acetyl-CoA carboxylase-alpha in breast cancer cells. J. Biol. Chem., 2008, 283(6), 3418-3423.
[47]
Yahagi, N.; Shimano, H.; Hasegawa, K.; Ohashi, K.; Matsuzaka, T.; Najima, Y.; Sekiya, M.; Tomita, S.; Okazaki, H.; Tamura, Y.; Iizuka, Y.; Ohashi, K.; Nagai, R.; Ishibashi, S.; Kadowaki, T.; Makuuchi, M.; Ohnishi, S.; Osuga, J.; Yamada, N. Co-ordinate activation of lipogenic enzymes in hepatocellular carcinoma. Eur. J. Cancer, 2005, 41(9), 1316-1322.
[48]
Silva, S.D.; Perez, D.E.; Alves, F.A.; Nishimoto, I.N.; Pinto, C.A.; Kowalski, L.P.; Graner, E. ErbB2 and fatty acid synthase (FAS) expression in 102 squamous cell carcinomas of the tongue: correlation with clinical outcomes. Oral Oncol., 2008, 44(5), 484-490.
[49]
Ogino, S.; Nosho, K.; Meyerhardt, J.A.; Kirkner, G.J.; Chan, A.T.; Kawasaki, T.; Giovannucci, E.L.; Loda, M.; Fuchs, C.S. Cohort study of fatty acid synthase expression and patient survival in colon cancer. J. Clin. Oncol., 2008, 26(35), 5713-5720.
[50]
Dowling, S.; Cox, J.; Cenedella, R.J. Inhibition of fatty acid synthase by Orlistat accelerates gastric tumor cell apoptosis in culture and increases survival rates in gastric tumor bearing mice in vivo. Lipids, 2009, 44(6), 489-498.
[51]
Ueda, SM; Yap, KL; Davidson, B; Tian, Y; Murthy, V; Wang, TL Expression of fatty acid synthase depends on NAC1 and is associated with recurrent ovarian serous carcinomas. J. Oncol, 2010. 2010, 285191.
[52]
Pizer, E.S.; Jackisch, C.; Wood, F.D.; Pasternack, G.R.; Davidson, N.E.; Kuhajda, F.P. Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells. Cancer Res., 1996, 56(12), 2745-2747.
[53]
Pizer, E.S.; Wood, F.D.; Heine, H.S.; Romantsev, F.E.; Pasternack, G.R.; Kuhajda, F.P. Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer. Cancer Res., 1996, 56(6), 1189-1193.
[54]
Li, J.N.; Mahmoud, M.A.; Han, W.F.; Ripple, M.; Pizer, E.S. Sterol regulatory element-binding protein-1 participates in the regulation of fatty acid synthase expression in colorectal neoplasia. Exp. Cell Res., 2000, 261(1), 159-165.
[55]
Swinnen, J.V.; Vanderhoydonc, F.; Elgamal, A.A.; Eelen, M.; Vercaeren, I.; Joniau, S.; Van Poppel, H.; Baert, L.; Goossens, K.; Heyns, W.; Verhoeven, G. Selective activation of the fatty acid synthesis pathway in human prostate cancer. Int. J. Cancer, 2000, 88(2), 176-179.
[56]
Yoon, S.; Lee, M.Y.; Park, S.W.; Moon, J.S.; Koh, Y.K.; Ahn, Y.H.; Park, B.W.; Kim, K.S. Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. J. Biol. Chem., 2007, 282(36), 26122-26131.
[57]
Kuhajda, F.P. Fatty acid synthase and cancer: new application of an old pathway. Cancer Res., 2006, 66(12), 5977-5980.
[58]
Menendez, J.A.; Mehmi, I.; Atlas, E.; Colomer, R.; Lupu, R. Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: Role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB. Int. J. Oncol., 2004, 24(3), 591-608.
[59]
Kumar-Sinha, C.; Ignatoski, K.W.; Lippman, M.E.; Ethier, S.P.; Chinnaiyan, A.M. Transcriptome analysis of HER2 reveals a molecular connection to fatty acid synthesis. Cancer Res., 2003, 63(1), 132-139.
[60]
Jensen, V.; Ladekarl, M.; Holm-Nielsen, P.; Melsen, F.; Soerensen, F.B. The prognostic value of oncogenic antigen 519 (OA-519) expression and proliferative activity detected by antibody MIB-1 in node-negative breast cancer. J. Pathol., 1995, 176(4), 343-352.
[61]
Milgraum, L.Z.; Witters, L.A.; Pasternack, G.R.; Kuhajda, F.P. Enzymes of the fatty acid synthesis pathway are highly expressed in in situ breast carcinoma. Clin. Cancer Res., 1997, 3(11), 2115-2120.
[62]
Graff, J.R.; Zimmer, S.G. Translational control and metastatic progression: enhanced activity of the mRNA cap-binding protein eIF-4E selectively enhances translation of metastasis-related mRNAs. Clin. Exp. Metastasis, 2003, 20(3), 265-273.
[63]
Watkins, S.J.; Norbury, C.J. Translation initiation and its deregulation during tumorigenesis. Br. J. Cancer, 2002, 86(7), 1023-1027.
[64]
Dever, T.E. Translation initiation: adept at adapting. Trends Biochem. Sci., 1999, 24(10), 398-403.
[65]
Kozak, M. Initiation of translation in prokaryotes and eukaryotes. Gene, 1999, 234(2), 187-208.
[66]
Preiss, T.; Hentze, M.W. From factors to mechanisms: translation and translational control in eukaryotes. Curr. Opin. Genet. Dev., 1999, 9(5), 515-521.
[67]
Sheikh, M.S.; Fornace, A.J., Jr Regulation of translation initiation following stress. Oncogene, 1999, 18(45), 6121-6128.
[68]
Dancey, J.E. Therapeutic targets: MTOR and related pathways. Cancer Biol. Ther., 2006, 5(9), 1065-1073.
[69]
Deng, L.; Zhang, R.; Tang, F.; Li, C.; Xing, Y.Y.; Xi, T. Ursolic acid induces U937 cells differentiation by PI3K/Akt pathway activation. Chin. J. Nat. Med., 2014, 12(1), 15-19.
[70]
Castedo, M.; Ferri, K.F.; Kroemer, G. Mammalian target of rapamycin (mTOR): pro- and anti-apoptotic. Cell Death Differ., 2002, 9(2), 99-100.
[71]
Hay, N.; Sonenberg, N. Upstream and downstream of mTOR. Genes Dev., 2004, 18(16), 1926-1945.
[72]
Showkat, M; Beigh, MA Andrabi, KI mTOR signaling in protein
translation regulation: implications in cancer genesis and
therapeutic interventions. Mol. Biol. Int, 2014. 2014, 686984.
[73]
Morita, M.; Gravel, S.P.; Hulea, L.; Larsson, O.; Pollak, M.; St-Pierre, J.; Topisirovic, I. mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle, 2015, 14(4), 473-480.
[74]
Fingar, D.C.; Blenis, J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene, 2004, 23(18), 3151-3171.
[75]
Ma, X.M.; Blenis, J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol., 2009, 10(5), 307-318.
[76]
Wullschleger, S.; Loewith, R.; Hall, M.N. TOR signaling in growth and metabolism. Cell, 2006, 124(3), 471-484.
[77]
Guertin, D.A.; Sabatini, D.M. Defining the role of mTOR in cancer. Cancer Cell, 2007, 12(1), 9-22.
[78]
Polak, P.; Hall, M.N. mTOR and the control of whole body metabolism. Curr. Opin. Cell Biol., 2009, 21(2), 209-218.
[79]
Wang, X.; Proud, C.G. mTORC1 signaling: what we still dont know. J. Mol. Cell Biol., 2011, 3(4), 206-220.
[80]
Mamane, Y.; Petroulakis, E.; LeBacquer, O.; Sonenberg, N. mTOR, translation initiation and cancer. Oncogene, 2006, 25(48), 6416-6422.
[81]
Chen, Y.; Wei, H.; Liu, F.; Guan, J.L. Hyperactivation of mammalian target of rapamycin complex 1 (mTORC1) promotes breast cancer progression through enhancing glucose starvation-induced autophagy and Akt signaling. J. Biol. Chem., 2014, 289(2), 1164-1173.
[82]
Alessi, D.R.; Pearce, L.R.; García-Martínez, J.M. New insights into mTOR signaling: mTORC2 and beyond. Sci. Signal., 2009, 2(67), pe27.
[83]
Tanaka, K.; Babic, I.; Nathanson, D.; Akhavan, D.; Guo, D.; Gini, B.; Dang, J.; Zhu, S.; Yang, H.; De Jesus, J.; Amzajerdi, A.N.; Zhang, Y.; Dibble, C.C.; Dan, H.; Rinkenbaugh, A.; Yong, W.H.; Vinters, H.V.; Gera, J.F.; Cavenee, W.K.; Cloughesy, T.F.; Manning, B.D.; Baldwin, A.S.; Mischel, P.S. Oncogenic EGFR signaling activates an mTORC2-NF-κB pathway that promotes chemotherapy resistance. Cancer Discov., 2011, 1(6), 524-538.
[84]
Boroughs, L.K.; DeBerardinis, R.J. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol., 2015, 17(4), 351-359.
[85]
Qiu, B.; Simon, M.C. Oncogenes strike a balance between cellular growth and homeostasis. Semin. Cell Dev. Biol., 2015, 43, 3-10.
[86]
Desai, K.V.; Xiao, N.; Wang, W.; Gangi, L.; Greene, J.; Powell, J.I.; Dickson, R.; Furth, P.; Hunter, K.; Kucherlapati, R.; Simon, R.; Liu, E.T.; Green, J.E. Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc. Natl. Acad. Sci. USA, 2002, 99(10), 6967-6972.
[87]
Guerram, M.; Jiang, Z.Z.; Yousef, B.A.; Hamdi, A.M.; Hassan, H.M.; Yuan, Z.Q.; Luo, H.W.; Zhu, X.; Zhang, L.Y. The potential utility of acetyltanshinone IIA in the treatment of HER2-overexpressed breast cancer: Induction of cancer cell death by targeting apoptotic and metabolic signaling pathways. Oncotarget, 2015, 6(26), 21865-21877.
[88]
Tennant, D.A.; Durán, R.V.; Gottlieb, E. Targeting metabolic transformation for cancer therapy. Nat. Rev. Cancer, 2010, 10(4), 267-277.
[89]
Sangwan, V.; Park, M. Receptor tyrosine kinases: role in cancer progression. Curr. Oncol., 2006, 13(5), 191-193.
[90]
Greulich, H.; Kaplan, B.; Mertins, P.; Chen, T.H.; Tanaka, K.E.; Yun, C.H.; Zhang, X.; Lee, S.H.; Cho, J.; Ambrogio, L.; Liao, R.; Imielinski, M.; Banerji, S.; Berger, A.H.; Lawrence, M.S.; Zhang, J.; Pho, N.H.; Walker, S.R.; Winckler, W.; Getz, G.; Frank, D.; Hahn, W.C.; Eck, M.J.; Mani, D.R.; Jaffe, J.D.; Carr, S.A.; Wong, K.K.; Meyerson, M. Functional analysis of receptor tyrosine kinase mutations in lung cancer identifies oncogenic extracellular domain mutations of ERBB2. Proc. Natl. Acad. Sci. USA, 2012, 109(36), 14476-14481.
[91]
Cizkova, M.; Susini, A.; Vacher, S.; Cizeron-Clairac, G.; Andrieu, C.; Driouch, K.; Fourme, E.; Lidereau, R.; Bièche, I. PIK3CA mutation impact on survival in breast cancer patients and in ERα, PR and ERBB2-based subgroups. Breast Cancer Res., 2012, 14(1), R28.
[92]
Janku, F.; Wheler, J.J.; Westin, S.N.; Moulder, S.L.; Naing, A.; Tsimberidou, A.M.; Fu, S.; Falchook, G.S.; Hong, D.S.; Garrido-Laguna, I.; Luthra, R.; Lee, J.J.; Lu, K.H.; Kurzrock, R. PI3K/AKT/mTOR inhibitors in patients with breast and gynecologic malignancies harboring PIK3CA mutations. J. Clin. Oncol., 2012, 30(8), 777-782.
[93]
Kechagioglou, P.; Papi, R.M.; Provatopoulou, X.; Kalogera, E.; Papadimitriou, E.; Grigoropoulos, P.; Nonni, A.; Zografos, G.; Kyriakidis, D.A.; Gounaris, A. Tumor suppressor PTEN in breast cancer: heterozygosity, mutations and protein expression. Anticancer Res., 2014, 34(3), 1387-1400.
[94]
Stern, H.M.; Gardner, H.; Burzykowski, T.; Elatre, W. OBrien, C.; Lackner, M.R.; Pestano, G.A.; Santiago, A.; Villalobos, I.; Eiermann, W.; Pienkowski, T.; Martin, M.; Robert, N.; Crown, J.; Nuciforo, P.; Bee, V.; Mackey, J.; Slamon, D.J.; Press, M.F. PTEN Loss Is Associated with Worse Outcome in HER2-Amplified Breast Cancer Patients but Is Not Associated with Trastuzumab Resistance. Clin. Cancer Res., 2015, 21(9), 2065-2074.
[95]
Ciriello, G.; Miller, M.L.; Aksoy, B.A.; Senbabaoglu, Y.; Schultz, N.; Sander, C. Emerging landscape of oncogenic signatures across human cancers. Nat. Genet., 2013, 45(10), 1127-1133.
[96]
Masui, K.; Cavenee, W.K.; Mischel, P.S. mTORC2 in the center of cancer metabolic reprogramming. Trends Endocrinol. Metab., 2014, 25(7), 364-373.
[97]
Hanai, J.; Doro, N.; Sasaki, A.T.; Kobayashi, S.; Cantley, L.C.; Seth, P.; Sukhatme, V.P. Inhibition of lung cancer growth: ATP citrate lyase knockdown and statin treatment leads to dual blockade of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)/AKT pathways. J. Cell. Physiol., 2012, 227(4), 1709-1720.
[98]
Wang, C.; Xu, C.; Sun, M.; Luo, D.; Liao, D.F.; Cao, D. Acetyl-CoA carboxylase-alpha inhibitor TOFA induces human cancer cell apoptosis. Biochem. Biophys. Res. Commun., 2009, 385(3), 302-306.
[99]
Buzzai, M.; Bauer, D.E.; Jones, R.G.; Deberardinis, R.J.; Hatzivassiliou, G.; Elstrom, R.L.; Thompson, C.B. The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene, 2005, 24(26), 4165-4173.
[100]
Yang, Y.A.; Han, W.F.; Morin, P.J.; Chrest, F.J.; Pizer, E.S. Activation of fatty acid synthesis during neoplastic transformation: role of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Exp. Cell Res., 2002, 279(1), 80-90.
[101]
Krycer, J.R.; Sharpe, L.J.; Luu, W.; Brown, A.J. The Akt-SREBP nexus: cell signaling meets lipid metabolism. Trends Endocrinol. Metab., 2010, 21(5), 268-276.
[102]
Furuta, E.; Pai, S.K.; Zhan, R.; Bandyopadhyay, S.; Watabe, M.; Mo, Y.Y.; Hirota, S.; Hosobe, S.; Tsukada, T.; Miura, K.; Kamada, S.; Saito, K.; Iiizumi, M.; Liu, W.; Ericsson, J.; Watabe, K. Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res., 2008, 68(4), 1003-1011.
[103]
Laplante, M.; Sabatini, D.M. An emerging role of mTOR in lipid biosynthesis. Curr. Biol., 2009, 19(22), R1046-R1052.
[104]
Düvel, K.; Yecies, J.L.; Menon, S.; Raman, P.; Lipovsky, A.I.; Souza, A.L.; Triantafellow, E.; Ma, Q.; Gorski, R.; Cleaver, S.; Vander Heiden, M.G.; MacKeigan, J.P.; Finan, P.M.; Clish, C.B.; Murphy, L.O.; Manning, B.D. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell, 2010, 39(2), 171-183.
[105]
Lamming, D.W.; Sabatini, D.M. A Central role for mTOR in lipid homeostasis. Cell Metab., 2013, 18(4), 465-469.
[106]
Hagiwara, A.; Cornu, M.; Cybulski, N.; Polak, P.; Betz, C.; Trapani, F.; Terracciano, L.; Heim, M.H.; Rüegg, M.A.; Hall, M.N. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab., 2012, 15(5), 725-738.
[107]
Yuan, M.; Pino, E.; Wu, L.; Kacergis, M.; Soukas, A.A. Identification of Akt-independent regulation of hepatic lipogenesis by mammalian target of rapamycin (mTOR) complex 2. J. Biol. Chem., 2012, 287(35), 29579-29588.
[108]
Cybulski, N.; Polak, P.; Auwerx, J.; Rüegg, M.A.; Hall, M.N. mTOR complex 2 in adipose tissue negatively controls whole-body growth. Proc. Natl. Acad. Sci. USA, 2009, 106(24), 9902-9907.
[109]
Yao, Y.; Suraokar, M.; Darnay, B.G.; Hollier, B.G.; Shaiken, T.E.; Asano, T.; Chen, C.H.; Chang, B.H.; Lu, Y.; Mills, G.B.; Sarbassov, D.; Mani, S.A.; Abbruzzese, J.L.; Reddy, S.A. BSTA promotes mTORC2-mediated phosphorylation of Akt1 to suppress expression of FoxC2 and stimulate adipocyte differentiation. Sci. Signal., 2013, 6(257), ra2.
[110]
Jones, K.T.; Greer, E.R.; Pearce, D.; Ashrafi, K. Rictor/TORC2 regulates Caenorhabditis elegans fat storage, body size, and development through sgk-1. PLoS Biol., 2009, 7(3), e60.
[111]
Soukas, A.A.; Kane, E.A.; Carr, C.E.; Melo, J.A.; Ruvkun, G. Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes Dev., 2009, 23(4), 496-511.
[112]
Flavin, R.; Peluso, S.; Nguyen, P.L.; Loda, M. Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol., 2010, 6(4), 551-562.
[113]
Li, S.; Qiu, L.; Wu, B.; Shen, H.; Zhu, J.; Zhou, L.; Gu, L.; Di, W. TOFA suppresses ovarian cancer cell growth in vitro and in vivo. Mol. Med. Rep., 2013, 8(2), 373-378.
[114]
Menendez, J.A. Fine-tuning the lipogenic/lipolytic balance to optimize the metabolic requirements of cancer cell growth: molecular mechanisms and therapeutic perspectives. Biochim. Biophys. Acta, 2010, 1801(3), 381-391.
[115]
Menendez, J.A.; Vellon, L.; Mehmi, I.; Oza, B.P.; Ropero, S.; Colomer, R.; Lupu, R. Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells. Proc. Natl. Acad. Sci. USA, 2004, 101(29), 10715-10720.
[116]
Grunt, T.W.; Wagner, R.; Grusch, M.; Berger, W.; Singer, C.F.; Marian, B.; Zielinski, C.C.; Lupu, R. Interaction between fatty acid synthase- and ErbB-systems in ovarian cancer cells. Biochem. Biophys. Res. Commun., 2009, 385(3), 454-459.
[117]
Zhao, Y.; Butler, E.B.; Tan, M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis., 2013, 4, e532.
[118]
Vazquez-Martin, A.; Colomer, R.; Brunet, J.; Menendez, J.A. Pharmacological blockade of fatty acid synthase (FASN) reverses acquired autoresistance to trastuzumab (Herceptin by transcriptionally inhibiting HER2 super-expression occurring in high-dose trastuzumab-conditioned SKBR3/Tzb100 breast cancer cells. Int. J. Oncol., 2007, 31(4), 769-776.
[119]
Pizer, E.S.; Thupari, J.; Han, W.F.; Pinn, M.L.; Chrest, F.J.; Frehywot, G.L.; Townsend, C.A.; Kuhajda, F.P. Malonyl-coenzyme-A is a potential mediator of cytotoxicity induced by fatty-acid synthase inhibition in human breast cancer cells and xenografts. Cancer Res., 2000, 60(2), 213-218.
[120]
Vazquez-Martin, A.; Ropero, S.; Brunet, J.; Colomer, R.; Menendez, J.A. Inhibition of Fatty Acid Synthase (FASN) synergistically enhances the efficacy of 5-fluorouracil in breast carcinoma cells. Oncol. Rep., 2007, 18(4), 973-980.
[121]
Funabashi, H.; Kawaguchi, A.; Tomoda, H.; Omura, S.; Okuda, S.; Iwasaki, S. Binding site of cerulenin in fatty acid synthetase. J. Biochem., 1989, 105(5), 751-755.
[122]
Menendez, J.A.; Lupu, R. Fatty acid synthase-catalyzed de novo fatty acid biosynthesis: from anabolic-energy-storage pathway in normal tissues to jack-of-all-trades in cancer cells. Arch. Immunol. Ther. Exp. (Warsz.), 2004, 52(6), 414-426.
[123]
Kuhajda, F.P. Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition, 2000, 16(3), 202-208.
[124]
Uddin, S.; Siraj, A.K.; Al-Rasheed, M.; Ahmed, M.; Bu, R.; Myers, J.N.; Al-Nuaim, A.; Al-Sobhi, S.; Al-Dayel, F.; Bavi, P.; Hussain, A.R.; Al-Kuraya, K.S. Fatty acid synthase and AKT pathway signaling in a subset of papillary thyroid cancers. J. Clin. Endocrinol. Metab., 2008, 93(10), 4088-4097.
[125]
Lucas, K.H.; Kaplan-Machlis, B. Orlistata novel weight loss therapy. Ann. Pharmacother., 2001, 35(3), 314-328.
[126]
Kridel, S.J.; Axelrod, F.; Rozenkrantz, N.; Smith, J.W. Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res., 2004, 64(6), 2070-2075.
[127]
Furuya, Y.; Akimoto, S.; Yasuda, K.; Ito, H. Apoptosis of androgen-independent prostate cell line induced by inhibition of fatty acid synthesis. Anticancer Res., 1997, 17(6D), 4589-4593.
[128]
Li, J.N.; Gorospe, M.; Chrest, F.J.; Kumaravel, T.S.; Evans, M.K.; Han, W.F.; Pizer, E.S. Pharmacological inhibition of fatty acid synthase activity produces both cytostatic and cytotoxic effects modulated by p53. Cancer Res., 2001, 61(4), 1493-1499.
[129]
Pizer, E.S.; Wood, F.D.; Pasternack, G.R.; Kuhajda, F.P. Fatty acid synthase (FAS): a target for cytotoxic antimetabolites in HL60 promyelocytic leukemia cells. Cancer Res., 1996, 56(4), 745-751.
[130]
Knowles, L.M.; Axelrod, F.; Browne, C.D.; Smith, J.W. A fatty acid synthase blockade induces tumor cell-cycle arrest by down-regulating Skp2. J. Biol. Chem., 2004, 279(29), 30540-30545.
[131]
Harwood, H.J., Jr Treating the metabolic syndrome: acetyl-CoA carboxylase inhibition. Expert Opin. Ther. Targets, 2005, 9(2), 267-281.
[132]
Chajès, V.; Cambot, M.; Moreau, K.; Lenoir, G.M.; Joulin, V. Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival. Cancer Res., 2006, 66(10), 5287-5294.
[133]
Sola, M.M.; Oliver, F.J.; Salto, R.; Gutiérrez, M.; Vargas, A. Citrate inhibition of rat-kidney cortex phosphofructokinase. Mol. Cell. Biochem., 1994, 135(2), 123-128.
[134]
Chonan, T.; Oi, T.; Yamamoto, D.; Yashiro, M.; Wakasugi, D.; Tanaka, H.; Ohoka-Sugita, A.; Io, F.; Koretsune, H.; Hiratate, A. (4-Piperidinyl)-piperazine: a new platform for acetyl-CoA carboxylase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(23), 6645-6648.
[135]
Gu, Y.G.; Weitzberg, M.; Clark, R.F.; Xu, X.; Li, Q.; Zhang, T.; Hansen, T.M.; Liu, G.; Xin, Z.; Wang, X.; Wang, R.; McNally, T.; Zinker, B.A.; Frevert, E.U.; Camp, H.S.; Beutel, B.A.; Sham, H.L. Synthesis and structure-activity relationships of N-3-[2-(4-alkoxyphenoxy)thiazol-5-yl]-1- methylprop-2-ynylcarboxy derivatives as selective acetyl-CoA carboxylase 2 inhibitors. J. Med. Chem., 2006, 49(13), 3770-3773.
[136]
Harwood, H.J., Jr; Petras, S.F.; Shelly, L.D.; Zaccaro, L.M.; Perry, D.A.; Makowski, M.R.; Hargrove, D.M.; Martin, K.A.; Tracey, W.R.; Chapman, J.G.; Magee, W.P.; Dalvie, D.K.; Soliman, V.F.; Martin, W.H.; Mularski, C.J.; Eisenbeis, S.A. Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experimental animals. J. Biol. Chem., 2003, 278(39), 37099-37111.
[137]
Shinde, P.; Srivastava, S.K.; Odedara, R.; Tuli, D.; Munshi, S.; Patel, J.; Zambad, S.P.; Sonawane, R.; Gupta, R.C.; Chauthaiwale, V.; Dutt, C. Synthesis of spiro[chroman-2,4-piperidin]-4-one derivatives as acetyl-CoA carboxylase inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(3), 949-953.
[138]
Corbett, J.W.; Freeman-Cook, K.D.; Elliott, R.; Vajdos, F.; Rajamohan, F.; Kohls, D.; Marr, E.; Zhang, H.; Tong, L.; Tu, M.; Murdande, S.; Doran, S.D.; Houser, J.A.; Song, W.; Jones, C.J.; Coffey, S.B.; Buzon, L.; Minich, M.L.; Dirico, K.J.; Tapley, S.; McPherson, R.K.; Sugarman, E.; Harwood, H.J., Jr; Esler, W. Discovery of small molecule isozyme non-specific inhibitors of mammalian acetyl-CoA carboxylase 1 and 2. Bioorg. Med. Chem. Lett., 2010, 20(7), 2383-2388.
[139]
Zu, X.Y.; Zhang, Q.H.; Liu, J.H.; Cao, R.X.; Zhong, J.; Yi, G.H.; Quan, Z.H.; Pizzorno, G. ATP citrate lyase inhibitors as novel cancer therapeutic agents. Recent Patents Anticancer. Drug Discov., 2012, 7(2), 154-167.
[140]
Vicier, C.; Dieci, M.V.; Arnedos, M.; Delaloge, S.; Viens, P.; Andre, F. Clinical development of mTOR inhibitors in breast cancer. Breast Cancer Res., 2014, 16(1), 203.
[141]
deGraffenried, L.A.; Friedrichs, W.E.; Russell, D.H.; Donzis, E.J.; Middleton, A.K.; Silva, J.M.; Roth, R.A.; Hidalgo, M. Inhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt Activity. Clin. Cancer Res., 2004, 10(23), 8059-8067.
[142]
Baselga, J.; Semiglazov, V.; van Dam, P.; Manikhas, A.; Bellet, M.; Mayordomo, J.; Campone, M.; Kubista, E.; Greil, R.; Bianchi, G.; Steinseifer, J.; Molloy, B.; Tokaji, E.; Gardner, H.; Phillips, P.; Stumm, M.; Lane, H.A.; Dixon, J.M.; Jonat, W.; Rugo, H.S. Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor-positive breast cancer. J. Clin. Oncol., 2009, 27(16), 2630-2637.
[143]
Hudes, G.; Carducci, M.; Tomczak, P.; Dutcher, J.; Figlin, R.; Kapoor, A.; Staroslawska, E.; Sosman, J.; McDermott, D.; Bodrogi, I.; Kovacevic, Z.; Lesovoy, V.; Schmidt-Wolf, I.G.; Barbarash, O.; Gokmen, E. OToole, T.; Lustgarten, S.; Moore, L.; Motzer, R.J. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med., 2007, 356(22), 2271-2281.
[144]
Motzer, R.J.; Escudier, B.; Oudard, S.; Hutson, T.E.; Porta, C.; Bracarda, S.; Grünwald, V.; Thompson, J.A.; Figlin, R.A.; Hollaender, N.; Urbanowitz, G.; Berg, W.J.; Kay, A.; Lebwohl, D.; Ravaud, A. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet, 2008, 372(9637), 449-456.
[145]
Vignot, S.; Faivre, S.; Aguirre, D.; Raymond, E. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann. Oncol., 2005, 16(4), 525-537.
[146]
Ansell, S.M.; Inwards, D.J.; Rowland, K.M., Jr; Flynn, P.J.; Morton, R.F.; Moore, D.F., Jr; Kaufmann, S.H.; Ghobrial, I.; Kurtin, P.J.; Maurer, M.; Allmer, C.; Witzig, T.E. Low-dose, single-agent temsirolimus for relapsed mantle cell lymphoma: a phase 2 trial in the North Central Cancer Treatment Group. Cancer, 2008, 113(3), 508-514.
[147]
Witzig, T.E.; Geyer, S.M.; Ghobrial, I.; Inwards, D.J.; Fonseca, R.; Kurtin, P.; Ansell, S.M.; Luyun, R.; Flynn, P.J.; Morton, R.F.; Dakhil, S.R.; Gross, H.; Kaufmann, S.H. Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J. Clin. Oncol., 2005, 23(23), 5347-5356.
[148]
Mondesire, W.H.; Jian, W.; Zhang, H.; Ensor, J.; Hung, M.C.; Mills, G.B.; Meric-Bernstam, F. Targeting mammalian target of rapamycin synergistically enhances chemotherapy-induced cytotoxicity in breast cancer cells. Clin. Cancer Res., 2004, 10(20), 7031-7042.
[149]
Zhu, Y.; Zhang, X.; Liu, Y.; Zhang, S.; Liu, J.; Ma, Y.; Zhang, J. Antitumor effect of the mTOR inhibitor everolimus in combination with trastuzumab on human breast cancer stem cells in vitro and in vivo. Tumour Biol., 2012, 33(5), 1349-1362.
[150]
Singh, J.; Novik, Y.; Stein, S.; Volm, M.; Meyers, M.; Smith, J.; Omene, C.; Speyer, J.; Schneider, R.; Jhaveri, K.; Formenti, S.; Kyriakou, V.; Joseph, B.; Goldberg, J.D.; Li, X.; Adams, S.; Tiersten, A. Phase 2 trial of everolimus and carboplatin combination in patients with triple negative metastatic breast cancer. Breast Cancer Res., 2014, 16(2), R32.