Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Review Article

Recent Trends in the Detection of Alkaloids through Analytical, Bioanalytical, and Electrochemical Techniques

Author(s): Bharat Sharma, Rohit Bhatia, Subrahmanya S Ganti and Naresh K. Rangra*

Volume 20, Issue 4, 2024

Published on: 03 May, 2024

Page: [241 - 263] Pages: 23

DOI: 10.2174/0115734129307329240430071035

Price: $65

Abstract

Alkaloids provide significant health benefits in moderation, but excessive levels can pose health hazards. They play an important role in the creation of numerous pharmacological medications, acting as potent antispasmodics, analgesics, and even anti-cancer medicines. A detailed review of sensitive and accurate alkaloid analytical techniques can be used as a guide for future analyses of alkaloids in pertinent research. The main aim of this manuscript is to review the literature on the detection and separation of alkaloids by using various methods like analytical, bioanalytical, and electrochemical techniques, published during 2018-2023. An in-depth review of the literature was carried out using a variety of databases, including Web of Knowledge, PubMed, and Google Scholar. Consulting relevant published materials, including books, was another aspect of this research. The keywords used in the search were alkaloids, analytical techniques, bio-analytical techniques, electrochemical techniques, and biosensors. These were carefully examined in more detail, and significant data and findings were collected and presented using tables. The publication highlights the significance of advanced chromatographic techniques in the separation and isolation of alkaloids. It discusses several analytical, bio-analytical, and electrochemical analytical techniques, which include sensors and biosensors, and adds to the extensive review of alkaloid detection techniques. Recent advancements and methodologies for improving the knowledge of the detection and separation of alkaloids are presented in this article, which is beneficial for the researcher involved in developing analytical methods for alkaloid detection. Current efforts and advanced analytical approaches for alkaloid detection are given in this manuscript, which is crucial in favor of improving the health and wellness of society.

Graphical Abstract

[1]
Dey, P.; Kundu, A.; Kumar, A.; Gupta, M.; Lee, B.M.; Bhakta, T.; Dash, S.; Kim, H.S. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). In: Recent advances in natural products analysis ; Elsevier, 2020; 1, pp. 505-567.
[2]
Bhambhani, S.; Kondhare, K.R.; Giri, A.P. Diversity in chemical structures and biological properties of plant alkaloids. Molecules, 2021, 26(11), 3374.
[http://dx.doi.org/10.3390/molecules26113374] [PMID: 34204857]
[3]
Alamgir, A.N.; Alamgir, A.N. Secondary metabolites: Secondary metabolic products consisting of C and H; C, H, and O; N, S, and P elements; and O/N heterocycles. Therapeutic Use of Medicinal Plants and their Extracts. In: Phytochemistry and Bioactive Compounds (Therapeutic Use of Medicinal Plants and their Extracts); , 2018; 2, pp. 165-309.
[4]
Pereira, AG. Plant alkaloids: Production, extraction, and potential therapeutic properties. In: Natural Secondary Metabolites: From Nature, Through Science, to Industry; Springer: Cham, 2023; pp. 157-200.
[5]
Wijesekera, K.; Subasinghe, S. 5 Alkaloids. Chemistry of Natural Products: Phytochemistry and Pharmacognosy of Medicinal Plants., 2022, 19, 95-114.
[http://dx.doi.org/10.1515/9783110595949-005]
[6]
Siegel, R.K. Intoxication: The universal drive for mind-altering substances; Inner Traditions/Bear & Co, 2005.
[7]
Llauradó Maury, G; Méndez Rodríguez, D; Hendrix, S; Escalona Arranz, JC; Fung Boix, Y; Pacheco, AO; García Díaz, J; Morris-Quevedo, HJ; Ferrer Dubois, A; Aleman, EI; Beenaerts, N Antioxidants in plants: A valorization potential emphasizing the need for the conservation of plant biodiversity in Cuba. Antioxidants, 2020, 9(11), 1048.
[http://dx.doi.org/10.3390/antiox9111048]
[8]
Li, C.; Wang, J.; Ma, R.; Li, L.; Wu, W.; Cai, D.; Lu, Q. Natural-derived alkaloids exhibit great potential in the treatment of ulcerative colitis. Pharmacol. Res., 2022, 175(175), 105972.
[http://dx.doi.org/10.1016/j.phrs.2021.105972] [PMID: 34758401]
[9]
Takla, S.S.; Shawky, E.; Hammoda, H.M.; Darwish, F.A. Green techniques in comparison to conventional ones in the extraction of Amaryllidaceae alkaloids: Best solvents selection and parameters optimization. J. Chromatogr. A, 2018, 1567(1567), 99-110.
[http://dx.doi.org/10.1016/j.chroma.2018.07.009] [PMID: 30033169]
[10]
Zhang, A.; Sun, H.; Wang, P.; Han, Y.; Wang, X. Modern analytical techniques in metabolomics analysis. Analyst, 2012, 137(2), 293-300.
[http://dx.doi.org/10.1039/C1AN15605E] [PMID: 22102985]
[11]
Dzuman, Z.; Jonatova, P.; Stranska-Zachariasova, M.; Prusova, N.; Brabenec, O.; Novakova, A.; Fenclova, M.; Hajslova, J. Development of a new LC-MS method for accurate and sensitive determination of 33 pyrrolizidine and 21 tropane alkaloids in plant-based food matrices. Anal. Bioanal. Chem., 2020, 412(26), 7155-7167.
[http://dx.doi.org/10.1007/s00216-020-02848-6] [PMID: 32803302]
[12]
Iguiniz, M.; Heinisch, S. Two-dimensional liquid chromatography in pharmaceutical analysis. Instrumental aspects, trends and applications. J. Pharm. Biomed. Anal., 2017, 145(145), 482-503.
[http://dx.doi.org/10.1016/j.jpba.2017.07.009] [PMID: 28746908]
[13]
Beccaria, M.; Cabooter, D. Current developments in LC-MS for pharmaceutical analysis. Analyst, 2020, 145(4), 1129-1157.
[http://dx.doi.org/10.1039/C9AN02145K] [PMID: 31971527]
[14]
Liu, Y.P.; Liu, Q.L.; Zhang, X.L.; Niu, H.Y.; Guan, C.Y.; Sun, F.K.; Xu, W.; Fu, Y.H. Bioactive monoterpene indole alkaloids from Nauclea officinalis. Bioorg. Chem., 2019, 83(83), 1-5.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.013] [PMID: 30339860]
[15]
Li, D.W.; Zhang, M.; Feng, L.; Huang, S.S.; Zhang, B.J.; Liu, S.S.; Deng, S.; Wang, C.; Ma, X.C.; Leng, A.J. Alkaloids from the nearly ripe fruits of Evodia rutaecarpa and their bioactivities. Fitoterapia, 2020, 146(146), 104668.
[http://dx.doi.org/10.1016/j.fitote.2020.104668] [PMID: 32540378]
[16]
Qin, L; Yi, W; Lian, XY; Zhang, Z Bioactive alkaloids from the actinomycete Actinoalloteichus sp. ZZ1866. J. Nat. Prod., 2020, 83(9), 2686-2695.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00588]
[17]
Zhao, DY; Liu, Y; Yin, X; Li, XM; Pan, J; Guan, W; Yang, BY; Kuang, HX Two new alkaloids from the sepals of Solanum melongena L. Nat. Prod. Res., 2021, 35(21), 3569-3577.
[http://dx.doi.org/10.1080/14786419.2020.1713126]
[18]
Hamed, AN; Schmitz, R; Bergermann, A; Totzke, F; Kubbutat, M; Müller, WE; Youssef, DT; Bishr, MM; Kamel, MS; Edrada-Ebel, R; Wätjen, W Bioactive pyrrole alkaloids isolated from the Red Sea: Marine sponge Stylissa carteri. Zeitschrift für Naturforschung C. , 2018, 73(5-6), 199-210.
[http://dx.doi.org/10.1515/znc-2017-0161]
[19]
Ma, Y.L.; Liu, Y.P.; Zhang, C.; Zhao, W.H.; Shi, S.; He, D.N.; Zhang, P.; Liu, X.H.; Han, T.T.; Fu, Y.H. Carbazole alkaloids from Clausena hainanensis with their potential antiproliferative activities. Bioorg. Chem., 2018, 76(76), 359-364.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.016] [PMID: 29232633]
[20]
Park, S.I.; Lee, Y.J.; Won, H.; Oh, K.B.; Lee, H.S. Indole alkaloids from tropical sponge Hyrtios sp. as isocitrate lyase inhibitors. Nat. Prod. Commun., 2018, 13(6), 1934578X1801300.
[http://dx.doi.org/10.1177/1934578X1801300608]
[21]
Tian, M.Y.; Bao, J.; Li, X.; Zhang, Q.R.; Li, S.S.; Gan, M.L.; Wang, S.J. Antimicrobial alkaloids from the root bark of Dictamnus dasycarpus. J. Asian Nat. Prod. Res., 2022, 24(5), 483-489.
[http://dx.doi.org/10.1080/10286020.2021.1939311] [PMID: 34190010]
[22]
Takayama, H.; Kitajima, M.; Nakano, S.; Kogure, N.; Subhadhirasakul, S. New indole alkaloids from Ervatamia cumingiana. Heterocycles, 2019, 99(1), 213-221.
[http://dx.doi.org/10.3987/COM-18-S(F)11]
[23]
Wang, L.; Marner, M.; Mettal, U.; Liu, Y.; Schäberle, T.F. Seven new alkaloids isolated from marine flavobacterium Tenacibaculum discolor sv11. Mar. Drugs, 2022, 20(10), 620.
[http://dx.doi.org/10.3390/md20100620] [PMID: 36286444]
[24]
Eugelio, F.; Palmieri, S.; Fanti, F.; Messuri, L.; Pepe, A.; Compagnone, D.; Sergi, M. Development of an HPLC-MS/MS method for the determination of alkaloids in lupins. Molecules, 2023, 28(4), 1531.
[http://dx.doi.org/10.3390/molecules28041531] [PMID: 36838519]
[25]
Wang, S.; Tian, L.; Wang, Y.; He, J.; Kang, Y.; Shangguan, Y.; Qian, W.; Yang, P.; Huang, J. Identification of alkaloidal compounds from leaves and roots of Stephania succifera by HPLC-QTOF-MS and prediction of potential bioactivity with PharmMapper. Phytochem. Anal., 2022, 33(2), 239-248.
[http://dx.doi.org/10.1002/pca.3083] [PMID: 34390060]
[26]
Chen, Y.; Li, L.; Xiong, F.; Xie, Y.; Xiong, A.; Wang, Z.; Yang, L. Rapid identification and determination of pyrrolizidine alkaloids in herbal and food samples via direct analysis in real-time mass spectrometry. Food Chem., 2021, 334, 127472.
[http://dx.doi.org/10.1016/j.foodchem.2020.127472] [PMID: 32721831]
[27]
Peng, D.; Tang, D.; Zhong, C.; Wang, K.; Huang, H.; He, Z.; Lv, C.; Chen, J.; Li, P.; Du, B. Interactions between Fuzi (Aconiti Lateralis Radix Preparata) total alkaloids and Fuzi starch: Structural, physicochemical, and rheological properties. Lebensm. Wiss. Technol., 2023, 182, 114879.
[http://dx.doi.org/10.1016/j.lwt.2023.114879]
[28]
Manwill, PK; Flores-Bocanegra, L; Khin, M; Raja, HA; Cech, NB; Oberlies, NH; Todd, DA Kratom (Mitragyna speciosa) validation: Quantitative analysis of indole and oxindole alkaloids reveals chemotypes of plants and products. Planta Medica, 2022, 88(09/10), 838-857.
[http://dx.doi.org/10.1055/a-1795-5876]
[29]
Van Schalkwyk, F.J.; Stander, M.A.; Nsizwane, M.; Mathee, A.; Van Wyk, B.E. Fatal pyrrolizidine alkaloid poisoning of infants caused by adulterated Senecio coronatus. Forensic Sci. Int., 2021, 320, 110680.
[http://dx.doi.org/10.1016/j.forsciint.2020.110680] [PMID: 33461004]
[30]
Reinhard, H.; Zoller, O. Pyrrolizidine alkaloids in tea, herbal tea and iced tea beverages– survey and transfer rates. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2021, 38(11), 1914-1933.
[http://dx.doi.org/10.1080/19440049.2021.1941302] [PMID: 34237234]
[31]
Rollo, E.; Catellani, D.; Dall’Asta, C.; Suman, M. QuEChERS method combined to liquid chromatography high-resolution mass spectrometry for the accurate and sensitive simultaneous determination of pyrrolizidine and tropane alkaloids in cereals and spices. J. Mass Spectrom., 2023, 58(10), e4969.
[http://dx.doi.org/10.1002/jms.4969] [PMID: 37604670]
[32]
Păltinean, R.; Ielciu, I.; Hanganu, D.; Niculae, M.; Pall, E.; Angenot, L.; Tits, M.; Mocan, A.; Babotă, M.; Frumuzachi, O.; Tămaş, M.; Crişan, G.; Frederich, M. Biological activities of some isoquinoline alkaloids from Fumaria schleicheri Soy. Will. Plants, 2022, 11(9), 1202.
[http://dx.doi.org/10.3390/plants11091202] [PMID: 35567203]
[33]
González-Gómez, L.; Morante-Zarcero, S.; Pereira, J.A.M.; Câmara, J.S.; Sierra, I. Improved analytical approach for determination of tropane alkaloids in leafy vegetables based on µ-QuEChERS combined with HPLC-MS/MS. Toxins, 2022, 14(10), 650.
[http://dx.doi.org/10.3390/toxins14100650] [PMID: 36287919]
[34]
Wang, Y.; Li, Y.; Cang, S.; Cai, Q.; Xu, H.; Wang, Y.; Liu, R.; Xu, H.; Li, Q. Qualitative and quantitative analysis of pyrrolizidine alkaloids for the entire process quality control from Senecio scandens to Senecio scandens -containing preparations by high performance liquid chromatography-tandem mass spectrometry. J. Mass Spectrom., 2020, 55(10), e4532.
[http://dx.doi.org/10.1002/jms.4532] [PMID: 32662582]
[35]
Khedr, T.; Juhász, A.; Singh, K.B.; Foley, R.; Nye-Wood, M.G.; Colgrave, M.L. Development and validation of a rapid and sensitive LC-MS/MS approach for alkaloid testing in different Lupinus species. J. Food Compos. Anal., 2023, 121, 105391.
[http://dx.doi.org/10.1016/j.jfca.2023.105391]
[36]
Mateus, A.R.S.; Crisafulli, C.; Vilhena, M.; Barros, S.C.; Pena, A.; Sanches Silva, A. The bright and dark sides of herbal infusions: Assessment of antioxidant capacity and determination of tropane alkaloids. Toxins, 2023, 15(4), 245.
[http://dx.doi.org/10.3390/toxins15040245] [PMID: 37104183]
[37]
Bayazeid, O.; Eylem, C.C.; Reçber, T.; Yalçın, F.N.; Kır, S.; Nemutlu, E. An LC-ESI-MS/MS method for the simultaneous determination of pronuciferine and roemerine in some Papaver species. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1096, 223-227.
[http://dx.doi.org/10.1016/j.jchromb.2018.08.020] [PMID: 30189375]
[38]
Herraiz, T.; Peña, A.; Salgado, A. Identification, formation, and occurrence of perlolyrine: A β-carboline alkaloid with a furan moiety in foods. J. Agric. Food Chem., 2023, 71(36), 13451-13461.
[http://dx.doi.org/10.1021/acs.jafc.3c03612] [PMID: 37651628]
[39]
Ramdani, D.; Chaudhry, A.S.; Seal, C.J. Alkaloid and polyphenol analysis by HPLC in green and black tea powders and their potential use as additives in ruminant diets. AIP Conf. Proc., 2018, 1927, 030008.
[http://dx.doi.org/10.1063/1.5021201]
[40]
Li, X.; Liu, F.; Wang, H.; He, F.; Yang, R.; Zhao, M. Gas chromatography-mass spectrometry method for simultaneous detection of nine alkaloids in tobacco and tobacco products by quechers sample preparation. Anal. Sci., 2019, 35(8), 849-854.
[http://dx.doi.org/10.2116/analsci.19P063] [PMID: 30930354]
[41]
Belyagoubi-Benhammou, N.; Belyagoubi, L.; Gismondi, A.; Di Marco, G.; Canini, A.; Atik Bekkara, F. GC/MS analysis, and antioxidant and antimicrobial activities of alkaloids extracted by polar and apolar solvents from the stems of Anabasis articulata. Med. Chem. Res., 2019, 28(5), 754-767.
[http://dx.doi.org/10.1007/s00044-019-02332-6]
[42]
Zwerger, M.; Zelger, J.; Ganzera, M. Separation of pyrrolizidine alkaloids in different Senecio species using ultra-high performance supercritical fluid chromatography. J. Pharm. Biomed. Anal., 2023, 228, 115310.
[http://dx.doi.org/10.1016/j.jpba.2023.115310] [PMID: 36863105]
[43]
Izcara, S.; Casado, N.; Morante-Zarcero, S.; Sierra, I. A miniaturized QuEChERS method combined with ultrahigh liquid chromatography coupled to tandem mass spectrometry for the analysis of pyrrolizidine alkaloids in oregano samples. Foods, 2020, 9(9), 1319.
[http://dx.doi.org/10.3390/foods9091319] [PMID: 32962136]
[44]
Eller, S.; Borges, G.R.; Ossanes, D.S.; Birk, L.; Scheid, C.; Yonamine, M.; Grossi, P.; Merib, J.O.; Oliveira, T.F. A rapid analytical strategy for the determination of ayahuasca alkaloids in non-ritualistic approaches by UHPLC-MS/MS. Forensic Sci. Int., 2020, 312, 110298.
[http://dx.doi.org/10.1016/j.forsciint.2020.110298] [PMID: 32387868]
[45]
Karunakaran, T.; Goh, Y.S.; Santhanam, R.; Murugaiyah, V.; Abu Bakar, M.H.; Ramanathan, S. RP-HPLC-DAD analysis of mitragynine content in mitragyna speciosa Korth. (Ketum) leaf extracts prepared using ultrasound assisted extraction technique and their cytotoxicity. Separations, 2022, 9(11), 345.
[http://dx.doi.org/10.3390/separations9110345]
[46]
Tajabadi, F.; Khalighi-Sigaroodi, F.; Ghorbani Nahooji, M.; Ghiaci-Yekta, M.; Ghasemi, S.V. Selective and simple determination of isoquinoline alkaloids in Papaver species by ion mobility spectrometry. Iran. J. Pharm. Res., 2022, 21(1), e127037.
[http://dx.doi.org/10.5812/ijpr-127037] [PMID: 36060910]
[47]
Jiang, X.; Tian, J.X.; Wang, M.; Tian, Y.; Zhang, Z.J. Analysis of dihydroindole-type alkaloids in Strychnos nux-vomica unprocessed and processed seeds by high-performance liquid chromatography coupled with diode array detection and mass spectrometry. J. Sep. Sci., 2019, 42(22), 3395-3402.
[http://dx.doi.org/10.1002/jssc.201900660] [PMID: 31508887]
[48]
Chen, R.; Ning, Z.; Zheng, C.; Yang, Y.; Zhang, C.; Ou, X.; Chen, K.; Yu, H.; Wei, X.; Zhao, Q.; He, J. Simultaneous determination of 16 alkaloids in blood by ultrahigh-performance liquid chromatography-tandem mass spectrometry coupled with supported liquid extraction. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1128, 121789.
[http://dx.doi.org/10.1016/j.jchromb.2019.121789] [PMID: 31525720]
[49]
Kamble, S.H.; Berthold, E.C.; King, T.I.; Raju Kanumuri, S.R.; Popa, R.; Herting, J.R.; León, F.; Sharma, A.; McMahon, L.R.; Avery, B.A.; McCurdy, C.R. Pharmacokinetics of eleven kratom alkaloids following an oral dose of either traditional or commercial kratom products in rats. J. Nat. Prod., 2021, 84(4), 1104-1112.
[http://dx.doi.org/10.1021/acs.jnatprod.0c01163] [PMID: 33620222]
[50]
Li, M.; Wang, H.; Huan, X.; Cao, N.; Guan, H.; Zhang, H.; Cheng, X.; Wang, C. Simultaneous LC-MS/MS bioanalysis of alkaloids, terpenoids, and flavonoids in rat plasma through salting-out-assisted liquid-liquid extraction after oral administration of extract from Tetradium ruticarpum and Glycyrrhiza uralensis: A sample preparation strategy to broaden analyte coverage of herbal medicines. Anal. Bioanal. Chem., 2021, 413(23), 5871-5884.
[http://dx.doi.org/10.1007/s00216-021-03568-1] [PMID: 34331552]
[51]
Pasupuleti, R.R.; Lee, C.H.; Osborne, P.G.; Wu, M.T.; Ponnusamy, V.K. Rapid green analytical methodology for simultaneous biomonitoring of five toxic areca nut alkaloids using UHPLC-MS/MS for predicting health hazardous risks. J. Hazard. Mater., 2022, 422, 126923.
[http://dx.doi.org/10.1016/j.jhazmat.2021.126923] [PMID: 34449334]
[52]
Chen, L.; Ma, J.; Wang, X.; Zhang, M. Simultaneous determination of six Uncaria alkaloids in mouse blood by UPLC–MS/MS and its application in pharmacokinetics and bioavailability. BioMed Res. Int., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/1030269] [PMID: 32879877]
[53]
Tsagkaris, A.S.; Hrbek, V.; Dzuman, Z.; Hajslova, J. Critical comparison of direct analysis in real time orbitrap mass spectrometry (DART-Orbitrap MS) towards liquid chromatography mass spectrometry (LC-MS) for mycotoxin detection in cereal matrices. Food Control, 2022, 132, 108548.
[http://dx.doi.org/10.1016/j.foodcont.2021.108548]
[54]
Berthold, E.C.; Kamble, S.H.; Raju, K.S.; King, T.I.; Popa, R.; Sharma, A.; León, F.; Avery, B.A.; McMahon, L.R.; McCurdy, C.R. Preclinical pharmacokinetic study of speciociliatine, a kratom alkaloid, in rats using an UPLC-MS/MS method. J. Pharm. Biomed. Anal., 2021, 194, 113778.
[http://dx.doi.org/10.1016/j.jpba.2020.113778] [PMID: 33277117]
[55]
Wei, J.; Yu, Y.; Li, Y.; Guo, X.; Li, Y. Rapid simultaneous determination of five major alkaloids from menispermi rhizoma in rat urine by ultrahigh-pressure liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) and its application to a urinary excretion study. LC GC N. Am., 2021, 39(3), 136-143.
[56]
Rudolph, W.; Remane, D.; Wissenbach, D.K.; Peters, F.T. Development and validation of an ultrahigh performance liquid chromatography-high resolution tandem mass spectrometry assay for nine toxic alkaloids from endophyte-infected pasture grasses in horse serum. J. Chromatogr. A, 2018, 1560, 35-44.
[http://dx.doi.org/10.1016/j.chroma.2018.05.013] [PMID: 29779692]
[57]
Rudolph, W.; Remane, D.; Wissenbach, D.K.; Peters, F.T. Liquid chromatography-mass spectrometry-based determination of ergocristine, ergocryptine, ergotamine, ergovaline, hypoglycin A, lolitrem B, methylene cyclopropyl acetic acid carnitine, N-acetylloline, N-formylloline, paxilline, and peramine in equine hair. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1117, 127-135.
[http://dx.doi.org/10.1016/j.jchromb.2019.04.016] [PMID: 31009898]
[58]
Shen, X.; Ma, J.; Wang, X.; Wen, C.; Zhang, M. Toxicokinetics of 11 Gelsemium alkaloids in rats by UPLC-MS/MS. BioMed Res. Int., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/8247270] [PMID: 32733957]
[59]
Ren, Y.; Wang, Z.; Wu, C.; Dong, H.; Gan, C.; Fan, L.; Wang, W.; Yang, C. Ultrahigh-performance liquid chromatography with tandem mass spectrometry for the determination of 10 alkaloids in beagle plasma after the oral administration of the three Coptidis rhizoma extracts. J. Ethnopharmacol., 2019, 239, 111896.
[http://dx.doi.org/10.1016/j.jep.2019.111896] [PMID: 31028858]
[60]
Reis, I.M.A.; Cassiano, D.S.A.; Conceição, R.S.; Freitas, H.F.; Pita, S.S.R.; David, J.M.; Branco, A. Acetylcholinesterase inhibitory activity of Ocotea pomaderroides extracts: HPLC-MS/MS characterization and molecular modeling studies. Nat. Prod. Res., 2022, 36(4), 999-1003.
[http://dx.doi.org/10.1080/14786419.2020.1839453] [PMID: 33146027]
[61]
Wang, Z.; Zheng, P.; Wang, J.; He, S.; Ren, Z.; Zhang, Y.; Xiong, J.; Jiang, H. Indirect competitive enzyme-linked immunosorbent assay based on a broad-spectrum monoclonal antibody for tropane alkaloids detection in pig urine, pork and cereal flours. Food Chem., 2021, 337, 127617.
[http://dx.doi.org/10.1016/j.foodchem.2020.127617] [PMID: 32799156]
[62]
Du, W.; Jin, L.; Li, L.; Wang, W.; Zeng, S.; Jiang, H.; Zhou, H. Development and validation of a HPLC-ESI-MS/MS method for simultaneous quantification of fourteen alkaloids in mouse plasma after oral administration of the extract of corydalis yanhusuo tuber: Application to pharmacokinetic study. Molecules, 2018, 23(4), 714.
[http://dx.doi.org/10.3390/molecules23040714] [PMID: 29561801]
[63]
Wang, N.; Xie, Y.W.; Li, M.Y.; Li, F.F.; Zhang, L.Y.; You, Y.L.; Wang, S.Q. Simultaneous determination of five alkaloids from Rauvolfia vomitoria in rat plasma by LC-MS/MS: Application to a comparative pharmacokinetic study in normal and type 2 diabetic rats. J. Sep. Sci., 2021, 44(7), 1391-1403.
[http://dx.doi.org/10.1002/jssc.202000914] [PMID: 33470534]
[64]
Taldaev, A.; Terekhov, R.P.; Melnik, E.V.; Belova, M.V.; Kozin, S.V.; Nedorubov, A.A.; Pomerantseva, T.Y.; Ramenskaya, G.V. Insights into the cardiotoxic effects of Veratrum Lobelianum alkaloids: Pilot study. Toxins, 2022, 14(7), 490.
[http://dx.doi.org/10.3390/toxins14070490] [PMID: 35878228]
[65]
Klein, L.M.; Gabler, A.M.; Rychlik, M.; Gottschalk, C.; Kaltner, F. A sensitive LC–MS/MS method for isomer separation and quantitative determination of 51 pyrrolizidine alkaloids and two tropane alkaloids in cow’s milk. Anal. Bioanal. Chem., 2022, 414(28), 8107-8124.
[http://dx.doi.org/10.1007/s00216-022-04344-5] [PMID: 36183043]
[66]
Melnik, E.V.; Belova, M.V.; Potskhveriya, M.M.; Simonova, A.Y.; Tyurin, I.A.; Ramenskaya, G.V. Veratrum alkaloid determination in four cases of Veratrum Aqua poisonings. J. Anal. Toxicol., 2022, 46(1), e42-e47.
[http://dx.doi.org/10.1093/jat/bkab019] [PMID: 33559680]
[67]
Cang, S.; Liu, R.; Wang, T.; Jiang, X.; Zhang, W.; Bi, K.; Li, Q. Simultaneous determination of five active alkaloids from compound kushen injection in rat plasma by LC–MS/MS and its application to a comparative pharmacokinetic study in normal and NSCLC nude rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1126-1127, 121734.
[http://dx.doi.org/10.1016/j.jchromb.2019.121734] [PMID: 31401450]
[68]
Wang, Y.H.; Mondal, G.; Butawan, M.; Bloomer, R.J.; Yates, C.R. Development of a liquid chromatography-tandem mass spectrometry (LC–MS/MS) method for characterizing caffeine, methylliberine, and theacrine pharmacokinetics in humans. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1155, 122278.
[http://dx.doi.org/10.1016/j.jchromb.2020.122278] [PMID: 32829142]
[69]
Liu, S.S.; Yang, K.; Sun, Z.L.; Zheng, X.; Bai, X.; Liu, Z.Y. A novel two-dimensional liquid chromatography system for the simultaneous determination of three monoterpene indole alkaloids in biological matrices. Anal. Bioanal. Chem., 2019, 411(17), 3857-3870.
[http://dx.doi.org/10.1007/s00216-019-01859-2] [PMID: 31073732]
[70]
Tavares, L.; Monedeiro, F.; Bordin, D.M.; De Martinis, B.S. Investigation of ayahuasca β-carboline alkaloids and tryptamine in sweat samples from religious community participants by GC-MS. J. Anal. Toxicol., 2020, 44(6), 601-609.
[http://dx.doi.org/10.1093/jat/bkz116] [PMID: 32103256]
[71]
Qian, X.; Ko, A.; Li, H.; Liao, C. Flexible non-enzymatic glucose strip for direct non-invasive diabetic management. Microchem. J., 2024, 197, 109818.
[http://dx.doi.org/10.1016/j.microc.2023.109818]
[72]
Li, T.; Chen, X.; Fu, Y.; Liao, C. Colorimetric sweat analysis using wearable hydrogel patch sensors for detection of chloride and glucose. Anal. Methods, 2023, 15(43), 5855-5866.
[http://dx.doi.org/10.1039/D3AY01738A] [PMID: 37888873]
[73]
Liao, C.; Chen, X.; Fu, Y. Salivary analysis: An emerging paradigm for non-invasive healthcare diagnosis and monitoring. Interdisciplinary Medicine, 2023, 1(3), e20230009.
[http://dx.doi.org/10.1002/INMD.20230009]
[74]
Câmpean, A.; Tertiş, M.; Săndulescu, R. Voltammetric determination of some alkaloids and other compounds in pharmaceuticals and urine using an electrochemically activated glassy carbon electrode. Cent. Eur. J. Chem., 2011, 9, 688-700.
[75]
Haroon, N.; Stine, K.J. Electrochemical detection of hormones using nanostructured electrodes. Coatings, 2023, 13(12), 2040.
[http://dx.doi.org/10.3390/coatings13122040]
[76]
Bogomolova, A.; Komarova, E.; Reber, K.; Gerasimov, T.; Yavuz, O.; Bhatt, S.; Aldissi, M. Challenges of electrochemical impedance spectroscopy in protein biosensing. Anal. Chem., 2009, 81(10), 3944-3949.
[http://dx.doi.org/10.1021/ac9002358] [PMID: 19364089]
[77]
Mehmeti, E.; Kilic, T.; Laur, C.; Carrara, S. Electrochemical determination of nicotine in smokers’ sweat. Microchem. J., 2020, 158, 105155.
[http://dx.doi.org/10.1016/j.microc.2020.105155]
[78]
Dushna, O.; Dubenska, L.; Marton, M.; Hatala, M.; Vojs, M. Sensitive and selective voltammetric method for determination of quinoline alkaloid, quinine in soft drinks and urine by applying a boron-doped diamond electrode. Microchem. J., 2023, 191, 108839.
[http://dx.doi.org/10.1016/j.microc.2023.108839]
[79]
Freitas, J.M.; Silva, P.R.L.; Munoz, R.A.A.; Richter, E.M. Fast and portable voltammetric method for the determination of the amphetamine adulterant ephedrine in natural over-the-counter weight-loss products. Microchem. J., 2021, 160, 105757.
[http://dx.doi.org/10.1016/j.microc.2020.105757]
[80]
Xiao, Y.; Yi, H.; Wang, G.; Chen, S.; Li, X.; Wu, Q.; Zhang, S.; Deng, K.; He, Y.; Yang, X. Electrochemiluminescence sensor for point-of-care detection of pyrrolizidine alkaloids. Talanta, 2022, 249, 123645.
[http://dx.doi.org/10.1016/j.talanta.2022.123645] [PMID: 35700647]
[81]
Yañuk, J.G.; Cabrerizo, F.M.; Dellatorre, F.G.; Cerdá, M.F. Photosensitizing role of R-phycoerythrin red protein and β -carboline alkaloids in Dye sensitized solar cell. Electrochemical and spectroscopic characterization. Energy Rep., 2020, 6, 25-36.
[http://dx.doi.org/10.1016/j.egyr.2019.10.045]
[82]
Jahani, P.M.; Mohammadi, S.Z.; Khodabakhshzadeh, A.; Cha, J.H.; Asl, M.S.; Shokouhimehr, M.; Zhang, K.; Van Le, Q.; Peng, W. Simultaneous detection of morphine and diclofenac using graphene nanoribbon modified screen-printed electrode. Int. J. Electrochem. Sci., 2020, 15(9), 9037-9048.
[http://dx.doi.org/10.20964/2020.09.14]
[83]
Kilele, J.C.; Chokkareddy, R.; Rono, N.; Redhi, G.G. A novel electrochemical sensor for selective determination of theophylline in pharmaceutical formulations. J. Taiwan Inst. Chem. Eng., 2020, 111, 228-238.
[http://dx.doi.org/10.1016/j.jtice.2020.05.007]
[84]
Zhong, F.; Liu, Z.; Han, Y.; Guo, Y. Electrochemical sensor for sensitive determination of capsaicin using Pd decorated reduced graphene oxide. Electroanalysis, 2019, 31(6), 1182-1188.
[http://dx.doi.org/10.1002/elan.201900048]
[85]
Azadbakht, A.; Abbasi, A.R. Engineering an aptamer-based recognition sensor for electrochemical opium alkaloid biosensing. J. Mater. Sci. Mater. Electron., 2019, 30(4), 3432-3442.
[http://dx.doi.org/10.1007/s10854-018-00618-w]
[86]
Senturk, H.; Eksin, E.; Zeybek, U.; Erdem, A. Detection of senecionine in dietary sources by the single-use electrochemical sensor. Micromachines, 2021, 12(12), 1585.
[http://dx.doi.org/10.3390/mi12121585] [PMID: 34945435]
[87]
Vakili Fathabadi, M.; Hashemipour Rafsanjani, H.; Foroughi, M.M.; Jahani, S.; Arefi Nia, N. Synthesis of magnetic ordered mesoporous carbons (OMC) as an electrochemical platform for ultrasensitive and simultaneous detection of thebaine and papaverine. J. Electrochem. Soc., 2020, 167(2), 027509.
[http://dx.doi.org/10.1149/1945-7111/ab6446]
[88]
Štukovnik, Z.; Godec, R.F.; Bren, U. The use of yeast saccharomyces cerevisiae as a biorecognition element in the development of a model impedimetric biosensor for caffeine detection. Acta Chim. Slov., 2022, 69(2), 378-384.
[http://dx.doi.org/10.17344/acsi.2021.7301] [PMID: 35861078]
[89]
Brown, K.; McMenemy, M.; Palmer, M.; Baker, M.J.; Robinson, D.W.; Allan, P.; Dennany, L. Utilization of an electrochemiluminescence sensor for atropine determination in complex matrices. Anal. Chem., 2019, 91(19), 12369-12376.
[http://dx.doi.org/10.1021/acs.analchem.9b02905] [PMID: 31434478]
[90]
Ognjanović, M.; Nikolić, K.; Bošković, M.; Pastor, F.; Popov, N.; Marciuš, M.; Krehula, S.; Antić, B.; Stanković, D.M. Electrochemical determination of morphine in urine samples by tailoring FeWO4/CPE sensor. Biosensors, 2022, 12(11), 932.
[http://dx.doi.org/10.3390/bios12110932] [PMID: 36354441]
[91]
Sakthivel, R.; Annalakshmi, M.; Chen, S.M.; Kubendhiran, S.; Anbazhagan, R.; Tsai, H.C. A novel sensitive and reliable electrochemical determination of palmatine based on CeO2/RGO/MWCNT ternary composite. J. Taiwan Inst. Chem. Eng., 2019, 96, 549-558.
[http://dx.doi.org/10.1016/j.jtice.2018.11.008]
[92]
Brown, K.; Jacquet, C.; Biscay, J.; Allan, P.; Dennany, L. Electrochemiluminescent sensors as a screening strategy for psychoactive substances within biological matrices. Analyst, 2020, 145(12), 4295-4304.
[http://dx.doi.org/10.1039/D0AN00846J] [PMID: 32500895]
[93]
Beitollai, H.; Mohammadi, S.Z.; Tajik, S. Electrochemical behavior of Morphine at the surface of magnetic core shell manganese Ferrite nanoparticles modified screen-printed electrode and its determination in real samples. Int. J. Nanodimens., 2019, 10(3), 304-312.
[94]
Lyu, W.; Zhang, X.; Zhang, Z.; Chen, X.; Zhou, Y.; Chen, H.; Wang, H.; Ding, M. A simple and sensitive electrochemical method for the determination of capsaicinoids in chilli peppers. Sens. Actuators B Chem., 2019, 288, 65-70.
[http://dx.doi.org/10.1016/j.snb.2019.02.104]
[95]
Gołąb, M.; Przybyłowska, M.; Kubáň, P.; Itterheimová, P.; Woźniakiewicz, M. Development of CE-C4D method for determination tropane alkaloids. Molecules, 2021, 26(19), 5749.
[http://dx.doi.org/10.3390/molecules26195749] [PMID: 34641293]
[96]
Mustafa, R.R.; Sukor, R.; Eissa, S.; Shahrom, A.N.; Saari, N.; Mohd Nor, S.M. Sensitive detection of mitragynine from Mitragyna speciosa Korth using an electrochemical immunosensor based on multiwalled carbon nanotubes/chitosan- modified carbon electrode. Sens. Actuators B Chem., 2021, 345, 130356.
[http://dx.doi.org/10.1016/j.snb.2021.130356]
[97]
Jose, J.; Subramanian, V.; Shaji, S.; Sreeja, P.B. An electrochemical sensor for nanomolar detection of caffeine based on nicotinic acid hydrazide anchored on graphene oxide (NAHGO). Sci. Rep., 2021, 11(1), 11662.
[http://dx.doi.org/10.1038/s41598-021-89427-6] [PMID: 34083560]
[98]
Foroughi, M.M.; Jahani, S.; Aramesh-Boroujeni, Z.; Vakili Fathabadi, M.; Hashemipour Rafsanjani, H.; Rostaminasab Dolatabad, M. Template-free synthesis of ZnO/Fe3O4/Carbon magnetic nanocomposite: Nanotubes with hexagonal cross sections and their electrocatalytic property for simultaneous determination of oxymorphone and heroin. Microchem. J., 2021, 170, 106679.
[http://dx.doi.org/10.1016/j.microc.2021.106679]
[99]
Sarma, M.; del Valle, M. Improved sensing of capsaicin with TiO2 nanoparticles modified epoxy graphite electrode. Electroanalysis, 2020, 32(2), 230-237.
[http://dx.doi.org/10.1002/elan.201900400]
[100]
Shehata, M.; Azab, S.M.; Fekry, A.M. May glutathione and graphene oxide enhance the electrochemical detection of caffeine on carbon paste sensor in aqueous and surfactant media for beverages analysis? Synth. Met., 2019, 256, 116122.
[http://dx.doi.org/10.1016/j.synthmet.2019.116122]
[101]
Pohanka, M. Quartz crystal microbalance biosensor for ergotamine detection. Int. J. Electrochem. Sci., 2020, 15(5), 4179-4187.
[http://dx.doi.org/10.20964/2020.05.61]
[102]
Capucciati, A.; Cacciatore, L.; Protti, S.; Profumo, A.; Merli, D. Electrochemical analysis and characterization of psychoactive substances glaucine and tetrahydropalmatine. J. Electroanal. Chem., 2022, 907, 116032.
[http://dx.doi.org/10.1016/j.jelechem.2022.116032]
[103]
Ağın, F.; Öztürk, G.; Kul, D. Voltammetric analysis of ephedrine in pharmaceutical dosage forms and urine using poly (nile blue a) modified glassy carbon electrode. Comb. Chem. High Throughput Screen., 2021, 24(3), 366-375.
[http://dx.doi.org/10.2174/1386207323666200727100231] [PMID: 32718283]
[104]
Zhou, Q.; Sasaki, Y.; Ohshiro, K.; Fan, H.; Montagna, V.; Gonzato, C.; Haupt, K.; Minami, T. An organic transistor for the selective detection of tropane alkaloids utilizing a molecularly imprinted polymer. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(35), 6808-6815.
[http://dx.doi.org/10.1039/D2TB01067D] [PMID: 35815816]
[105]
João, A.F.; Rocha, R.G.; Matias, T.A.; Richter, E.M.; Petruci, J.F.; Muñoz, R.A. 3D-printing in forensic electrochemistry: Atropine determination in beverages using an additively manufactured graphene-polylactic acid electrode. Microchem. J., 2021, 167, 106324.
[http://dx.doi.org/10.1016/j.microc.2021.106324]
[106]
Afzali, M.; Mostafavi, A.; Shamspur, T. Sensitive detection of colchicine at a glassy carbon electrode modified with magnetic ionic liquid/CuO nanoparticles/carbon nanofibers in pharmaceutical and plasma samples. J. Indian Chem. Soc., 2020, 17(7), 1753-1764.
[http://dx.doi.org/10.1007/s13738-020-01894-2]
[107]
Sha, Y.; Yu, J.; Xiong, J.; Yu, C.; Zhu, X.; Zhang, B.; Fei, T.; Wu, D. A simple and rapid approach for on-site analysis of nicotine in tobacco based on a screen-printed electrode as an electrochemical sensor. Anal. Methods, 2022, 14(16), 1579-1584.
[http://dx.doi.org/10.1039/D2AY00058J] [PMID: 35416201]
[108]
Jing, Y.; Ning, S.; Guan, Y.; Cao, M.; Li, J.; Zhu, L.; Zhang, Q.; Cheng, C.; Deng, Y. Electrochemical determination of nicotine in tobacco products based on biosynthesized gold nanoparticles. Front Chem., 2020, 8, 593070.
[http://dx.doi.org/10.3389/fchem.2020.593070] [PMID: 33195097]
[109]
Aral, T.; Önal, G.; Keskin, E.; Levent, A. Firstly electrochemical examination of myosmine at glassy carbon electrode: Sensitive determination in tobacco leaves by differential pulse voltammetry. Electroanalysis, 2021, 33(11), 2392-2399.
[http://dx.doi.org/10.1002/elan.202100272]
[110]
Fekry, A.M.; Shehata, M.; Azab, S.M.; Walcarius, A. Voltammetric detection of caffeine in pharmacological and beverages samples based on simple nano- Co (II, III) oxide modified carbon paste electrode in aqueous and micellar media. Sens. Actuators B Chem., 2020, 302, 127172.
[http://dx.doi.org/10.1016/j.snb.2019.127172]
[111]
Farag, A.S.; Pravcová, K.; Česlová, L.; Vytřas, K.; Sýs, M. Simultaneous determination of caffeine and pyridoxine in energy drinks using differential pulse voltammetry at glassy carbon electrode modified with Nafion®. Electroanalysis, 2019, 31(8), 1494-1499.
[http://dx.doi.org/10.1002/elan.201800646]
[112]
Abraham, P.; Renjini, S.; Mary, T.E.; Kumary, V.A.; Chithra, P.G. A novel voltammetric sensor for morphine detection based on electrochemically synthesized poly (p-aminobenzenesulfonicacid)/reduced graphene oxide composite. AIP Conf. Proc., 2019, 2162(1), 020058.
[http://dx.doi.org/10.1063/1.5130268]
[113]
Oveili, E.; Jahani, S.; Tayari, O.; Jahanara, A.; Fazli, Z.; Aramesh-Boroujeni, Z.; Rashidi, S.; Baravati, N.R.Z.; Foroughi, M.M. An electrochemical sensor based on octahedral composite modified glassy carbon electrode for voltammetric detection of cocaine. Electroanalysis, 2023, 35(7), e202200432.
[http://dx.doi.org/10.1002/elan.202200432]
[114]
Ganjali, M.R.; Dourandish, Z.; Beitollahi, H.; Tajik, S.; Hajiaghababaei, L.; Larijani, B. Highly sensitive determination of theophylline based on graphene quantum dots modified electrode. Int. J. Electrochem. Sci., 2018, 13(3), 2448-2461.
[http://dx.doi.org/10.20964/2018.03.09]
[115]
Gao, M.; Xie, Y.; Yang, W.; Lu, L. Fabrication of novel electrochemical sensor based on MXene/MWCNTs composite for sensitive detection of synephrine. Int. J. Electrochem. Sci., 2020, 15(5), 4619-4630.
[http://dx.doi.org/10.20964/2020.05.79]
[116]
Kowalcze, M.; Jakubowska, M. Voltammetric determination of nicotine in electronic cigarette liquids using a boron-doped diamond electrode (BDDE). Diamond Related Materials, 2020, 103, 107710.
[http://dx.doi.org/10.1016/j.diamond.2020.107710]
[117]
Karthika, A.; Karuppasamy, P.; Selvarajan, S.; Suganthi, A.; Rajarajan, M. Electrochemical sensing of nicotine using CuWO4 decorated reduced graphene oxide immobilized glassy carbon electrode. Ultrason. Sonochem., 2019, 55, 196-206.
[http://dx.doi.org/10.1016/j.ultsonch.2019.01.038] [PMID: 30878204]
[118]
Wester, N.; Mynttinen, E.; Etula, J.; Lilius, T.; Kalso, E.; Kauppinen, E.I.; Laurila, T.; Koskinen, J. Simultaneous detection of morphine and codeine in the presence of ascorbic acid and uric acid and human plasma at nafion single-walled carbon nanotube thin-film electrode. ACS Omega, 2019, 4(18), 17726-17734.
[http://dx.doi.org/10.1021/acsomega.9b02147] [PMID: 31681878]
[119]
Šekuljica, S.; Guzsvány, V.; Anojčić, J.; Hegedűs, T.; Mikov, M.; Kalcher, K. Imidazolium-based ionic liquids as modifiers of carbon paste electrodes for trace-level voltammetric determination of dopamine in pharmaceutical preparations. J. Mol. Liq., 2020, 306, 112900.
[http://dx.doi.org/10.1016/j.molliq.2020.112900]
[120]
Bruno Ferreira; Katayama, J.M.; Oiye, É.N.; Ferreira, B.; Ribeiro, M.F.; Ipólito, A.J.; de Andrade, J.F.; de Oliveira, M.F. Determination of cocaine by square wave voltammetry with carbon paste electrodes. Brazilian Journal of Forensic Sciences, Medical Law and Bioethics, 2019, 8(3), 149-164.
[http://dx.doi.org/10.17063/bjfs8(3)y2019149]
[121]
Rudnicki, K.; Sobczak, K.; Borgul, P.; Skrzypek, S.; Poltorak, L. Determination of quinine in tonic water at the miniaturized and polarized liquid–liquid interface. Food Chem., 2021, 364, 130417.
[http://dx.doi.org/10.1016/j.foodchem.2021.130417] [PMID: 34175631]
[122]
Moghtader, M.; Bahram, M.; Farhadi, K. Derivative linear sweep voltammetry and discrete wavelet transform for the simultaneous determination of codeine and thebaine by artificial neural networks. ChemistrySelect, 2021, 6(24), 5917-5925.
[http://dx.doi.org/10.1002/slct.202101222]
[123]
Yilmaz Sengel, T.; Guler, E.; Arslan, M.; Gumus, Z.P.; Sanli, S.; Aldemir, E.; Akbulut, H.; Odaci Demirkol, D.; Coskunol, H.; Timur, S.; Yagci, Y. “Biomimetic-electrochemical-sensory-platform” for biomolecule free cocaine testing. Mater. Sci. Eng. C, 2018, 90, 211-218.
[http://dx.doi.org/10.1016/j.msec.2018.04.043] [PMID: 29853084]
[124]
Masibi, K.K.; Fayemi, O.E.; Adekunle, A.S.; Sherif, E.S.M.; Ebenso, E.E. Electrochemical determination of caffeine using bimetallic au−ag nanoparticles obtained from low-cost green synthesis. Electroanalysis, 2020, 32(12), 2745-2755.
[http://dx.doi.org/10.1002/elan.202060198]
[125]
Ramachandran, R.; Leng, X.; Zhao, C.; Xu, Z.X.; Wang, F. 2D siloxene sheets: A novel electrochemical sensor for selective dopamine detection. Appl. Mater. Today, 2020, 18, 100477.
[http://dx.doi.org/10.1016/j.apmt.2019.100477]
[126]
Weston, A.; Brown, P.R. High-performance liquid chromatography & capillary electrophoresis: Principles and practices; Elsevier, 1997.
[127]
Hosseini, S. Enzyme-linked immunosorbent assay (ELISA): from A to Z; Springer: Singapore, 2018.
[128]
Makki, A.A.; Bonnier, F.; Respaud, R.; Chtara, F.; Tfayli, A.; Tauber, C.; Bertrand, D.; Byrne, H.J.; Mohammed, E.; Chourpa, I. Qualitative and quantitative analysis of therapeutic solutions using Raman and infrared spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 218, 97-108.
[http://dx.doi.org/10.1016/j.saa.2019.03.056] [PMID: 30954803]
[129]
Tsolekile, N; Mngcutsha, N; Vitshima, N. Application of quantum dots in lateral flow immunoassays: Non-communicable and communicable diseases. In: Quantum Dots-Recent Advances, New Perspectives and Contemporary Applications ; IntechOpen, 2022.
[http://dx.doi.org/10.5772/intechopen.107947]
[130]
Emara, S.; Kamal, M.; Sallam, I.E.; Serag, A.; Farag, M.A. Application of molecular imprinting approach for alkaloids analysis in food and nutraceuticals: Review and perspective. Phytochem. Rev., 2023, 1-25.
[http://dx.doi.org/10.1007/s11101-023-09893-w]
[131]
Kelley, Z.D.; Rogers, D.T.; Littleton, J.M.; Lynn, B.C. Microfluidic capillary zone electrophoresis mass spectrometry analysis of alkaloids in Lobelia cardinalis transgenic and mutant plant cell cultures. Electrophoresis, 2019, 40(22), 2921-2928.
[http://dx.doi.org/10.1002/elps.201900220] [PMID: 31475363]
[132]
Liu, C.C.; Xu, Y.H.; Yuan, S.; Xu, Y.; Hua, M.L. An enzyme-linked immunosorbent assay for monoester-type aconitic alkaloids and its application in the pharmacokinetic study of benzoylhypaconine in rats. J. Asian Nat. Prod. Res., 2018, 20(4), 352-360.
[http://dx.doi.org/10.1080/10286020.2017.1342635] [PMID: 28640646]
[133]
Lanzarotta, A.; Thatcher, M.D.; Lorenz, L.M.; Batson, J.S. Detection of mitragynine in Mitragyna Speciosa (Kratom) using surface-enhanced Raman spectroscopy with handheld devices. J. Forensic Sci., 2020, 65(5), 1443-1449.
[http://dx.doi.org/10.1111/1556-4029.14457] [PMID: 32453477]
[134]
Zheng, P.; Peng, T.; Wang, J.; Zhang, J.; Wang, Z.; Zhang, Y.; Ren, Z.; Wang, S.; Jiang, H. Fluorescent lateral flow immunoassay based on gold nanocluster for detection of pyrrolizidine alkaloids. Mikrochim. Acta, 2021, 188(1), 11.
[http://dx.doi.org/10.1007/s00604-020-04672-2] [PMID: 33389211]
[135]
Arkhypova, V.; Soldatkin, O.; Mozhylevska, L.; Konvalyuk, I.; Kunakh, V.; Dzyadevych, S. Enzyme biosensor based on pH-sensitive field-effect transistors for assessment of total indole alkaloids content in tissue culture of Rauwolfia serpentina. Electrochem. Sci. Adv., 2022, 2(5), e2100152.
[http://dx.doi.org/10.1002/elsa.202100152]
[136]
Lee, M.J.; Ramanathan, S.; Mansor, S.M.; Tan, S.C. Development of an ELISA for detection of mitragynine and its metabolites in human urine. Anal. Biochem., 2020, 599, 113733.
[http://dx.doi.org/10.1016/j.ab.2020.113733] [PMID: 32302607]
[137]
Volochanskyi, O.; Švecová, M.; Prokopec, V. Detection and identification of medically important alkaloids using the surface-enhanced Raman scattering spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 207, 143-149.
[http://dx.doi.org/10.1016/j.saa.2018.09.009] [PMID: 30223248]
[138]
Yisak, H.; Redi-Abshiro, M.; Chandravanshi, B.S. Selective determination of caffeine and trigonelline in aqueous extract of green coffee beans by FT-MIR-ATR spectroscopy. Vib. Spectrosc., 2018, 97, 33-38.
[http://dx.doi.org/10.1016/j.vibspec.2018.05.003]
[139]
Ramya, A.V.; Balachandran, M. Valorization of agro-industrial fruit peel waste to fluorescent nanocarbon sensor: Ultrasensitive detection of potentially hazardous tropane alkaloid. Front. Environ. Sci. Eng., 2021, 16(3), 27.
[http://dx.doi.org/10.1007/s11783-021-1461-z]
[140]
Zhang, C.; Yu, X.; Shi, X.; Han, Y.; Guo, Z.; Liu, Y. Development of carbon quantum dot–labeled antibody fluorescence immunoassays for the detection of morphine in hot pot soup base. Food Anal. Methods, 2020, 13(5), 1042-1049.
[http://dx.doi.org/10.1007/s12161-020-01700-y]
[141]
Nemati, N.; Ahmadi, S.H.; Tabar heydar, K. Simultaneous determination of five opium alkaloids in underground waters using molecularly imprinted polymer-modified magnetic nanoparticle based dispersive micro-solid phase extraction followed by high performance liquid chromatography. Int. J. Environ. Anal. Chem., 2023, 103(17), 5522-5538.
[http://dx.doi.org/10.1080/03067319.2021.1940161]
[142]
Höfs, S.; Jaut, V.; Schneider, R.J. Ergometrine sensing in rye flour by a magnetic bead-based immunoassay followed by flow injection analysis with amperometric detection. Talanta, 2023, 254, 124172.
[http://dx.doi.org/10.1016/j.talanta.2022.124172] [PMID: 36535211]
[143]
Li, Y.C.; Wu, C.H.; Le, T.H.; Yuan, Q.; Huang, L.; Chen, G.F.; Yang, M.L.; Lam, S.H.; Hung, H.Y.; Sun, H.; Wu, Y.H.; Kuo, P.C.; Wu, T.S. A modified 1H-NMR quantification method of ephedrine alkaloids in Ephedrae Herba samples. Int. J. Mol. Sci., 2023, 24(14), 11272.
[http://dx.doi.org/10.3390/ijms241411272] [PMID: 37511036]

© 2024 Bentham Science Publishers | Privacy Policy