Abstract
Peptide deformylase (PDF) is a ubiquitous bacterial metalloenzyme responsible to cleave the formyl group from nascent polypeptides, supporting in the maturation. It plays a vital role in the survival of bacterial cells which is conserved in the eubacteria and is considered to be an attractive target for developing new antibacterial agents. Homology modeling was employed for generation of 3-D structure of PDF of M. tuberculosis H37Rv and showed 92.5% amino acid in the allowed region of Ramachandran plot. PDF was used as target for a set of inhibitors with substantial structural differences. Docking results show that the BB-3497, BBS-54, Actinonin and BBS-02 bind with high affinity to enzyme active site. Phylogeny of PDF in M. tuberculosis H37Rv shows homology with other strains of pathogenic bacteria. These data validate PDF as a novel target for the design of a new generation of antimycobacterial agents.
Keywords: Mycobacterium tuberculosis, Peptide deformylase, Docking, Phylogeny, Drugs