Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Mini-Review Article

Application and Development of Targeted Fishing Technology in Natural Product Screening - A Simple Minireview

Author(s): Yingying Su, Weiping Wang, Ying Wang, Chen Wang, Shuai Sun, Xianhong Zhu, Xiao Dai, Shiyu Li, Xun Gao* and Kunming Qin*

Volume 20, Issue 4, 2024

Published on: 03 May, 2024

Page: [231 - 240] Pages: 10

DOI: 10.2174/0115734129301241240429114323

Price: $65

Abstract

Background: The screening of active ingredients in traditional Chinese medicine is an important task in the modernization of traditional Chinese medicine, and the commonly used analytical means in the past were mainly to screen the extracts of traditional Chinese medicine through pharmacological experiments, but the method has major defects. The target fishing strategy provides a new idea for the screening of active ingredients, and it has rapidly become a hot research direction, but there are many methods that need to be summarized and aggregated.

Objective: It aims to provide readers with an understanding of the achievements, developments, and dilemmas of target fishing techniques over the past few years and to provide new ideas for subsequent research.

Methods: Research articles in recent years using target fishing as an entry point are used as a basis to summarize the types of literature based on their principles and characteristics and to discuss the advantages and disadvantages of each method.

Conclusion: This paper summarizes the classification and development of fishing techniques such as ultrafiltration, equilibrium dialysis, cell membrane chromatography, and immobilization of target molecules and target fishing and describes the principles and characteristics of these methods. The applications of these methods in the active ingredients of traditional Chinese medicine are summarized, and the problems and solutions of these methods are discussed.

Next »
[1]
Fu, Y.; Luo, J.; Qin, J.; Yang, M. Screening techniques for the identification of bioactive compounds in natural products. J. Pharm. Biomed. Anal., 2019, 168, 189-200.
[http://dx.doi.org/10.1016/j.jpba.2019.02.027] [PMID: 30825802]
[2]
Chan, H.H.L.; Ng, T. Traditional chinese medicine (TCM) and allergic diseases. Curr. Allergy Asthma Rep., 2020, 20(11), 67.
[http://dx.doi.org/10.1007/s11882-020-00959-9] [PMID: 32875353]
[3]
Dai, Y.J.; Wan, S.Y.; Gong, S.S.; Liu, J.C.; Li, F.; Kou, J.P. Recent advances of traditional Chinese medicine on the prevention and treatment of COVID-19. Chin. J. Nat. Med., 2020, 18(12), 881-889.
[http://dx.doi.org/10.1016/S1875-5364(20)60031-0] [PMID: 33357718]
[4]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[5]
Katz, L.; Baltz, R.H. Natural product discovery: past, present, and future. J. Ind. Microbiol. Biotechnol., 2016, 43(2-3), 155-176.
[http://dx.doi.org/10.1007/s10295-015-1723-5] [PMID: 26739136]
[6]
Feng, X.; Sureda, A.; Jafari, S.; Memariani, Z.; Tewari, D.; Annunziata, G.; Barrea, L.; Hassan, S.T.S.; Šmejkal, K.; Malaník, M.; Sychrová, A.; Barreca, D.; Ziberna, L.; Mahomoodally, M.F.; Zengin, G.; Xu, S.; Nabavi, S.M.; Shen, A.Z. Berberine in cardiovascular and metabolic diseases: from mechanisms to therapeutics. Theranostics, 2019, 9(7), 1923-1951.
[http://dx.doi.org/10.7150/thno.30787] [PMID: 31037148]
[7]
Qi, W.; Qi, W.; Xiong, D.; Long, M. Quercetin: Its Antioxidant Mechanism, Antibacterial Properties and Potential Application in Prevention and Control of Toxipathy. Molecules, 2022, 27(19), 6545.
[http://dx.doi.org/10.3390/molecules27196545] [PMID: 36235082]
[8]
Zia, A.; Farkhondeh, T.; Pourbagher-Shahri, A.M.; Samarghandian, S. The role of curcumin in aging and senescence: Molecular mechanisms. Biomed. Pharmacother., 2021, 134, 111119.
[http://dx.doi.org/10.1016/j.biopha.2020.111119] [PMID: 33360051]
[9]
Gao, C.; Liu, L.; Zhou, Y.; Bian, Z.; Wang, S.; Wang, Y. Novel drug delivery systems of Chinese medicine for the treatment of inflammatory bowel disease. Chin. Med., 2019, 14(1), 23.
[http://dx.doi.org/10.1186/s13020-019-0245-x] [PMID: 31236131]
[10]
Rabie, A.M. Future of the current anticoronaviral agents: A viewpoint on the validation for the next COVIDs and pandemics. Biocell, 2023, 47(10), 2133-2139.
[http://dx.doi.org/10.32604/biocell.2023.030057]
[11]
Rabie, A.M. Potent inhibitory activities of the adenosine analogue cordycepin on SARS-CoV-2 replication. ACS Omega, 2022, 7(3), 2960-2969.
[http://dx.doi.org/10.1021/acsomega.1c05998] [PMID: 35071937]
[12]
Zhuo, R.; Liu, H.; Liu, N.; Wang, Y. Ligand Fishing: A remarkable strategy for discovering bioactive compounds from complex mixture of natural products. Molecules, 2016, 21(11), 1516.
[http://dx.doi.org/10.3390/molecules21111516] [PMID: 27845727]
[13]
Talman, A.M.; Clain, J.; Duval, R.; Ménard, R.; Ariey, F. Artemisinin bioactivity and resistance in malaria parasites. Trends Parasitol., 2019, 35(12), 953-963.
[http://dx.doi.org/10.1016/j.pt.2019.09.005] [PMID: 31699532]
[14]
Gao, F.; Sun, Z.; Kong, F.; Xiao, J. Artemisinin-derived hybrids and their anticancer activity. Eur. J. Med. Chem., 2020, 188, 112044.
[http://dx.doi.org/10.1016/j.ejmech.2020.112044] [PMID: 31945642]
[15]
Kiani, B.H.; Kayani, W.K.; Khayam, A.U.; Dilshad, E.; Ismail, H.; Mirza, B. Artemisinin and its derivatives: A promising cancer therapy. Mol. Biol. Rep., 2020, 47(8), 6321-6336.
[http://dx.doi.org/10.1007/s11033-020-05669-z] [PMID: 32710388]
[16]
Wang, K.; Chen, Q.; Shao, Y.; Yin, S.; Liu, C.; Liu, Y.; Wang, R.; Wang, T.; Qiu, Y.; Yu, H. Anticancer activities of TCM and their active components against tumor metastasis. Biomed. Pharmacother., 2021, 133, 111044.
[http://dx.doi.org/10.1016/j.biopha.2020.111044] [PMID: 33378952]
[17]
Lu, F.; Wang, D.; Li, R.L.; He, L.Y.; Ai, L.; Wu, C.J. Current strategies and technologies for finding drug targets of active components from traditional Chinese medicine. Front. Biosci.Landm., 2021, 26(9), 572-589.
[http://dx.doi.org/10.52586/4968] [PMID: 34590468]
[18]
Wang, Y.L.; Liu, Y.T.; Tao, Y.Y.; Liu, C.H.; Qu, H.Y.; Zhou, H.; Yang, T. Research ideas and method on screening active components of traditional Chinese medicine against hepatotoxicity with mitochondria as target. Zhongguo Zhongyao Zazhi, 2021, 46(2), 306-311.
[http://dx.doi.org/10.19540/j.cnki.cjcmm.20200904.601] [PMID: 33645116]
[19]
Zhong, X.K.; Li, D.C.; Jiang, J.G. Identification and quality control of Chinese medicine based on the fingerprint techniques. Curr. Med. Chem., 2009, 16(23), 3064-3075.
[http://dx.doi.org/10.2174/092986709788803051] [PMID: 19689283]
[20]
Rabie, A.M. Improved synthesis of the anti-SARS-CoV-2 investigational agent (E)-N-(4-Cyanobenzylidene)-6-fluoro-3-hydroxypyrazine-2-carboxamide (Cyanorona-20). Revista de Chimie, 2022, 73(4), 69-75.
[http://dx.doi.org/10.37358/RC.22.4.8555]
[21]
Rabie, A. M. Teriflunomide: A possible effective drug for the comprehensive treatment of COVID-19. Curr Res Pharmacol Drug Discov, 2021, 2, 100055.
[http://dx.doi.org/10.1016/j.crphar.2021.100055]
[22]
Fan, Y.; Wang, J.; Jian, J.; Wen, Y.; Li, J.; Tian, H.; Crommen, J.; Bi, W.; Zhang, T.; Jiang, Z. High-throughput discovery of highly selective reversible hMAO-B inhibitors based on at-line nanofractionation. Acta Pharm. Sin. B, 2024, 14(4), 1772-1786.
[http://dx.doi.org/10.1016/j.apsb.2024.01.020] [PMID: 38572096]
[23]
Rabie, A.M.; Abdalla, M. Forodesine and riboprine exhibit strong anti-SARS-CoV-2 repurposing potential: In Silico and In Vitro Studies. ACS Bio Med Chem Au, 2022, 2(6), 565-685.
[http://dx.doi.org/10.1021/acsbiomedchemau.2c00039]
[24]
Eltayb, W.A.; Abdalla, M.; Rabie, A.M. Novel Investigational Anti-SARS-CoV-2 Agent Ensitrelvir “S-217622”: A very promising potential universal broad-spectrum antiviral at the therapeutic frontline of coronavirus species. ACS Omega, 2023, 8(6), 5234-5246.
[http://dx.doi.org/10.1021/acsomega.2c03881] [PMID: 36798145]
[25]
Rabie, A.M. Efficacious preclinical repurposing of the nucleoside analogue didanosine against COVID-19 polymerase and exonuclease. ACS Omega, 2022, 7(25), 21385-21396.
[http://dx.doi.org/10.1021/acsomega.1c07095] [PMID: 35785294]
[26]
Rabie, A.M.; Abdalla, M. Evaluation of a series of nucleoside analogs as effective anticoronaviral-2 drugs against the Omicron-B.1.1.529/BA.2 subvariant: A repurposing research study. Med. Chem. Res., 2023, 32(2), 326-341.
[http://dx.doi.org/10.1007/s00044-022-02970-3] [PMID: 36593869]
[27]
Rabie, A.M. Two antioxidant 2,5-disubstituted-1,3,4-oxadiazoles (CoViTris2020 and ChloViD2020): successful repurposing against COVID-19 as the first potent multitarget anti-SARS-CoV-2 drugs. New J. Chem., 2021, 45(2), 761-771.
[http://dx.doi.org/10.1039/D0NJ03708G]
[28]
Huang, H.; Zhang, G.; Zhou, Y.; Lin, C.; Chen, S.; Lin, Y.; Mai, S.; Huang, Z. Reverse screening methods to search for the protein targets of chemopreventive compounds. Front Chem., 2018, 6, 138.
[http://dx.doi.org/10.3389/fchem.2018.00138] [PMID: 29868550]
[29]
Wang, B.; Deng, J.; Gao, Y.; Zhu, L.; He, R.; Xu, Y. The screening toolbox of bioactive substances from natural products: A review. Fitoterapia, 2011, 82(8), 1141-1151.
[http://dx.doi.org/10.1016/j.fitote.2011.08.007] [PMID: 21867747]
[30]
Nguyen, G.T.H.; Bennett, J.L.; Liu, S.; Hancock, S.E.; Winter, D.L.; Glover, D.J.; Donald, W.A. Multiplexed screening of thousands of natural products for protein–ligand binding in native mass spectrometry. J. Am. Chem. Soc., 2021, 143(50), 21379-21387.
[http://dx.doi.org/10.1021/jacs.1c10408] [PMID: 34886668]
[31]
Yu, Q.; Hu, Z.; Shen, Y.; Jiang, Y.; Pan, P.; Hou, T.; Pan, Z.Q.; Huang, J.; Sun, Y. Gossypol inhibits cullin neddylation by targeting SAG-CUL5 and RBX1-CUL1 complexes. Neoplasia, 2020, 22(4), 179-191.
[http://dx.doi.org/10.1016/j.neo.2020.02.003] [PMID: 32145688]
[32]
Chen, X.; Wang, Y.; Ma, N.; Tian, J.; Shao, Y.; Zhu, B.; Wong, Y.K.; Liang, Z.; Zou, C.; Wang, J. Target identification of natural medicine with chemical proteomics approach: probe synthesis, target fishing and protein identification. Signal Transduct. Target. Ther., 2020, 5(1), 72.
[http://dx.doi.org/10.1038/s41392-020-0186-y] [PMID: 32435053]
[33]
de Faria, R.A.; Oliveira, P.C.O.; de Carvalho, M.D.P.; Peixoto, B.S.; Severino, V.G.P.; Tinoco, L.W.; Rodrigues, S.V.; de Moraes, M.C. High-resolution inhibition profiling and ligand fishing for screening of nucleoside hydrolase ligands in Moringa oleifera Lamarck. J. Pharm. Biomed. Anal., 2022, 211, 114614.
[http://dx.doi.org/10.1016/j.jpba.2022.114614] [PMID: 35123329]
[34]
Dong, Y.; Zhao, Q.; Wang, Y. Network pharmacology-based investigation of potential targets of astragalus membranaceous-angelica sinensis compound acting on diabetic nephropathy. Sci. Rep., 2021, 11(1), 19496.
[http://dx.doi.org/10.1038/s41598-021-98925-6] [PMID: 34593896]
[35]
Qian, J.; Kai, G. Application of micro/nanomaterials in adsorption and sensing of active ingredients in traditional Chinese medicine. J. Pharm. Biomed. Anal., 2020, 190, 113548.
[http://dx.doi.org/10.1016/j.jpba.2020.113548] [PMID: 32861928]
[36]
Petersen, M.J.; de Cássia Lemos Lima, R.; Kjaerulff, L.; Staerk, D. Immobilized α-amylase magnetic beads for ligand fishing: Proof of concept and identification of α-amylase inhibitors in Ginkgo biloba. Phytochemistry, 2019, 164, 94-101.
[http://dx.doi.org/10.1016/j.phytochem.2019.04.016] [PMID: 31103779]
[37]
Guo, J.; Lin, H.; Wang, J.; Lin, Y.; Zhang, T.; Jiang, Z. Recent advances in bio-affinity chromatography for screening bioactive compounds from natural products. J. Pharm. Biomed. Anal., 2019, 165, 182-197.
[http://dx.doi.org/10.1016/j.jpba.2018.12.009] [PMID: 30553109]
[38]
Zhu, P.; Zhou, L.; Lin, Y.; Wang, Y.; Han, Y.; Cai, S. A magnetic beads-based ligand fishing method Coupled with UHPLC-QTOF MS for screening and identification of α-glucosidase inhibitors from Houttuynia cordata Thunb. Talanta, 2024, 270, 125583.
[http://dx.doi.org/10.1016/j.talanta.2023.125583] [PMID: 38141464]
[39]
Yuan, H.; Wan, H.; Hu, Y.K.; Ayeni, E.A.; Chang, Q.; Ma, C.; Liao, X. Fishing of α-glucosidase’s ligands from aloe vera by α-glucosidase functionalized magnetic nanoparticles. Molecules, 2021, 26(19), 5840.
[http://dx.doi.org/10.3390/molecules26195840] [PMID: 34641385]
[40]
Dong, X.; Wang, B.; Cao, J.; Zheng, H.; Ye, L.H. Ligand fishing based on bioaffinity ultrafiltration for screening xanthine oxidase inhibitors from citrus plants. J. Sep. Sci., 2021, 44(7), 1353-1360.
[http://dx.doi.org/10.1002/jssc.202000708] [PMID: 33496069]
[41]
Jiao, J.; Yang, Y.; Wu, Z.; Li, B.; Zheng, Q.; Wei, S.; Wang, Y.; Yang, M. Screening cyclooxygenase-2 inhibitors from Andrographis paniculata to treat inflammation based on bio-affinity ultrafiltration coupled with UPLC-Q-TOF-MS. Fitoterapia, 2019, 137, 104259.
[http://dx.doi.org/10.1016/j.fitote.2019.104259] [PMID: 31319108]
[42]
Hou, G.; Niu, J.; Song, F.; Liu, Z.; Liu, S. Studies on the interactions between ginsenosides and liposome by equilibrium dialysis combined with ultrahigh performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 923-924, 1-7.
[http://dx.doi.org/10.1016/j.jchromb.2013.01.035] [PMID: 23454302]
[43]
Xiao, H.; Qi, X.; Liang, Y.; Lin, C.; Wang, X.; Guan, Z.; Hao, X. Membrane permeability-guided identification of neuroprotective components from Polygonum cuspidatun. Pharm. Biol., 2014, 52(3), 356-361.
[http://dx.doi.org/10.3109/13880209.2013.837078] [PMID: 24143857]
[44]
Li, M.; Wang, S.; He, L. Development of an analytical method coupling cell membrane chromatography with gas chromatography–mass spectrometry via microextraction by packed sorbent and its application in the screening of volatile active compounds in natural products. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 974, 9-16.
[http://dx.doi.org/10.1016/j.jchromb.2014.10.019] [PMID: 25463192]
[45]
Fu, J.; Lv, Y.; Jia, Q.; Lin, Y.; Han, S. Dual-mixed/CMC model for screening target components from traditional Chinese medicines simultaneously acting on EGFR & FGFR4 receptors. Talanta, 2019, 192, 248-254.
[http://dx.doi.org/10.1016/j.talanta.2018.09.053] [PMID: 30348386]
[46]
Bai, X.; Bai, X. Determination of sulfonamide residues in cultured sea cucumber by pre-column derivatization capillary electrophoresis with fluorescence detection. J. Indian Chem. Soc., 2022, 99(8), 100589.
[http://dx.doi.org/10.1016/j.jics.2022.100589]
[47]
Li, F.; Zhang, Y.; Qiu, D.; Kang, J. Screening of epidermal growth factor receptor inhibitors in natural products by capillary electrophoresis combined with high performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A, 2015, 1400, 117-123.
[http://dx.doi.org/10.1016/j.chroma.2015.04.055] [PMID: 25981288]
[48]
Zhang, Y.; Wang, Q.; Liu, R.; Zhou, H.; Crommen, J.; Moaddel, R.; Jiang, Z.; Zhang, T. Rapid screening and identification of monoamine oxidase-A inhibitors from Corydalis Rhizome using enzyme-immobilized magnetic beads based method. J. Chromatogr. A, 2019, 1592, 1-8.
[http://dx.doi.org/10.1016/j.chroma.2019.01.062] [PMID: 30712820]
[49]
Li, D.; Xu, L.; Qi, J.; Yu, B. Screening and analysis of cyclooxygenase-2 inhibitors from the complex matrix: A case study to illustrate the important effect of immobilized enzyme activity in magnetic ligand fishing. J. Pharm. Biomed. Anal., 2019, 175, 112795.
[http://dx.doi.org/10.1016/j.jpba.2019.112795] [PMID: 31387029]
[50]
Li, D.; Lin, B.; Yusuf, N.; Burns, E.M.; Yu, X.; Luo, D.; Min, W. Proteomic analysis and functional studies of baicalin on proteins associated with skin cancer. Am. J. Chin. Med., 2017, 45(3), 599-614.
[http://dx.doi.org/10.1142/S0192415X17500355] [PMID: 28385077]
[51]
Yi, C.M.; Yu, J.; Kim, H.; Lee, N.R.; Kim, S.W.; Lee, N.J.; Lee, J.; Seong, J.; Kim, N.J.; Inn, K.S. Identification of actin as a direct proteomic target of berberine using an affinity-based chemical probe and elucidation of its modulatory role in actin assembly. Chem. Commun., 2017, 53(52), 7045-7047.
[http://dx.doi.org/10.1039/C7CC02789C] [PMID: 28653701]
[52]
Mei, J.; Guo, R.; Zhang, F.; Zhang, H.; Yang, X.; Yu, B.; Liu, J.; Liu, X. Identification of bioactive natural products using yeast:Application to monoacylglycerol lipase inhibitor extraction from Corydalis Rhizoma. Biomed. Pharmacother., 2022, 149, 112798.
[http://dx.doi.org/10.1016/j.biopha.2022.112798] [PMID: 35286964]
[53]
Bai, X.; Fan, W.; Luo, Y.; Liu, Y.; Zhang, Y.; Liao, X. Fast screening of protein tyrosine phosphatase 1B inhibitor from Salvia miltiorrhiza Bge by cell display-based ligand fishing. Molecules, 2022, 27(22), 7896.
[http://dx.doi.org/10.3390/molecules27227896] [PMID: 36431993]
[54]
Wang, Z.; Zuo, G.; Hwang, S.H.; Kwon, S.H.; Kang, Y.H.; Lee, J.Y.; Lim, S.S. Affinity measurement of ligands in Perilla frutescens extract towards α-glucosidase using affinity-based ultrafiltration-high-performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1125, 121725.
[http://dx.doi.org/10.1016/j.jchromb.2019.121725] [PMID: 31351308]
[55]
Hou, X.; Sun, M.; Bao, T.; Xie, X.; Wei, F.; Wang, S. Recent advances in screening active components from natural products based on bioaffinity techniques. Acta Pharm. Sin. B, 2020, 10(10), 1800-1813.
[http://dx.doi.org/10.1016/j.apsb.2020.04.016] [PMID: 33163336]
[56]
Hong, Y.; Liao, X.; Chen, Z. Screening and characterization of potential α-glucosidase inhibitors from Cercis chinensis Bunge fruits using ultrafiltration coupled with HPLC-ESI-MS/MS. Food Chem., 2022, 372, 131316.
[http://dx.doi.org/10.1016/j.foodchem.2021.131316] [PMID: 34653778]
[57]
Tian, Y.; Li, C.; Zeng, F.; Yu, C.; Xia, Z.; Huang, Y. Study the interactions between multiple flavonoids and bovine serum albumin by the developed equilibrium dialysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2022, 1212, 123515.
[http://dx.doi.org/10.1016/j.jchromb.2022.123515] [PMID: 36308942]
[58]
Qi, L.W.; Li, P.; Li, S.L.; Sheng, L.H.; Li, R.Y.; Song, Y.; Li, H.J. Screening and identification of permeable components in a combined prescription of Danggui Buxue decoction using a liposome equilibrium dialysis system followed by HPLC and LC-MS. J. Sep. Sci., 2006, 29(14), 2211-2220.
[http://dx.doi.org/10.1002/jssc.200600107] [PMID: 17069252]
[59]
Xu, L.; Tang, C.; Li, X.; Li, X.; Yang, H.; Mao, R.; He, J.; Li, W.; Liu, J.; Li, Y.; Shi, S.; Xiao, X.; Wang, X. Ligand fishing with cellular membrane-coated cellulose filter paper: A new method for screening of potential active compounds from natural products. Anal. Bioanal. Chem., 2019, 411(10), 1989-2000.
[http://dx.doi.org/10.1007/s00216-019-01662-z] [PMID: 30798339]
[60]
Maciuk, A.; Moaddel, R.; Haginaka, J.; Wainer, I.W. Screening of tobacco smoke condensate for nicotinic acetylcholine receptor ligands using cellular membrane affinity chromatography columns and missing peak chromatography. J. Pharm. Biomed. Anal., 2008, 48(2), 238-246.
[http://dx.doi.org/10.1016/j.jpba.2007.11.024] [PMID: 18187282]
[61]
Chen, X.; Zhou, J.; Yu, J.; Chen, N.; Chen, W.; Lu, H.; Xin, G.; Lin, Y. Development of target-based cell membrane affinity ultrafiltration technology for a simplified approach to discovering potential bioactive compounds in natural products. Anal. Bioanal. Chem., 2024, 416(7), 1647-1655.
[http://dx.doi.org/10.1007/s00216-024-05166-3] [PMID: 38305859]
[62]
Chai, X.; Gu, Y.; Lv, L.; Chen, C.; Feng, F.; Cao, Y.; Liu, Y.; Zhu, Z.; Hong, Z.; Chai, Y.; Chen, X. Screening of immune cell activators from Astragali Radix using a comprehensive two-dimensional NK-92MI cell membrane chromatography/C18 column/time-of-flight mass spectrometry system. J. Pharm. Anal., 2022, 12(5), 725-732.
[http://dx.doi.org/10.1016/j.jpha.2022.05.006] [PMID: 36320599]
[63]
Arai, M. A.; Ishibashi, M. Target protein-oriented natural product isolation methods. 2020.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.14648-7]
[64]
Zhang, H.; Wang, J.; Wang, C. Multi-target bioactive compound screening from the infructescence of Platycarya strobilacea Sieb. et Zucc. by affinity chromatography using immobilized β 2 -adrenoceptor and muscarinic-3 acetylcholine receptor as the stationary phase. J. Sep. Sci., 2023, 46(16), 2300129.
[http://dx.doi.org/10.1002/jssc.202300129] [PMID: 37339788]
[65]
Ye, L.H.; Zhang, R.; Cao, J. Screening of β-secretase inhibitors from Dendrobii Caulis by covalently enzyme-immobilized magnetic beads coupled with ultra-high-performance liquid chromatography. J. Pharm. Biomed. Anal., 2021, 195, 113845.
[http://dx.doi.org/10.1016/j.jpba.2020.113845] [PMID: 33371968]
[66]
Hu, Y.; Fu, A.; Miao, Z.; Zhang, X.; Wang, T.; Kang, A.; Shan, J.; Zhu, D.; Li, W. Fluorescent ligand fishing combination with in-situ imaging and characterizing to screen Hsp 90 inhibitors from Curcuma longa L. based on InP/ZnS quantum dots embedded mesoporous nanoparticles. Talanta, 2018, 178, 258-267.
[http://dx.doi.org/10.1016/j.talanta.2017.09.035] [PMID: 29136820]
[67]
Chen, X.; Xue, S.; Lin, Y.; Luo, J.; Kong, L. Immobilization of porcine pancreatic lipase onto a metal-organic framework, PPL@MOF: A new platform for efficient ligand discovery from natural herbs. Anal. Chim. Acta, 2020, 1099, 94-102.
[http://dx.doi.org/10.1016/j.aca.2019.11.042] [PMID: 31986282]
[68]
Chi, M.; Wang, H.; Yan, Z.; Cao, L.; Gao, X.; Qin, K. Magnetic ligand fishing using immobilized cyclooxygenase-2 for identification and screening of anticoronary heart disease ligands from Choerospondias axillaris. Front. Nutr., 2022, 8, 794193.
[http://dx.doi.org/10.3389/fnut.2021.794193] [PMID: 35174196]
[69]
Wang, Z.; Li, X.; Chen, M.; Liu, F.; Han, C.; Kong, L.; Luo, J. A strategy for screening of α-glucosidase inhibitors from Morus alba root bark based on the ligand fishing combined with high-performance liquid chromatography mass spectrometer and molecular docking. Talanta, 2018, 180, 337-345.
[http://dx.doi.org/10.1016/j.talanta.2017.12.065] [PMID: 29332820]
[70]
Zhang, X.; Zhen, X.; Yang, Y.; Feng, Q.; Yuan, W.; Xie, X. Precise assembly of inside-out cell membrane camouflaged nanoparticles via bioorthogonal reactions for improving drug leads capturing. Acta Pharm. Sin. B, 2023, 13(2), 852-862.
[http://dx.doi.org/10.1016/j.apsb.2022.05.034] [PMID: 36873174]
[71]
Bu, Y.; Zhang, X.; Zhu, A.; Li, L.; Xie, X.; Wang, S. Inside-out-oriented cell membrane biomimetic magnetic nanoparticles for high-performance drug lead discovery. Anal. Chem., 2021, 93(22), 7898-7907.
[http://dx.doi.org/10.1021/acs.analchem.1c00567] [PMID: 34038073]
[72]
Hu, Q.; Jia, L.; Zhang, X.; Zhu, A.; Wang, S.; Xie, X. Accurate construction of cell membrane biomimetic graphene nanodecoys via purposeful surface engineering to improve screening efficiency of active components of traditional Chinese medicine. Acta Pharm. Sin. B, 2022, 12(1), 394-405.
[http://dx.doi.org/10.1016/j.apsb.2021.05.021] [PMID: 35127394]
[73]
Hu, Q.; Zhang, X.; Jia, L.; Zhen, X.; Pan, X.; Xie, X.; Wang, S. Engineering biomimetic graphene nanodecoys camouflaged with the EGFR/HEK293 cell membrane for targeted capture of drug leads. Biomater. Sci., 2020, 8(20), 5690-5697.
[http://dx.doi.org/10.1039/D0BM00841A] [PMID: 32924039]
[74]
Wen, Y.; Li, J.; Ma, J.; Chen, L. Recent advances in enrichment techniques for trace analysis in capillary electrophoresis. Electrophoresis, 2012, 33(19-20), 2933-2952.
[http://dx.doi.org/10.1002/elps.201200240] [PMID: 23019127]
[75]
Ghafourifar, G.; Fleitz, A.; Waldron, K.C. Development of glutaraldehyde-crosslinked chymotrypsin and an in situ immobilized enzyme microreactor with peptide mapping by capillary electrophoresis. Electrophoresis, 2013, 34(12), 1804-1811.
[http://dx.doi.org/10.1002/elps.201200663] [PMID: 23686566]
[76]
Farcaş, E.; Bouckaert, C.; Servais, A.C.; Hanson, J.; Pochet, L.; Fillet, M. Partial filling affinity capillary electrophoresis as a useful tool for fragment-based drug discovery: A proof of concept on thrombin. Anal. Chim. Acta, 2017, 984, 211-222.
[http://dx.doi.org/10.1016/j.aca.2017.06.035] [PMID: 28843566]
[77]
Farcaş, E.; Pochet, L.; Fillet, M. Transverse diffusion of laminar flow profiles as a generic capillary electrophoresis method for in-line nanoreactor mixing: Application to the investigation of antithrombotic activity. Talanta, 2018, 188, 516-521.
[http://dx.doi.org/10.1016/j.talanta.2018.06.014] [PMID: 30029407]
[78]
Tsai, K.C.; Huang, Y.C.; Liaw, C.C.; Tsai, C.I.; Chiou, C.T.; Lin, C.J.; Wei, W.C.; Lin, S.J.S.; Tseng, Y.H.; Yeh, K.M.; Lin, Y.L.; Jan, J.T.; Liang, J.J.; Liao, C.C.; Chiou, W.F.; Kuo, Y.H.; Lee, S.M.; Lee, M.Y.; Su, Y.C. A traditional Chinese medicine formula NRICM101 to target COVID-19 through multiple pathways: A bedside-to-bench study. Biomed. Pharmacother., 2021, 133, 111037.
[http://dx.doi.org/10.1016/j.biopha.2020.111037] [PMID: 33249281]
[79]
Zhu, T.; Wang, L.; Wang, L.; Wan, Q. Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: Applications for natural compounds from medicinal herbs. Biomed. Pharmacother., 2022, 148, 112719.
[http://dx.doi.org/10.1016/j.biopha.2022.112719] [PMID: 35168073]
[80]
Liao, L.X.; Song, X.M.; Wang, L.C.; Lv, H.N.; Chen, J.F.; Liu, D.; Fu, G.; Zhao, M.B.; Jiang, Y.; Zeng, K.W.; Tu, P.F. Highly selective inhibition of IMPDH2 provides the basis of antineuroinflammation therapy. Proc. Natl. Acad. Sci., 2017, 114(29), E5986-E5994.
[http://dx.doi.org/10.1073/pnas.1706778114] [PMID: 28674004]
[81]
Li, H.; Yu, Y.; Liu, Y.; Luo, Z.; Law, B.Y.K.; Zheng, Y.; Huang, X.; Li, W. Ursolic acid enhances the antitumor effects of sorafenib associated with Mcl-1-related apoptosis and SLC7A11-dependent ferroptosis in human cancer. Pharmacol. Res., 2022, 182, 106306.
[http://dx.doi.org/10.1016/j.phrs.2022.106306] [PMID: 35714823]
[82]
Lyu, J.; Ruan, C.; Zhang, X.; Wang, Y.; Li, K.; Ye, M. Microparticle-assisted precipitation screening method for robust drug target identification. Anal. Chem., 2020, 92(20), 13912-13921.
[http://dx.doi.org/10.1021/acs.analchem.0c02756] [PMID: 32933243]
[83]
Lyu, J.; Wang, Y.; Ruan, C.; Zhang, X.; Li, K.; Ye, M. Mechanical stress induced protein precipitation method for drug target screening. Anal. Chim. Acta, 2021, 1168, 338612.
[http://dx.doi.org/10.1016/j.aca.2021.338612] [PMID: 34051997]
[84]
Khwaza, V.; Oyedeji, O.O.; Aderibigbe, B.A. Ursolic acid-based derivatives as potential anti-cancer agents: An update. Int. J. Mol. Sci., 2020, 21(16), 5920.
[http://dx.doi.org/10.3390/ijms21165920] [PMID: 32824664]
[85]
Mlala, S.; Oyedeji, A.O.; Gondwe, M.; Oyedeji, O.O. Ursolic acid and its derivatives as bioactive agents. Molecules, 2019, 24(15), 2751.
[http://dx.doi.org/10.3390/molecules24152751] [PMID: 31362424]
[86]
Cui, Z.; Chen, P.; Li, C.; Deng, S.; Yang, H. Chip-DSF: A rapid screening strategy for drug protein targets. Pharmacol. Res., 2022, 182, 106346.
[http://dx.doi.org/10.1016/j.phrs.2022.106346] [PMID: 35809766]
[87]
Shusta, E.; Pepper, L.; Cho, Y.; Boder, E. A decade of yeast surface display technology: where are we now? Comb. Chem. High Throughput Screen., 2008, 11(2), 127-134.
[http://dx.doi.org/10.2174/138620708783744516] [PMID: 18336206]
[88]
Fan, S.; Liang, B.; Xiao, X.; Bai, L.; Tang, X.; Lojou, E.; Cosnier, S.; Liu, A. Controllable display of sequential enzymes on yeast surface with enhanced biocatalytic activity toward efficient enzymatic biofuel cells. J. Am. Chem. Soc., 2020, 142(6), 3222-3230.
[http://dx.doi.org/10.1021/jacs.9b13289] [PMID: 31999113]
[89]
Cheng, Z.; Wu, T. TLC bioautography: high throughput technique for screening of bioactive natural products. Comb. Chem. High Throughput Screen., 2013, 16(7), 531-549.
[http://dx.doi.org/10.2174/1386207311316070004] [PMID: 23597249]
[90]
Yuan, Y.C.; Bai, X.L.; Liu, Y.M.; Tang, X.Y.; Yuan, H.; Liao, X. Ligand fishing based on cell surface display of enzymes for inhibitor screening. Anal. Chim. Acta, 2021, 1156, 338359.
[http://dx.doi.org/10.1016/j.aca.2021.338359] [PMID: 33781459]
[91]
Chen, S.; Lovell, S.; Lee, S.; Fellner, M.; Mace, P.D.; Bogyo, M. Identification of highly selective covalent inhibitors by phage display. Nat. Biotechnol., 2021, 39(4), 490-498.
[http://dx.doi.org/10.1038/s41587-020-0733-7] [PMID: 33199876]
[92]
Ji, X.; Ge, L.; Ma, R.; Zhang, X.; Li, J.; Song, D.; Pei, L.; Sun, F.; Zhao, Q. Screening potential ligands of endothelin receptor A from Choerospondias axillaris and evaluation of their drug-like properties by affinity chromatographic methods. J. Pharm. Biomed. Anal., 2023, 226, 115240.
[http://dx.doi.org/10.1016/j.jpba.2023.115240] [PMID: 36657350]
[93]
Zhang, F.; Li, H.; Liu, C.; Fang, K.; Jiang, Y.; Wu, M.; Xiao, S.; Zhu, L.; Yu, J.; Li, S.; Wang, G. Lactate Dehydrogenase-Inhibitors Isolated from Ethyl Acetate Extract of Selaginella doederleinii by Using a Rapid Screening Method with Enzyme-Immobilized Magnetic Nanoparticles. Frontiers in Bioscience-Landmark, 2022, 27(8), 229.
[http://dx.doi.org/10.31083/j.fbl2708229] [PMID: 36042169]
[94]
Li, X.J.; Zhang, H.Y. Synergy in natural medicines: implications for drug discovery. Trends Pharmacol. Sci., 2008, 29(7), 331-332.
[http://dx.doi.org/10.1016/j.tips.2008.04.002] [PMID: 18502520]
[95]
Chen, L.; Wang, X.; Liu, Y.; Di, X. Dual-target screening of bioactive components from traditional Chinese medicines by hollow fiber-based ligand fishing combined with liquid chromatography–mass spectrometry. J. Pharm. Biomed. Anal., 2017, 143, 269-276.
[http://dx.doi.org/10.1016/j.jpba.2017.06.001] [PMID: 28623809]
[96]
Tang, D.; Zhu, J.X.; Wu, A.G.; Xu, Y.H.; Duan, T.T.; Zheng, Z.G.; Wang, R.S.; Li, D.; Zhu, Q. Pre-column incubation followed by fast liquid chromatography analysis for rapid screening of natural methylglyoxal scavengers directly from herbal medicines: Case study of Polygonum cuspidatum. J. Chromatogr. A, 2013, 1286, 102-110.
[http://dx.doi.org/10.1016/j.chroma.2013.02.058] [PMID: 23489496]
[97]
Rabie, A.M.; Eltayb, W.A. Potent dual polymerase/exonuclease inhibitory activities of antioxidant aminothiadiazoles against the COVID-19 omicron virus: a promising In Silico/In Vitro repositioning research study. Mol. Biotechnol., 2023, 5, 1-20.
[http://dx.doi.org/10.1007/s12033-022-00551-8] [PMID: 36690820]
[98]
Rabie, A.M.; Abdel-Dayem, M.A.; Abdalla, M. Promising experimental anti-SARS-CoV-2 agent “SLL-0197800”: the prospective universal inhibitory properties against the coming versions of the coronavirus. ACS Omega, 2023, 8(39), 35538-35554.
[http://dx.doi.org/10.1021/acsomega.2c08073] [PMID: 37810715]
[99]
Rabie, A.M. New potential inhibitors of coronaviral main protease (CoV-Mpro): strychnine bush, pineapple, and ginger could be natural enemies of COVID-19. Int. J. New. Chem., 2022, 9(3), 225-237.
[100]
Rabie, A.M. The informative nature of the disappeared SARS-CoV-2 genomic sequences: a mini-review with perspectives. Adv. Chemicobiol. Res., 2022, 58-64.
[101]
Rabie, A.M. RNA : The most attractive target in recent viral diseases. Chem. Biol. Drug Des., 2024, 103(1), e14404.
[http://dx.doi.org/10.1111/cbdd.14404] [PMID: 38092663]
[102]
Rabie, A.M. Potent toxic effects of Taroxaz-104 on the replication of SARS-CoV-2 particles. Chem. Biol. Interact., 2021, 343, 109480.
[http://dx.doi.org/10.1016/j.cbi.2021.109480] [PMID: 33887223]
[103]
Luo, H.; Qian, Y.; Qi, J.; Liu, X. A novel strategy for screening angiotensin-converting enzyme inhibitors from natural products based on enzyme-immobilized ligand fishing combined with active-site blocking and directional enrichment. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2022, 1195, 123203.
[http://dx.doi.org/10.1016/j.jchromb.2022.123203] [PMID: 35248900]
[104]
Chen, Y.; Liao, C.; Xu, J.; Yang, Y.; Qin, Z.; Shi, S.; Guo, Y. α-Glucosidase immobilized paper-based bioreactor: A platform for ligand screening and visual ratiometric evaluating inhibitory activity. Microchem. J., 2024, 198, 110134.
[http://dx.doi.org/10.1016/j.microc.2024.110134]

© 2024 Bentham Science Publishers | Privacy Policy