Abstract
In radiotherapy the normal tissue reaction is often a limiting factor for radiation treatment. Still there is no screening method, which predicts normal tissue reaction on radiotherapy, especially in comparison to tumor tissue, and therefore allows tailoring of the radiation dose to each patient. Here, we present a case of severe radiation-related side effects. We applied classical cytogenetic techniques (Giemsa-banding and staining of centromeric regions), the comet assay as well as multicolor fluorescence in situ hybridization on peripheral blood lymphocytes of this patient in order to determine the radio-sensitivity on the DNA level and to correlate these findings with the clinical outcome. Our investigations revealed abnormalities on chromosome 9, deficiencies in the DNA-repair capacity after radiation exposure and a high number of radiation induced chromosomal aberrations. A detected high amount of residual damage two or three hours after radiation exposure and repair as well as the high number of chromosomal aberrations (ChAs) suggests a correlation between repair capacity and radiation induced ChAs. We concluded that the detected abnormalities might serve as a genetic basis for the radio-sensitive phenotype of this patient. Taken together this report strengthens the idea that intensive DNA genomic analysis of individual patients can serve as the basis for more favourable treatment of cancer patients.
Keywords: Radiation therapy, DNA damage and repair, Double strand breaks, Comet assay, Radiation induced chromosomal aberrations, M-FISH, radio-sensitivity, situ hybridization, Giemsa-Trypsin-Giemsa, centromere
Current Genomics
Title:Clinical, Molecular- and Cytogenetic Analysis of a Case of Severe Radio- Sensitivity
Volume: 13 Issue: 6
Author(s): K.M. Greulich-Bode, F. Zimmermann, W.-U. Muller, B. Pakisch, M. Molls and F. Wurschmidt
Affiliation:
Keywords: Radiation therapy, DNA damage and repair, Double strand breaks, Comet assay, Radiation induced chromosomal aberrations, M-FISH, radio-sensitivity, situ hybridization, Giemsa-Trypsin-Giemsa, centromere
Abstract: In radiotherapy the normal tissue reaction is often a limiting factor for radiation treatment. Still there is no screening method, which predicts normal tissue reaction on radiotherapy, especially in comparison to tumor tissue, and therefore allows tailoring of the radiation dose to each patient. Here, we present a case of severe radiation-related side effects. We applied classical cytogenetic techniques (Giemsa-banding and staining of centromeric regions), the comet assay as well as multicolor fluorescence in situ hybridization on peripheral blood lymphocytes of this patient in order to determine the radio-sensitivity on the DNA level and to correlate these findings with the clinical outcome. Our investigations revealed abnormalities on chromosome 9, deficiencies in the DNA-repair capacity after radiation exposure and a high number of radiation induced chromosomal aberrations. A detected high amount of residual damage two or three hours after radiation exposure and repair as well as the high number of chromosomal aberrations (ChAs) suggests a correlation between repair capacity and radiation induced ChAs. We concluded that the detected abnormalities might serve as a genetic basis for the radio-sensitive phenotype of this patient. Taken together this report strengthens the idea that intensive DNA genomic analysis of individual patients can serve as the basis for more favourable treatment of cancer patients.
Export Options
About this article
Cite this article as:
Greulich-Bode K.M., Zimmermann F., Muller W.-U., Pakisch B., Molls M. and Wurschmidt F., Clinical, Molecular- and Cytogenetic Analysis of a Case of Severe Radio- Sensitivity, Current Genomics 2012; 13 (6) . https://dx.doi.org/10.2174/138920212802510475
DOI https://dx.doi.org/10.2174/138920212802510475 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Cysteine Proteinases of Trypanosome Parasites Novel Targets for Chemotherapy
Current Drug Targets Trypanosomatid Parasites Causing Neglected Diseases
Current Medicinal Chemistry Beneficial Effects of Statins on Endothelial Dysfunction and Vascular Stiffness
Current Vascular Pharmacology Reductions in Medications with Substantial Weight Loss with Behavioral Intervention
Current Clinical Pharmacology Patents in the Diagnosis and Therapy of Neurocardiogenic Syncope
Recent Patents on Cardiovascular Drug Discovery Occupational Respiratory Pathology in Russia: Current Trends and Challenges
Current Respiratory Medicine Reviews New Pharmacologic Approaches to Prevent Thromboembolism in Patients with Atrial Fibrillation
Current Vascular Pharmacology Preparation and Biodistribution of Technetium-99m-Labeled Bis- Misonidazole (MISO) as an Imaging Agent for Tumour Hypoxia
Medicinal Chemistry Brain Angiotensin and Cardiovascular Reactivity to Negative and Positive Emotional Stress
Current Hypertension Reviews Novel Anti-Arrhythmic Drugs for Atrial Fibrillation Management
Current Vascular Pharmacology Integrating Coronary Calcium into Risk Prediction: Current Approaches and Future Directions
Current Cardiology Reviews Experimental Strategies in Autoimmunity: Antagonists of Cytokines and their Receptors, Nanocarriers, Inhibitors of Immunoproteasome, Leukocyte Migration and Protein Kinases
Current Pharmaceutical Design Human Saphenous Vein and Coronary Bypass Surgery: Scanning Electron Microscopy of Conventional and ‘No-Touch’ Vein Grafts
Vascular Disease Prevention (Discontinued) Rheumatoid Arthritis: An Autoimmune Disease with Female Preponderance and Cardiovascular Risk Equivalent to Diabetes Mellitus: Role of Cardiovascular Magnetic Resonance
Inflammation & Allergy - Drug Targets (Discontinued) Protection by Natural Honey Against Hyperhomocysteinemia in Rats
Vascular Disease Prevention (Discontinued) Physico-chemical and Biological Evaluation of Flavonols: Fisetin, Quercetin and Kaempferol Alone and Incorporated in beta Cyclodextrins
Anti-Cancer Agents in Medicinal Chemistry The Potentials of Selected Therapeutic Targets for Inflammation: A Snapshot
Recent Patents on Inflammation & Allergy Drug Discovery Review of the Syntheses and Activities of Some Sulfur-Containing Drugs
Current Organic Synthesis Noscapine-loaded PLA Nanoparticles: Systematic Study of Effect of Formulation and Process Variables on Particle Size, Drug Loading and Entrapment Efficiency
Pharmaceutical Nanotechnology Identification and Quantitation of Some Characteristic Phenolic Compounds in Elderberry Juice by HPLC with Coulometric Electrode Array Detection
Current Bioactive Compounds