Abstract
In the absence of an approved and effective vaccine, topical microbicides have become the strategy of choice to provide women with the ability to prevent the sexual transmission of HIV. Topical microbicides are chemical and physical agents specifically developed and formulated for use in either the vaginal or rectal environment to prevent the sexual transmission of infectious organisms. Although a microbicide product will have many of the same properties as other anti-infective therapeutic agents, the microbicide development pathway has significant differences which reflect the complex biological environment in which the products must act. These challenges to the development of an effective microbicide are reflected in the recently released FDA Guidance document which defines the microbicide development algorithm and includes the evaluation of preclinical efficacy and toxicity, and safety and toxicology, and indicates the necessity of testing of the active pharmaceutical product as well as an optimal formulation for delivery of the microbicide product. The microbicide development algorithm requires evaluation of the potential microbicidal agent and final formulated product in assays which mimic the microenvironment of the vagina and rectum during the sexual transmission of HIV, including the evaluation of activity and cytotoxicity in the appropriate biological matrices, toxicity testing against normal vaginal flora and at standard vaginal pH, testing in ectocervical and colorectal explant tissue, and irritation studies to vaginal, rectal and penile tissue. Herein, we discuss currently accepted practices required for the development of a successful microbicide product which will prevent virus transmission in the vaginal and rectal vaults.
Keywords: Topical microbicide, HIV-1, Preclinical development, Pharmacodynamics, Pharmacokinetics, Toxicity, Prevention.
Graphical Abstract