Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Unraveling of Potential Targets for Andrographolide, Neoandrographolide and 5-hydroxy, 7-methoxy Flavone in the Treatment of Rheumatoid Arthritis using Network Pharmacology and Molecular Docking

Author(s): Neha Rana, Parul Grover*, Hridayanand Singh, Sameer Rastogi and Pooja A. Chawla

Volume 28, Issue 20, 2024

Published on: 03 July, 2024

Page: [1579 - 1592] Pages: 14

DOI: 10.2174/0113852728301440240620093751

Price: $65

Abstract

Joint degeneration is a possible outcome of rheumatoid arthritis, an inflammatory disorder that is chronic, systemic, and progressive. Andrographis paniculata is known to contain many phytoconstituents that have demonstrated therapeutic effects in terms of inflammation. However, the therapeutic actions of Andrographis paniculata are still not fully understood. The present study aims to better understand rheumatoid arthritis and its possible treatments through the identification of relevant targets and mechanisms. A total of 47 common targets were identified for andrographolide, while 38 common targets were found for neoandrographolide. Additionally, 53 common targets were discovered for 5-hydroxy- 7-methoxy flavone. Furthermore, a screening process was carried out to identify 9 primary hubb targets for andrographolide, neoandrographolide, and 5-hydroxy-7-methoxy flavone. Twenty useful gene ontology (GO) terms and twenty important Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways were found through the study of gene ontology and pathways. Molecular-docking analysis revealed that andrographolide had the highest binding efficacy (-7.8) towards the Serine/threonine-protein kinase 2 (PIM2) target. On the other hand, neoandrographolide displayed the highest binding efficacy towards mitogen-activated protein kinase (MAPK1) and Interlukine-6 (IL-6), with docking scores of (-9.0) and (-7.2), respectively. Furthermore, 5-hydroxy-7-methoxy flavone showed the highest docking score (-6.6) with Arachidonate 12-lipoxygenase (ALOX-12). The identification of numerous targets linked with various pathways in the treatment of Rheumatoid arthritis proves to be a helpful resource for future investigation into the mechanism and clinical applications of AP, NP, and 5H-flavone.

[1]
Coutant, F.; Miossec, P. Evolving concepts of the pathogenesis of rheumatoid arthritis with focus on the early and late stages. Curr. Opin. Rheumatol., 2020, 32(1), 57-63.
[http://dx.doi.org/10.1097/BOR.0000000000000664] [PMID: 31644463]
[2]
Shen, B.; Chen, H.; Yang, D.; Yolanda, O.; Yuan, C.; Du, A.; Xu, R.; Geng, Y.; Chen, X.; Li, H.; Xu, G.Y. A structural equation model of health-related quality of life in chinese patients with rheumatoid arthritis. Front. Psychiatry, 2021, 12, 716996.
[http://dx.doi.org/10.3389/fpsyt.2021.716996] [PMID: 34421688]
[3]
Burmester, G.R.; Pope, J.E. Novel treatment strategies in rheumatoid arthritis. Lancet, 2017, 389(10086), 2338-2348.
[http://dx.doi.org/10.1016/S0140-6736(17)31491-5] [PMID: 28612748]
[4]
Wang, F.; Liu, J.; Fang, Y.; Wen, J.; He, M.; Li, X.; Han, Q. Effect of Siegesbeckiae Herba on immune-inflammation of rheumatoid arthritis: Data mining and network pharmacology. Eur. J. Integr. Med., 2023, 59, 102242.
[http://dx.doi.org/10.1016/j.eujim.2023.102242]
[5]
van der Woude, D.; van der Helm-van Mil, A.H.M. Update on the epidemiology, risk factors, and disease outcomes of rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol., 2018, 32(2), 174-187.
[http://dx.doi.org/10.1016/j.berh.2018.10.005] [PMID: 30527425]
[6]
Wang, G.; Xu, H.; Mu, R. Management of rheumatoid arthritis in People’s Republic of China focus on tocilizumab and patient considerations. Int. J. Gen. Med., 2015, 8(8), 187-194.
[http://dx.doi.org/10.2147/IJGM.S81633] [PMID: 25999757]
[7]
De Stefano, L.; D’Onofrio, B.; Manzo, A.; Montecucco, C.; Bugatti, S. The genetic, environmental, and immunopathological complexity of autoantibody-negative rheumatoid arthritis. Int. J. Mol. Sci., 2021, 22(22), 12386.
[http://dx.doi.org/10.3390/ijms222212386] [PMID: 34830268]
[8]
Pap, T.; Dankbar, B.; Wehmeyer, C.; Korb-Pap, A.; Sherwood, J. Synovial fibroblasts and articular tissue remodelling: Role and mechanisms. Semin. Cell Dev. Biol., 2020, 101, 140-145.
[http://dx.doi.org/10.1016/j.semcdb.2019.12.006] [PMID: 31956018]
[9]
Mueller, A.L.; Payandeh, Z.; Mohammadkhani, N.; Mubarak, S.M.H.; Zakeri, A.; Alagheband Bahrami, A.; Brockmueller, A.; Shakibaei, M. Recent advances in understanding the pathogenesis of rheumatoid arthritis: New treatment strategies. Cells, 2021, 10(11), 3017.
[http://dx.doi.org/10.3390/cells10113017] [PMID: 34831240]
[10]
Shen, P.; Lin, W.; Deng, X.; Ba, X.; Han, L.; Chen, Z.; Qin, K.; Huang, Y.; Tu, S. Potential implications of quercetin in autoimmune diseases. Front. Immunol., 2021, 12, 689044.
[http://dx.doi.org/10.3389/fimmu.2021.689044] [PMID: 34248976]
[11]
Fang, Y.; Liu, J.; Xin, L.; Sun, Y.; Wan, L.; Huang, D.; Wen, J.; Zhang, Y.; Wang, B. Identifying compound effect of drugs on rheumatoid arthritis treatment based on the association rule and a random walking-based model. BioMed Res. Int., 2020, 2020, 1-10.
[http://dx.doi.org/10.1155/2020/4031015] [PMID: 33204694]
[12]
Tang, M.; Xie, X.; Yi, P.; Kang, J.; Liao, J.; Li, W.; Li, F. Integrating network pharmacology with molecular docking to unravel the active compounds and potential mechanism of simiao pill treating rheumatoid arthritis. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-16.
[http://dx.doi.org/10.1155/2020/5786053] [PMID: 33204288]
[13]
Kishore, V.; Yarla, N.; Bishayee, A.; Putta, S.; Malla, R.; Neelapu, N.; Challa, S.; Das, S.; Shiralgi, Y.; Hegde, G.; Dhananjaya, B. Multi-targeting andrographolide and its natural analogs as potential therapeutic agents. Curr. Top. Med. Chem., 2017, 17(8), 845-857.
[http://dx.doi.org/10.2174/1568026616666160927150452] [PMID: 27697058]
[14]
Wang, Y.; Chen, L.; Zhao, F.; Liu, Z.; Li, J.; Qiu, F. Microbial transformation of neoandrographolide by Mucor spinosus (AS 3.2450). J. Mol. Catal., B Enzym., 2011, 68(1), 83-88.
[http://dx.doi.org/10.1016/j.molcatb.2010.09.016]
[15]
Li, Z.; Tan, J.; Wang, L.; Li, Q. Andrographolide benefits rheumatoid arthritis via inhibiting MAPK pathways. Inflammation, 2017, 40(5), 1599-1605.
[http://dx.doi.org/10.1007/s10753-017-0600-y] [PMID: 28584977]
[16]
Li, G.; Qin, Y.; Du, P. Andrographolide inhibits the migration, invasion and matrix metalloproteinase expression of rheumatoid arthritis fibroblast-like synoviocytes via inhibition of HIF-1α signaling. Life Sci., 2015, 136, 67-72.
[http://dx.doi.org/10.1016/j.lfs.2015.06.019] [PMID: 26141990]
[17]
Zhang, J.; Sun, Y.; Zhong, L.Y.; Yu, N.N.; Ouyang, L.; Fang, R.D.; Wang, Y.; He, Q.Y. Structure-based discovery of neoandrographolide as a novel inhibitor of Rab5 to suppress cancer growth. Comput. Struct. Biotechnol. J., 2020, 18, 3936-3946.
[http://dx.doi.org/10.1016/j.csbj.2020.11.033] [PMID: 33335690]
[18]
Gong, N.; Du, L.; Yang, L. Neoandrographolide. In: Natural Small Molecule Drugs from Plants; Springer, 2018, pp. 427-431.
[http://dx.doi.org/10.1007/978-981-10-8022-7_71]
[19]
Liu, J.; Wang, Z. Effect of neoandrographolide on activated mouse macrophages in vitro. Chin. J. Nat. Med., 2005, 3(5), 308-311.
[20]
Liu, J.; Tang, Q.; Wang, Z. Effect of neoandrographolide on respiratory burst of macrophage RAW 264.7 and proliferation of lymphocytes in mice. Chin J New Drugs Clin Remedies, 2005, 24(3), 206-209.
[21]
Liu, J.; Wang, Z.T.; Ji, L.L.; Ge, B.X. Inhibitory effects of neoandrographolide on nitric oxide and prostaglandin E2 production in LPS-stimulated murine macrophage. Mol. Cell. Biochem., 2007, 298(1-2), 49-57.
[http://dx.doi.org/10.1007/s11010-006-9349-6] [PMID: 17109078]
[22]
Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents, 2005, 26(5), 343-356.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002] [PMID: 16323269]
[23]
Havsteen, B. Flavonoids, a class of natural products of high pharmacological potency. Biochem. Pharmacol., 1983, 32(7), 1141-1148.
[http://dx.doi.org/10.1016/0006-2952(83)90262-9] [PMID: 6342623]
[24]
Middleton, E., Jr; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev., 2000, 52(4), 673-751.
[PMID: 11121513]
[25]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5(e47), e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[26]
Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem., 2019, 299, 125124.
[http://dx.doi.org/10.1016/j.foodchem.2019.125124] [PMID: 31288163]
[27]
Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chin. J. Nat. Med., 2013, 11(2), 110-120.
[http://dx.doi.org/10.1016/S1875-5364(13)60037-0] [PMID: 23787177]
[28]
Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol., 2008, 4(11), 682-690.
[http://dx.doi.org/10.1038/nchembio.118] [PMID: 18936753]
[29]
Luo, T.; Lu, Y.; Yan, S.; Xiao, X.; Rong, X.; Guo, J. Network pharmacology in research of Chinese medicine formula: Methodology, application and prospective. Chin. J. Integr. Med., 2020, 26(1), 72-80.
[http://dx.doi.org/10.1007/s11655-019-3064-0] [PMID: 30941682]
[30]
Guo, Q.; Zheng, K.; Fan, D.; Zhao, Y.; Li, L.; Bian, Y.; Qiu, X.; Liu, X.; Zhang, G.; Ma, C.; He, X.; Lu, A. Wu-Tou decoction in rheumatoid arthritis: integrating network pharmacology and in vivo pharmacological evaluation. Front. Pharmacol., 2017, 8, 230.
[http://dx.doi.org/10.3389/fphar.2017.00230] [PMID: 28515692]
[31]
Lee, A.Y.; Park, W.; Kang, T.W.; Cha, M.H.; Chun, J.M. Network pharmacology-based prediction of active compounds and molecular targets in Yijin-Tang acting on hyperlipidaemia and atherosclerosis. J. Ethnopharmacol., 2018, 221, 151-159.
[http://dx.doi.org/10.1016/j.jep.2018.04.027] [PMID: 29698773]
[32]
Xie, G.; Peng, W.; Li, P.; Xia, Z.; Zhong, Y.; He, F.; Tulake, Y.; Feng, D.; Wang, Y.; Xing, Z. A network pharmacology analysis to explore the effect of Astragali radix-radix Angelica sinensis on traumatic brain injury. BioMed Res. Int., 2018, 2018, 1-13.
[http://dx.doi.org/10.1155/2018/3951783] [PMID: 30596090]
[33]
Li, P.; Chen, J.; Zhang, W.; Li, H.; Wang, W.; Chen, J. Network pharmacology based investigation of the effects of herbal ingredients on the immune dysfunction in heart disease. Pharmacol. Res., 2019, 141, 104-113.
[http://dx.doi.org/10.1016/j.phrs.2018.12.016] [PMID: 30579974]
[34]
Zohoorian-Abootorabi, T.; Sanee, H.; Iranfar, H.; Saberi, M.R.; Chamani, J. Separate and simultaneous binding effects through a non-cooperative behavior between cyclophosphamide hydrochloride and fluoxymesterone upon interaction with human serum albumin: Multi-spectroscopic and molecular modeling approaches. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 88, 177-191.
[http://dx.doi.org/10.1016/j.saa.2011.12.026] [PMID: 22217702]
[35]
Girme, A.; Parmar, V.; Jagtap, S.; Saste, G.; Modi, S.J.; Hingorani, L. Development and validation of UHPLC-ESI-MS/MS bioanalytical method, ADMET profiling, and pharmacokinetic study of bioactive phytoconstituents from Ayurvedic botanical Guduchi (Tinospora cordifolia). J. Pharmac. Biomed. Analy. Open, 2023, 2(100018), 100018.
[http://dx.doi.org/10.1016/j.jpbao.2023.100018]
[36]
Ugwor, E.I.; James, A.S.; Amuzat, A.I.; Ezenandu, E.O.; Ugbaja, V.C.; Ugbaja, R.N. Network pharmacology-based elucidation of bioactive compounds in propolis and putative underlying mechanisms against type-2 diabetes mellitus. Pharmac. Res. Mod. Chin. Med., 2022, 5(100183), 100183.
[http://dx.doi.org/10.1016/j.prmcm.2022.100183]
[37]
Hu, Q.; Feng, M.; Lai, L.; Pei, J. Prediction of drug-likeness using deep autoencoder neural networks. Front. Genet., 2018, 9, 585.
[http://dx.doi.org/10.3389/fgene.2018.00585] [PMID: 30538725]
[38]
Arnott, J.A.; Planey, S.L. The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov., 2012, 7(10), 863-875.
[http://dx.doi.org/10.1517/17460441.2012.714363] [PMID: 22992175]
[39]
Waring, M.J. Lipophilicity in drug discovery. Expert Opin. Drug Discov., 2010, 5(3), 235-248.
[http://dx.doi.org/10.1517/17460441003605098] [PMID: 22823020]
[40]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3-25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[41]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[42]
Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm., 2012, 2012, 1-10.
[http://dx.doi.org/10.5402/2012/195727] [PMID: 22830056]
[43]
Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem., 2010, 53(7), 2719-2740.
[http://dx.doi.org/10.1021/jm901137j] [PMID: 20131845]
[44]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[45]
Xie, L.; Bourne, P.E. Functional coverage of the human genome by existing structures, structural genomics targets, and homology models. PLOS Comput. Biol., 2005, 1(3), e31.
[http://dx.doi.org/10.1371/journal.pcbi.0010031] [PMID: 16118666]
[46]
Uhlen, M.; Oksvold, P.; Fagerberg, L.; Lundberg, E.; Jonasson, K.; Forsberg, M.; Zwahlen, M.; Kampf, C.; Wester, K.; Hober, S.; Wernerus, H.; Björling, L.; Ponten, F. Towards a knowledge-based human protein atlas. Nat. Biotechnol., 2010, 28(12), 1248-1250.
[http://dx.doi.org/10.1038/nbt1210-1248] [PMID: 21139605]
[47]
Apweiler, R.; Bairoch, A.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M.; Martin, M.J.; Natale, D.A.; O’Donovan, C.; Redaschi, N.; Yeh, L.S. UniProt: The universal protein knowledgebase. Nucleic Acids Res., 2004, 32(90001), 115D-119.
[http://dx.doi.org/10.1093/nar/gkh131] [PMID: 14681372]
[48]
Xiong, L.L.; Tan, Y.; Ma, H.Y.; Dai, P.; Qin, Y.X.; Yang, R.; Xu, Y.Y.; Deng, Z.; Zhao, W.; Xia, Q.J.; Wang, T.H.; Zhang, Y.H. Administration of SB239063, a potent p38 MAPK inhibitor, alleviates acute lung injury induced by intestinal ischemia reperfusion in rats associated with AQP4 downregulation. Int. Immunopharmacol., 2016, 38, 54-60.
[http://dx.doi.org/10.1016/j.intimp.2016.03.036] [PMID: 27236300]
[49]
Ma, L.; Zhao, Y.; Wang, R.; Chen, T.; Li, W.; Nan, Y.; Liu, X.; Jin, F. 3, 5, 4′-Tri-O-acetylresveratrol attenuates lipopolysaccharide-induced acute respiratory distress syndrome via MAPK/SIRT1 pathway. Mediators Inflamm., 2015, 2015, 1-12.
[http://dx.doi.org/10.1155/2015/143074] [PMID: 26648661]
[50]
Bode, J.G.; Ehlting, C.; Häussinger, D. The macrophage response towards LPS and its control through the p38MAPK-STAT3 axis. Cell. Signal., 2012, 24(6), 1185-1194.
[http://dx.doi.org/10.1016/j.cellsig.2012.01.018] [PMID: 22330073]
[51]
Liu, W.; Jiang, H.; Cai, L.; Yan, M.; Dong, S.; Mao, B. Tanreqing injection attenuates lipopolysaccharide-induced airway inflammation through MAPK/NF-κB signaling pathways in rats model. Evid. Based Complement. Alternat. Med., 2016, 2016, 1-15.
[http://dx.doi.org/10.1155/2016/5292346] [PMID: 27366191]
[52]
Chen, C.C.; Lin, M.W.; Liang, C.J.; Wang, S.H. The anti-inflammatory effects and mechanisms of eupafolin in lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages. PLoS One, 2016, 11(7), e0158662.
[http://dx.doi.org/10.1371/journal.pone.0158662] [PMID: 27414646]
[53]
Miossec, P.; Kolls, J.K. Targeting IL-17 and TH17 cells in chronic inflammation. Nat. Rev. Drug Discov., 2012, 11(10), 763-776.
[http://dx.doi.org/10.1038/nrd3794] [PMID: 23023676]
[54]
Niu, M.; Zhao, F.; Chen, R.; Li, P.; Bi, L. The transient receptor potential channels in rheumatoid arthritis: Need to pay more attention. Front. Immunol., 2023, 14(14), 1127277.
[http://dx.doi.org/10.3389/fimmu.2023.1127277] [PMID: 36926330]
[55]
Li, X.; Xu, T.; Wang, Y.; Huang, C.; Li, J. Toll-like receptor-4 signaling: A new potential therapeutic pathway for rheumatoid arthritis. Rheumatol. Int., 2014, 34(11), 1613-1614.
[http://dx.doi.org/10.1007/s00296-013-2890-1] [PMID: 24553677]
[56]
Noack, M.; Miossec, P. Selected cytokine pathways in rheumatoid arthritis. Semin. Immunopathol., 2017, 39(4), 365-383.
[http://dx.doi.org/10.1007/s00281-017-0619-z] [PMID: 28213794]
[57]
Zelová, H.; Hošek, J. TNF-α signalling and inflammation: Interactions between old acquaintances. Inflamm. Res., 2013, 62(7), 641-651.
[http://dx.doi.org/10.1007/s00011-013-0633-0] [PMID: 23685857]
[58]
McConkey, B.J.; Sobolev, V.; Edelman, M. The performance of current methods in ligand-protein docking. Curr. Sci., 2002, 5, 845-856. Available from: https://www.jstor.org/stable/24107087
[59]
Ononamadu, C.; Ibrahim, A. Molecular docking and prediction of ADME/drug-likeness properties of potentially active antidiabetic compounds isolated from aqueous-methanol extracts of Gymnema sylvestre and Combretum micranthum. BioTechnologia , 2021, 102(1), 85-99.
[http://dx.doi.org/10.5114/bta.2021.103765] [PMID: 36605715]
[60]
Arora, M.K.; Grover, P.; Asdaq, S.M.B.; Mehta, L.; Tomar, R.; Imran, M.; Pathak, A.; Jangra, A.; Sahoo, J.; Alamri, A.S.; Alsanie, W.F.; Alhomrani, M. Potential role of nicotinamide analogues against SARS-COV-2 target proteins. Saudi J. Biol. Sci., 2021, 28(12), 7567-7574.
[http://dx.doi.org/10.1016/j.sjbs.2021.09.072] [PMID: 34608370]
[61]
Rolta, R.; Salaria, D.; Sharma, P.; Sharma, B.; Kumar, V.; Rathi, B.; Verma, M.; Sourirajan, A.; Baumler, D.J.; Dev, K. Phytocompounds of Rheum emodi, Thymus serpyllum, and Artemisia annua inhibit spike protein of SARS-CoV-2 binding to ACE2 receptor: In silico approach. Curr. Pharmacol. Rep., 2021, 7(4), 135-149.
[http://dx.doi.org/10.1007/s40495-021-00259-4] [PMID: 34306988]
[62]
Jin, D.; Zhang, J.; Zhang, Y.; An, X.; Zhao, S.; Duan, L.; Zhang, Y.; Zhen, Z.; Lian, F.; Tong, X. Network pharmacology-based and molecular docking prediction of the active ingredients and mechanism of ZaoRenDiHuang capsules for application in insomnia treatment. Comput. Biol. Med., 2021, 135(104562), 104562.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104562] [PMID: 34174759]
[63]
Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. jvenn: An interactive Venn diagram viewer. BMC Bioinformat., 2014, 15(1), 1-7. Available from: https://bioinfogp.cnb.csic.es/tools/venny/index.html
[64]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[65]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[66]
Aher, R.B.; Roy, K. Computational approaches as rational decision support systems for discovering next-generation antitubercular agents: Mini-review. Curr. Computeraided Drug Des., 2019, 15(5), 369-383.
[http://dx.doi.org/10.2174/1573409915666190130153214] [PMID: 30706823]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy