Abstract
Dystonia is a hyperkinetic disabling movement disorder. In the dtsz hamster, a model of paroxysmal dystonia, pronounced antidystonic effects of the KV7.2-5 potassium channel opener retigabine and aggravation of dystonia by a selective KV7.2-5 blocker indicated a pathophysiological role of an abnormal expression of KV7 channels. We therefore investigated the expression of KV7 subunits in brains of dystonic hamsters. While KV7.2 and KV7.3 subunits were unaltered, lower KV7.5 mRNA levels became evident in motor areas and in limbic structures of dystonic hamsters. The KV7.2/3 subunit-preferring channel opener N-(6-chloropyridin-3-yl)-3,4- difluorobenzamide (ICA 27243; 10-30 mg/kg i.p.) failed to reduce the severity of dystonia in mutant hamsters, suggesting that the previously observed antidystonic action of retigabine is mediated by the activation of KV7.5 channels. The experiments indicate a functional relevance for KV7.5 channels in paroxysmal dystonia. We suggest that compounds highly selective for subtypes of KV7 channels, i.e. for KV7.5, may provide new therapeutic approaches.
Keywords: animal model, dyskinesia, dystonia, ICA 27243, KCNQ, voltage-gated potassium channels.
CNS & Neurological Disorders - Drug Targets
Title:Lower KV7.5 Potassium Channel Subunit Expression in an Animal Model of Paroxysmal Dystonia
Volume: 15 Issue: 1
Author(s): Svenja E. Sander, Mustansir Diwan, Roger Raymond, José N Nobrega and Angelika Richter
Affiliation:
Keywords: animal model, dyskinesia, dystonia, ICA 27243, KCNQ, voltage-gated potassium channels.
Abstract: Dystonia is a hyperkinetic disabling movement disorder. In the dtsz hamster, a model of paroxysmal dystonia, pronounced antidystonic effects of the KV7.2-5 potassium channel opener retigabine and aggravation of dystonia by a selective KV7.2-5 blocker indicated a pathophysiological role of an abnormal expression of KV7 channels. We therefore investigated the expression of KV7 subunits in brains of dystonic hamsters. While KV7.2 and KV7.3 subunits were unaltered, lower KV7.5 mRNA levels became evident in motor areas and in limbic structures of dystonic hamsters. The KV7.2/3 subunit-preferring channel opener N-(6-chloropyridin-3-yl)-3,4- difluorobenzamide (ICA 27243; 10-30 mg/kg i.p.) failed to reduce the severity of dystonia in mutant hamsters, suggesting that the previously observed antidystonic action of retigabine is mediated by the activation of KV7.5 channels. The experiments indicate a functional relevance for KV7.5 channels in paroxysmal dystonia. We suggest that compounds highly selective for subtypes of KV7 channels, i.e. for KV7.5, may provide new therapeutic approaches.
Export Options
About this article
Cite this article as:
Sander E. Svenja, Diwan Mustansir, Raymond Roger, Nobrega N José and Richter Angelika, Lower KV7.5 Potassium Channel Subunit Expression in an Animal Model of Paroxysmal Dystonia, CNS & Neurological Disorders - Drug Targets 2016; 15 (1) . https://dx.doi.org/10.2174/1871527315666151110124136
DOI https://dx.doi.org/10.2174/1871527315666151110124136 |
Print ISSN 1871-5273 |
Publisher Name Bentham Science Publisher |
Online ISSN 1996-3181 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
Programmed Symptoms: Disparate Effects United by Purpose
Current Rheumatology Reviews Effective Treatment of Human Lung Cancer by Targeting Tissue Factor with a Factor VII-Targeted Photodynamic Therapy
Current Cancer Drug Targets Site-related Effects of Relaxin in the Gastrointestinal Tract Through Nitric Oxide Signalling: An Updated Report
Current Protein & Peptide Science Sleep Related Disorders in the Elderly: An Overview
Current Respiratory Medicine Reviews Recent Advances in Medicinal Chemistry and Pharmaceutical Technology- Strategies for Drug Delivery to the Brain
Current Topics in Medicinal Chemistry Complementary and Alternative Medicine for the Treatment of Insomnia: An Overview of Scientific Evidence from 2008 to 2018
Current Vascular Pharmacology Phosphodiesterase Inhibitors for Cognitive Enhancement
Current Pharmaceutical Design Thermal Properties and Transition Behavior of Host-Guest Compounds Under High Pressure
Current Inorganic Chemistry (Discontinued) Alcoholism and its Effects on the Central Nervous System
Current Neurovascular Research Potential Therapeutic Drugs and Methods for the Treatment of Amyotrophic Lateral Sclerosis
Current Medicinal Chemistry The Molecular Basis of Conantokin Antagonism of NMDA Receptor Function
Current Drug Targets Structural Neuroimaging Findings in Major Depressive Disorder Throughout Aging: A Critical Systematic Review of Prospective Studies
CNS & Neurological Disorders - Drug Targets Periostin as a Heterofunctional Regulator of Cardiac Development and Disease
Current Genomics Vascular Changes of the Retina and Choroid in Systemic Lupus Erythematosus: Pathology and Pathogenesis
Current Neurovascular Research Recent Advances in Pathophysiology of Traumatic Brain Injury
Current Neuropharmacology Diagnostic and Therapeutic Uses of Nanomaterials in the Brain
Current Medicinal Chemistry Effective Inhibition of Foam Cells Formation by Tanshinone IIA in RAW264.7 Macrophages Induced with LDL Isolated from Hypercholesterolemia Patients: A Proteomic Analysis
Current Proteomics Promiscuous Seven Transmembrane Receptors Sensing L-α-amino Acids
Current Pharmaceutical Design Immunotherapeutic Approaches in MS: Update on Pathophysiology and Emerging Agents or Strategies 2006
Endocrine, Metabolic & Immune Disorders - Drug Targets Serotonin and Human Cognitive Performance
Current Pharmaceutical Design