Abstract
Infection with human papillomaviruses (HPVs) is a major public health burden worldwide and is associated with benign and malignant lesions of the skin and genital tract. HPV causes cervical cancer, which represents the second most prevalent cancer in women worldwide. Functions of the viral oncogenes E6 and E7 are essential for carcinogenesis and for support of the viral life cycle. We will begin by discussing the relationship between HPV infection and disease, followed by a review of E6 and E7 activities and their respective cellular targets. Particular emphasis will be placed on established and newly discovered mechanisms by which E7 inhibits members of the cellular retinoblastoma protein family. We will then describe how current research links the above molecular interactions to malignant transformation as well as to aspects of the viral life cycle in vitro and in vivo. As a result of decades of intense HPV research, promising therapies to prevent infection and to treat HPV associated cancers are now on the horizon. We will conclude our review by a description of potential gene therapeutic and hormonal approaches and of new developments in the design of effective vaccines.
Keywords: E6 oncogenes, E1 DNA binding, PDZ domain proteins, hTERT promoter, HPV life cycle
Current Molecular Medicine
Title: Cervical Cancer and Human Papillomaviruses: Inactivation of Retinoblastoma and Other Tumor Suppressor Pathways
Volume: 6 Issue: 7
Author(s): Elizabeth E. Jones and Susanne I. Wells
Affiliation:
Keywords: E6 oncogenes, E1 DNA binding, PDZ domain proteins, hTERT promoter, HPV life cycle
Abstract: Infection with human papillomaviruses (HPVs) is a major public health burden worldwide and is associated with benign and malignant lesions of the skin and genital tract. HPV causes cervical cancer, which represents the second most prevalent cancer in women worldwide. Functions of the viral oncogenes E6 and E7 are essential for carcinogenesis and for support of the viral life cycle. We will begin by discussing the relationship between HPV infection and disease, followed by a review of E6 and E7 activities and their respective cellular targets. Particular emphasis will be placed on established and newly discovered mechanisms by which E7 inhibits members of the cellular retinoblastoma protein family. We will then describe how current research links the above molecular interactions to malignant transformation as well as to aspects of the viral life cycle in vitro and in vivo. As a result of decades of intense HPV research, promising therapies to prevent infection and to treat HPV associated cancers are now on the horizon. We will conclude our review by a description of potential gene therapeutic and hormonal approaches and of new developments in the design of effective vaccines.
Export Options
About this article
Cite this article as:
Jones E. Elizabeth and Wells I. Susanne, Cervical Cancer and Human Papillomaviruses: Inactivation of Retinoblastoma and Other Tumor Suppressor Pathways, Current Molecular Medicine 2006; 6 (7) . https://dx.doi.org/10.2174/1566524010606070795
DOI https://dx.doi.org/10.2174/1566524010606070795 |
Print ISSN 1566-5240 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5666 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
HPV Infections: Basis of Neoplastic Transformation and Related Molecular Tests
Current Pharmaceutical Design Strategies Targeting DNA Topoisomerase I in Cancer Chemotherapy: Camptothecins, Nanocarriers for Camptothecins, Organic Non-Camptothecin Compounds and Metal Complexes
Current Drug Targets Current Insights into the Role of HIF-1 in Cutaneous Wound Healing
Current Molecular Medicine Toll-Like Receptors: Cost or Benefit for Cancer?
Current Pharmaceutical Design Synergistic Effect of α-Solanine and Cisplatin Induces Apoptosis and Enhances Cell Cycle Arrest in Human Hepatocellular Carcinoma Cells
Anti-Cancer Agents in Medicinal Chemistry Cell Death in Mammalian Development
Current Pharmaceutical Design Advances in Neuroimaging for HIV-1 Associated Neurological Dysfunction: Clues to the Diagnosis, Pathogenesis and Therapeutic Monitoring
Current HIV Research Immunotherapeutic Options for Pediatric Malignancies
Current Immunology Reviews (Discontinued) Harnessing the Capacity of Cell-Penetrating Peptides for Drug Delivery to the Central Nervous System
Current Pharmaceutical Biotechnology Melatonin in the Biliary Tract and Liver: Health Implications
Current Pharmaceutical Design Advances in the Knowledge and Clinical Applications of Lactic Acid Bacteria as Probiotics in the Urogenital Tract
Current Women`s Health Reviews Evaluation of Anticancer, Antibacterial and Antioxidant Properties of a Medicinally Treasured Fern Tectaria coadunata with its Phytoconstituents Analysis by HR-LCMS
Anti-Cancer Agents in Medicinal Chemistry Mechanisms of Resistance to Photodynamic Therapy
Current Medicinal Chemistry Activities of Venom Proteins and Peptides with Possible Therapeutic Applications from Bees and WASPS
Protein & Peptide Letters Gene Transfer to the Central Nervous System: Current State of the Art of the Viral Vectors
Current Genomics Enzymes To Die For: Exploiting Nucleotide Metabolizing Enzymes for Cancer Gene Therapy
Current Gene Therapy Baicalin-induced Cytotoxicity and Apoptosis in Multidrug-resistant MC3/5FU Mucoepidermoid Carcinoma Cell Line
Letters in Drug Design & Discovery Radioimmunotherapy of Solid Tumors: Searching for the Right Target
Current Drug Delivery Looking at Drug Resistance Mechanisms for Microtubule Interacting Drugs: Does TUBB3 Work?
Current Cancer Drug Targets Therapeutic Effects of Progesterone in Animal Models of Neurological Disorders
CNS & Neurological Disorders - Drug Targets