Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

A Novel Electrochemiluminescence (ECL) Immunoassay for the Quantitation of Monoclonal Antibody (mAb) PYX-106 in Human Serum

Author(s): Feng Yin*, Diana Adhikari, Xiaodong F. Liu, Jianxin Wang, Wensheng Yang, Gabriela A. Balogh, Teri Simon, Wenji Lei, Mariana Squicciarini, Lisa Bruce, Yan Ke, Mike Dyszel, Shawn Harriman* and Jan Pinkas*

Volume 20, Issue 6, 2024

Published on: 27 March, 2024

Page: [438 - 448] Pages: 11

DOI: 10.2174/0115734110293837240320042928

Price: $65

Abstract

Background: PYX-106 is a novel monoclonal antibody (mAb), targeting the sialic acidbinding immunoglobulin-like lectin 15 (Siglec-15) in the Tumor Microenvironment (TME). Precise measurement of PYX-106 is essential for the thorough assessment of PYX-106 pharmacokinetics in clinical investigations.

Methods: A novel Electrochemiluminescence (ECL) immunoassay for the quantitation of PYX- 106 in human serum was developed and validated. Biotinylated anti-PYX-106 antibody Bio-A1A1 was employed as the capture antibody, and ruthenylated anti-PYX-106 antibody Ru-A3G10 was utilized as the detection antibody in the ECL immunoassay on Meso Scale Discovery (MSD) platform.

Results: This assay was fully validated in terms of selectivity, accuracy, precision, hook effect, stability, etc., with a dynamic range from 50.0 to 2,500 ng/mL in human serum under the 2018 U.S. Food and Drug Administration (FDA) guidance and the 2022 U.S. FDA ICH M10 guidance.

Conclusion: PYX-106 bioanalytical assay validation was reported for the first time in a biological matrix, and this assay has been successfully applied to support a clinical trial PYX-106-101.

« Previous
Graphical Abstract

[1]
Wang, J.; Sun, J.; Liu, L.N.; Flies, D.B.; Nie, X.; Toki, M.; Zhang, J.; Song, C.; Zarr, M.; Zhou, X.; Han, X.; Archer, K.A.; O’Neill, T.; Herbst, R.S.; Boto, A.N.; Sanmamed, M.F.; Langermann, S.; Rimm, D.L.; Chen, L. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat. Med., 2019, 25(4), 656-666.
[http://dx.doi.org/10.1038/s41591-019-0374-x] [PMID: 30833750]
[2]
Poh, A. Siglec-15: An attractive immunotherapy target. Cancer Discov., 2020, 10(1), 7-8.
[http://dx.doi.org/10.1158/2159-8290.CD-NB2019-136] [PMID: 31806628]
[3]
Angata, T.; Tabuchi, Y.; Nakamura, K.; Nakamura, M. Siglec-15: An immune system Siglec conserved throughout vertebrate evolution. Glycobiology, 2007, 17(8), 838-846.
[http://dx.doi.org/10.1093/glycob/cwm049] [PMID: 17483134]
[4]
Cao, G.; Xiao, Z.; Yin, Z. Normalization cancer immunotherapy: Blocking Siglec-15! Signal Transduct. Target. Ther., 2019, 4(1), 10.
[http://dx.doi.org/10.1038/s41392-019-0045-x] [PMID: 31016034]
[5]
Guo, Z.; Zhang, R.; Yang, A.G.; Zheng, G. Diversity of immune checkpoints in cancer immunotherapy. Front. Immunol., 2023, 14, 1121285.
[http://dx.doi.org/10.3389/fimmu.2023.1121285] [PMID: 36960057]
[6]
Ren, X. Immunosuppressive checkpoint Siglec-15: A vital new piece of the cancer immunotherapy jigsaw puzzle. Cancer Biol. Med., 2019, 16(2), 205-210.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2018.0141] [PMID: 31516742]
[7]
Li, Q.; Huang, Z.; Chen, Y.; Yao, H.; Ke, Z.; He, X.; Qiu, M.; Wang, M.; Xiong, Z.; Yang, S. Integrative analysis of Siglec-15 mRNA in human cancers based on data mining. J. Cancer, 2020, 11(9), 2453-2464.
[http://dx.doi.org/10.7150/jca.38747] [PMID: 32201516]
[8]
Li, B.; Zhang, B.; Wang, X.; Zeng, Z.; Huang, Z.; Zhang, L.; Wei, F.; Ren, X.; Yang, L. Expression signature, prognosis value, and immune characteristics of Siglec-15 identified by pan-cancer analysis. OncoImmunology, 2020, 9(1), 1807291.
[http://dx.doi.org/10.1080/2162402X.2020.1807291] [PMID: 32939323]
[9]
Lu, Z.; Cheng, P.; Huang, F.; Li, J.; Wang, B.; Zou, S.; Zheng, Z.; Peng, C. Significance of Siglec-15 expression in colorectal cancer: Association with advanced disease stage and fewer tumor-infiltrating lymphocytes. J. Pathol. Clin. Res., 2023, 9(2), 121-128.
[http://dx.doi.org/10.1002/cjp2.303] [PMID: 36424637]
[10]
Takamiya, R.; Ohtsubo, K.; Takamatsu, S.; Taniguchi, N.; Angata, T. The interaction between Siglec-15 and tumor-associated sialyl-Tn antigen enhances TGF- secretion from monocytes/macrophages through the DAP12-Syk pathway. Glycobiology, 2013, 23(2), 178-187.
[http://dx.doi.org/10.1093/glycob/cws139] [PMID: 23035012]
[11]
Sheng, K.; Wu, Y.; Lin, H.; Fang, M.; Xue, C.; Lin, X.; Lin, X. Transcriptional regulation of Siglec-15 by ETS-1 and ETS-2 in hepatocellular carcinoma cells. Int. J. Mol. Sci., 2023, 24(1), 792.
[http://dx.doi.org/10.3390/ijms24010792] [PMID: 36614238]
[12]
Huang, R.; Zheng, J.; Shao, Y.; Zhu, L.; Yang, T. Siglec-15 as multifunctional molecule involved in osteoclast differentiation, cancer immunity and microbial infection. Prog. Biophys. Mol. Biol., 2023, 177, 34-41.
[http://dx.doi.org/10.1016/j.pbiomolbio.2022.10.006] [PMID: 36265694]
[13]
Angata, T. Siglec-15: A potential regulator of osteoporosis, cancer, and infectious diseases. J. Biomed. Sci., 2020, 27(1), 10.
[http://dx.doi.org/10.1186/s12929-019-0610-1] [PMID: 31900164]
[14]
Hao, J.Q.; Nong, J.Y.; Zhao, D.; Li, H.Y.; Su, D.; Zhou, L.J.; Dong, Y.J.; Zhang, C.; Che, N.Y.; Zhang, S.C.; Lin, J.Z.; Yang, J.B.; Zhang, H.T.; Wang, J.H. The significance of Siglec-15 expression in resectable non-small cell lung cancer. Neoplasma, 2020, 67(6), 1214-1222.
[PMID: 32749846]
[15]
Huang, Z.; Guo, Y.; Li, B.; Shen, M.; Yi, Y.; Li, L.; Zhao, X.; Yang, L. Siglec-15 on macrophages suppress the immune microenvironment in patients with PD-L1 negative non-metastasis lung adenocarcinoma. Cancer Gene Ther., 2023, 30.
[http://dx.doi.org/10.1038/s41417-023-00713-z] [PMID: 38072971]
[16]
Li, B.; Guo, Y.; Yi, Y.; Huang, Z.; Ren, Y.; Wang, H.; Yang, L. Non-spatial and spatial heterogeneity revealed a suppressive immune feature of Siglec-15 in lung adenocarcinomas. J. Transl. Med., 2023, 21(1), 599.
[http://dx.doi.org/10.1186/s12967-023-04489-6] [PMID: 37674198]
[17]
Lenza, M.P.; Egia-Mendikute, L.; Antoñana-Vildosola, A.; Soares, C.O.; Coelho, H.; Corzana, F.; Bosch, A.; Manisha, P.; Quintana, J.I.; Oyenarte, I.; Unione, L.; Moure, M.J.; Azkargorta, M.; Atxabal, U.; Sobczak, K.; Elortza, F.; Sutherland, J.D.; Barrio, R.; Marcelo, F.; Jiménez-Barbero, J.; Palazon, A.; Ereño-Orbea, J. Structural insights into Siglec-15 reveal glycosylation dependency for its interaction with T cells through integrin CD11b. Nat. Commun., 2023, 14(1), 3496.
[http://dx.doi.org/10.1038/s41467-023-39119-8] [PMID: 37311743]
[18]
Moreira, R.S.; da Silva, M.M.; de Melo Vasconcelos, C.F.; da Silva, T.D.; Cordeiro, G.G.; Mattos-Jr, L.A.R.; da Rocha Pitta, M.G.; de Melo Rêgo, M.J.B.; Pereira, M.C. Siglec 15 as a biomarker or a druggable molecule for non-small cell lung cancer. J. Cancer Res. Clin. Oncol., 2023, 149(19), 17651-17661.
[http://dx.doi.org/10.1007/s00432-023-05437-z] [PMID: 37843557]
[19]
Kang, F.; Chen, W.; Wang, L.; Zhang, Y. The diverse functions of Siglec-15 in bone remodeling and antitumor responses. Pharmacol. Res., 2020, 155, 104728.
[http://dx.doi.org/10.1016/j.phrs.2020.104728] [PMID: 32112821]
[20]
Ahmad, M.S.; Braoudaki, M.; Patel, H.; Ahmad, I. Shagufta; Siddiqui, S.S. Novel Siglec-15-Sia axis inhibitor leads to colorectal cancer cell death by targeting miR-6715b-3p and oncogenes. Front. Immunol., 2023, 14, 1254911.
[http://dx.doi.org/10.3389/fimmu.2023.1254911] [PMID: 37869015]
[21]
Wang, J.; Xu, L.; Ding, Q.; Li, X.; Wang, K.; Xu, S.; Liu, B. Siglec15 is a prognostic indicator and a potential tumor-related macrophage regulator that is involved in the suppressive immunomicroenvironment in gliomas. Front. Immunol., 2023, 14, 1065062.
[http://dx.doi.org/10.3389/fimmu.2023.1065062] [PMID: 37325664]
[22]
Jiang, K.Y.; Qi, L.L.; Liu, X.B.; Wang, Y.; Wang, L. Prognostic value of Siglec-15 expression in patients with solid tumors: A meta-analysis. Front. Oncol., 2023, 12, 1073932.
[http://dx.doi.org/10.3389/fonc.2022.1073932] [PMID: 36713548]
[23]
Shum, E.; Myint, H.; Shaik, J.; Zhou, Q.; Barbu, E.; Morawski, A.; Abukharma, H.; Liu, L.; Nelson, M.; Zeidan, S.; Cusumano, Z.; Tolcher, A.; Langermann, S.; Gutierrez, M.; Hamid, O. Clinical benefit through Siglec-15 targeting with NC318 antibody in subjects with Siglec-15 positive advanced solid tumors. Poster; Society for Immunotherapy of Cancer, 2021, p. 490.
[24]
Hu, J.; Yu, A.; Othmane, B.; Qiu, D.; Li, H.; Li, C.; Liu, P.; Ren, W.; Chen, M.; Gong, G.; Guo, X.; Zhang, H.; Chen, J.; Zu, X. Siglec15 shapes a non-inflamed tumor microenvironment and predicts the molecular subtype in bladder cancer. Theranostics, 2021, 11(7), 3089-3108.
[http://dx.doi.org/10.7150/thno.53649] [PMID: 33537076]
[25]
Hou, X.; Chen, C.; Lan, X.; He, X. Unveiling the molecular features, relevant immune and clinical characteristics of SIGLEC15 in thyroid cancer. Front. Immunol., 2022, 13, 975787.
[http://dx.doi.org/10.3389/fimmu.2022.975787] [PMID: 36159823]
[26]
Huang, S.; Ji, Z.; Xu, J.; Yang, Y.; Wu, B.; Chen, Q.; Geng, S.; Si, Y.; Chen, J.; Wei, Y.; Wang, C.; Ai, Z.; Jiang, J. Siglec15 promotes the migration of thyroid carcinoma cells by enhancing the EGFR protein stability. Glycobiology, 2023, 33(6), 464-475.
[http://dx.doi.org/10.1093/glycob/cwad037] [PMID: 37129515]
[27]
Shafi, S.; Aung, T.N.; Robbins, C.; Zugazagoitia, J.; Vathiotis, I.; Gavrielatou, N.; Yaghoobi, V.; Fernandez, A.; Niu, S.; Liu, L.N.; Cusumano, Z.T.; Leelatian, N.; Cole, K.; Wang, H.; Homer, R.; Herbst, R.S.; Langermann, S.; Rimm, D.L. Development of an immunohistochemical assay for Siglec-15. Lab. Invest., 2022, 102(7), 771-778.
[http://dx.doi.org/10.1038/s41374-022-00785-9] [PMID: 35459795]
[28]
Chen, Q.; Chen, B.; Wang, C.; Hu, L.; Wu, Q.; Zhu, Y.; Zhang, Q. Dynamic change in Siglec-15 expression in peritumoral macrophages confers an immunosuppressive microenvironment and poor outcome in glioma. Front. Immunol., 2023, 14, 1159085.
[http://dx.doi.org/10.3389/fimmu.2023.1159085] [PMID: 37234161]
[29]
Li, H.; Zhu, R.; Liu, X.; Zhao, K.; Hong, D. Siglec-15 regulates the inflammatory response and polarization of tumor-associated macrophages in pancreatic cancer by inhibiting the cGAS-STING signaling pathway. Oxid. Med. Cell. Longev., 2022, 2022, 3341038.
[http://dx.doi.org/10.1155/2022/3341038] [PMID: 36105484]
[30]
Zhang, C.; Zhou, L.; Li, S.; Zhao, J.; Meng, X.; Ma, L.; Wang, Y.; Li, C.; Zheng, L.; Ming, L. Obesity accelerates immune evasion of non-small cell lung carcinoma via TFEB-dependent upregulation of Siglec-15 and glycolytic reprogramming. Cancer Lett., 2022, 550, 215918.
[http://dx.doi.org/10.1016/j.canlet.2022.215918] [PMID: 36150633]
[31]
Pillsbury, C.E.; Fonseca, J.A.; Dougan, J.; Abukharma, H.; Gonzalez-Flamenco, G.; Park, S.I.; Liu, L.N.; Porter, C.C. Siglec-15 is a novel immunomodulatory protein and therapeutic target in acute lymphoblastic leukemia. Blood, 2021, 138(suppl. 1), 515-516.
[http://dx.doi.org/10.1182/blood-2021-153647]
[32]
Pillsbury, C.E.; Fonseca, J.A.; Dougan, J.; Abukharma, H.; Liu, L.N.; Porter, C.C. Siglec-15 is a novel immunomodulatory protein and therapeutic target in childhood leukemia. Blood, 2020, 136(suppl. 1), 6-7.
[http://dx.doi.org/10.1182/blood-2020-142833]
[33]
Francis, D.B.; Dougan, J.; Pillsbury, C.; Park, S.; Langermann, S.; Koff, J.L.; Li, Z.; Flowers, C.R.; Porter, C.C. The immune checkpoint Siglec-15 in promoting immune dysregulation in non-Hodgkin’s lymphomas. Blood, 2023, 142(suppl. 1), 4367-4369.
[http://dx.doi.org/10.1182/blood-2023-190405]
[34]
Cao, X.; Zhou, Y.; Mao, F.; Lin, Y.; Zhou, X.; Sun, Q. Identification and characterization of three Siglec15-related immune and prognostic subtypes of breast-invasive cancer. Int. Immunopharmacol., 2022, 106, 108561.
[http://dx.doi.org/10.1016/j.intimp.2022.108561] [PMID: 35151947]
[35]
Li, T.J.; Jin, K.Z.; Li, H.; Ye, L.Y.; Li, P.C.; Jiang, B.; Lin, X.; Liao, Z.Y.; Zhang, H.R.; Shi, S.M.; Lin, M.X.; Fei, Q.L.; Xiao, Z.W.; Xu, H.X.; Liu, L.; Yu, X.J.; Wu, W.D. SIGLEC15 amplifies immunosuppressive properties of tumor-associated macrophages in pancreatic cancer. Cancer Lett., 2022, 530, 142-155.
[http://dx.doi.org/10.1016/j.canlet.2022.01.026] [PMID: 35077803]
[36]
Liu, X.; Zhang, Q.; Liang, Y.; Xiong, S.; Cai, Y.; Cao, J.; Xu, Y.; Xu, X.; Wu, Y.; Lu, Q.; Xu, X.; Luo, B. Nanoparticles (NPs)-mediated Siglec15 silencing and macrophage repolarization for enhanced cancer immunotherapy. Acta Pharm. Sin. B, 2023, 13(12), 5048-5059.
[http://dx.doi.org/10.1016/j.apsb.2023.07.012] [PMID: 38045048]
[37]
Murugesan, G.; Correia, V.G.; Palma, A.S.; Chai, W.; Li, C.; Feizi, T.; Martin, E.; Laux, B.; Franz, A.; Fuchs, K.; Weigle, B.; Crocker, P.R. Siglec-15 recognition of sialoglycans on tumor cell lines can occur independently of sialyl Tn antigen expression. Glycobiology, 2021, 31(1), 44-54.
[PMID: 32501471]
[38]
Liang, H.; Chen, Q.; Hu, Z.; Zhou, L.; Meng, Q.; Zhang, T.; Wang, B.; Ge, Y.; Lu, S.; Ding, W.; Zhou, X.; Li, X.; Lin, H.; Jiang, L.; Dong, J. Siglec15 facilitates the progression of non-small cell lung cancer and is correlated with spinal metastasis. Ann. Transl. Med., 2022, 10(6), 281.
[http://dx.doi.org/10.21037/atm-22-764] [PMID: 35434017]
[39]
Liang, H.; Zhou, L.; Hu, Z.; Ge, Y.; Zhang, T.; Chen, Q.; Wang, B.; Lu, S.; Ding, W.; Dong, J.; Xue, F.; Jiang, L. Siglec15 checkpoint blockade for simultaneous immunochemotheraphy and osteolysis inhibition in lung adenocarcinoma spinal metastasis via a hollow nanoplatform. Small, 2022, 18(29), 2107787.
[http://dx.doi.org/10.1002/smll.202107787] [PMID: 35751455]
[40]
Sun, J.; Lu, Q.; Sanmamed, M.F.; Wang, J. Siglec-15 as an emerging target for next-generation cancer immunotherapy. Clin. Cancer Res., 2021, 27(3), 680-688.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-2925] [PMID: 32958700]
[41]
Shafi, S.; Aung, T.N.; Xirou, V.; Gavrielatou, N.; Vathiotis, I.A.; Fernandez, A.; Moutafi, M.; Yaghoobi, V.; Herbst, R.S.; Liu, L.N.; Langermann, S.; Rimm, D.L. Quantitative assessment of Siglec-15 expression in lung, breast, head, and neck squamous cell carcinoma and bladder cancer. Lab. Invest., 2022, 102(10), 1143-1149.
[http://dx.doi.org/10.1038/s41374-022-00796-6] [PMID: 35581307]
[42]
Chen, X.; Mo, S.; Zhang, Y.; Ma, H.; Lu, Z.; Yu, S.; Chen, J. Analysis of a novel immune checkpoint, Siglec-15, in pancreatic ductal adenocarcinoma. J. Pathol. Clin. Res., 2022, 8(3), 268-278.
[http://dx.doi.org/10.1002/cjp2.260] [PMID: 35083884]
[43]
Zhao, J.; Yang, H.; Hu, H.; Liu, C.; Wei, M.; Zhao, Y.; Chen, Y.; Cui, Y.; Chen, P.; Xiong, K.; Lu, Y.; Yang, H.; Yang, L. Prognostic value of PD-L1 and Siglec-15 expression in patients with nasopharyngeal carcinoma. Sci. Rep., 2022, 12(1), 10401.
[http://dx.doi.org/10.1038/s41598-022-13997-2] [PMID: 35729260]
[44]
Fudaba, H.; Momii, Y.; Hirakawa, T.; Onishi, K.; Asou, D.; Matsushita, W.; Kawasaki, Y.; Sugita, K.; Fujiki, M. Sialic acid-binding immunoglobulin-like lectin-15 expression on peritumoral macrophages is a favorable prognostic factor for primary central nervous system lymphoma patients. Sci. Rep., 2021, 11(1), 1206.
[http://dx.doi.org/10.1038/s41598-020-79742-9] [PMID: 33441719]
[45]
Rashid, S.; Song, D.; Yuan, J.; Mullin, B.H.; Xu, J. Molecular structure, expression, and the emerging role of Siglec-15 in skeletal biology and cancer. J. Cell. Physiol., 2022, 237(3), 1711-1719.
[http://dx.doi.org/10.1002/jcp.30654] [PMID: 34893976]
[46]
Zhou, S.; Wang, Y.; Zhang, R.; Zeng, W.; Liu, S.; Liu, S.; Liu, M.; Yang, H.; Xi, M. Association of sialic acid-binding immunoglobulin-like lectin-15 with phenotypes in esophageal squamous cell carcinoma in the setting of neoadjuvant chemoradiotherapy. JAMA Netw. Open, 2023, 6(1), e2250965.
[http://dx.doi.org/10.1001/jamanetworkopen.2022.50965] [PMID: 36648946]
[47]
Peng, Z.; Liu, X.F.; Xia, S.; Liu, J.; Li, H.; Liu, Y.; Davis, H.M.; Chen, M.; Ma, M.Z. BSI-060T, a high affinity, fully human anti-siglec-15 antibody as an alternative immune checkpoint block. Poster; American Association for Cancer Research, 2022, p. 5522.
[48]
Spira, A.I.; Gordon, M.; Henry, J.; Patel, S.P.; Sehgal, K.; Sen, S.; Sweis, R.; Crochiere, M.; He, S.; Smyrnios, S.; Unadkat, D.; Zhang, B.; Tolcher, A.W. First-in-human, open-label, multicenter, phase 1 clinical study to evaluate safety, tolerability, pharmacokinetics and pharmacodynamics of anti siglec-15 PYX-106 in subjects with advanced solid tumors. Poster; Society for Immunotherapy of Cancer, 2023, p. 756.
[http://dx.doi.org/10.1136/jitc-2023-SITC2023.0756]
[49]
Yin, F.; Ling, Y.; Keller, J.; Kraus, D.; Narayanaswamy, R.; Mangus, H.; Li, F.; Yang, H.; Liu, G. Quantitation of 2-hydroxyglutarate in human plasma via LC–MS/MS using a surrogate analyte approach. Bioanalysis, 2020, 12(16), 1149-1159.
[http://dx.doi.org/10.4155/bio-2020-0131] [PMID: 32757862]
[50]
Yin, F.; Keller, J.; Kraus, D.; Mangus, H.; Li, F.; Liu, G. A double surrogate approach for the quantitation of 2-Hydroxyglutarate: An oncometabolite in human brain tumors via LC-MS/MS. J. Pharm. Biomed. Anal., 2020, 179, 112916.
[http://dx.doi.org/10.1016/j.jpba.2019.112916] [PMID: 31732406]
[51]
Yin, F.; Yu, S.; Narayanaswamy, R.; Mangus, H.; McCourt, E.; Liu, G. Quantitation of ivosidenib in human plasma via LC–MS/MS and its application in clinical trials. Bioanalysis, 2021, 13(11), 875-889.
[http://dx.doi.org/10.4155/bio-2021-0034] [PMID: 33998826]
[52]
Yin, F.; Ling, Y.; Martin, J.; Narayanaswamy, R.; McIntosh, L.; Li, F.; Liu, G. Quantitation of uridine and L-dihydroorotic acid in human plasma by LC–MS/MS using a surrogate matrix approach. J. Pharm. Biomed. Anal., 2021, 192, 113669.
[http://dx.doi.org/10.1016/j.jpba.2020.113669] [PMID: 33120310]
[53]
Yin, F.; DeCiantis, C.; Pinkas, J.; Das, B.; Wang, F.; Zheng, N.; Hahn, D.; Amrite, A.; Adhikari, D.; Kane, C.; Sikora, J.; Pittman, J.; Wates, R.; Shaheen, E.; Harriman, S. Quantification of antibody–drug conjugate PYX-201 in rat and monkey plasma via ELISA and its application in preclinical studies. Bioanalysis, 2023, 15(1), 43-52.
[http://dx.doi.org/10.4155/bio-2022-0233] [PMID: 36876967]
[54]
Yin, F.; Adhikari, D.; Sun, M.; Shane Woolf, M.; Ma, E.; Mylott, W.; Shaheen, E.; Harriman, S.; Pinkas, J. Bioanalysis of an antibody drug conjugate (ADC) PYX-201 in human plasma using a hybrid immunoaffinity LC–MS/MS approach. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2023, 1223, 123715.
[http://dx.doi.org/10.1016/j.jchromb.2023.123715] [PMID: 37094503]
[55]
Yin, F.; DeCiantis, C.; Pinkas, J.; Das, B.; Wang, F.; Zheng, N.; Hahn, D.; Amrite, A.; Feng, J.; Adhikari, D.; Kane, C.; Sikora, J.; Pittman, J.; Wates, R.; Shaheen, E.; Harriman, S. Quantitation of total antibody (tAb) from antibody drug conjugate (ADC) PYX-201 in rat and monkey plasma using an enzyme-linked immunosorbent assay (ELISA) and its application in preclinical studies. J. Pharm. Biomed. Anal., 2023, 233, 115452.
[http://dx.doi.org/10.1016/j.jpba.2023.115452] [PMID: 37167766]
[56]
Yin, F.; Adhikari, D.; Peay, M.; Cortes, D.; Garada, M.; Shane Woolf, M.; Ma, E.; Lebarbenchon, D.; Mylott, W.; Dyszel, M.; Harriman, S.; Pinkas, J. Development and validation of a hybrid immunoaffinity LC–MS/MS assay for quantitation of total antibody (TAb) from an antibody drug conjugate (ADC) PYX-201 in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2023, 1228, 123844.
[http://dx.doi.org/10.1016/j.jchromb.2023.123844] [PMID: 37579604]
[57]
Yin, F.; Adhikari, D.; Li, Y.; Turner, D.; Shane Woolf, M.; Lebarbenchon, D.; Ma, E.; Mylott, W.; Shaheen, E.; Harriman, S.; Pinkas, J. A sensitive and rapid LC-MS/MS assay for quantitation of free payload Aur0101 from antibody drug conjugate (ADC) PYX-201 in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2023, 1226, 123786.
[http://dx.doi.org/10.1016/j.jchromb.2023.123786] [PMID: 37352642]
[58]
Yin, F.; Ahsan, F.; Pinkas, J.; Das, B.; Wang, F.; Zheng, N.; Hahn, D.; Amrite, A.; Feng, J.; Adhikari, D.; Sikora, J.; Shaheen, E.; Harriman, S. A sensitive LC–MS/MS assay to quantitate free payload Aur0101 from ADC PYX-201 in rat and monkey plasma. Bioanalysis, 2023, 15(14), 833-843.
[http://dx.doi.org/10.4155/bio-2023-0056] [PMID: 37584364]
[59]
Wang, J.; Wang, M.R. Comparative analysis of electrochemiluminescence immunoassay and chemiluminescent microparticle immunoassay abilities to quantitatively assess hepatitis B surface antigen Zhonghua Gan Zang Bing Za Zhi, 2013, 21(3), 192-195.
[PMID: 23967740]
[60]
Brown, K.; Blake, R.S.; Dennany, L. Electrochemiluminescence within veterinary Science: A review. Bioelectrochemistry, 2022, 146, 108156.
[http://dx.doi.org/10.1016/j.bioelechem.2022.108156] [PMID: 35598500]
[61]
Wu, J.; Ju, H.X. Clinical immunoassays and immunosensing. Book. Comprehen. Sampl. Sample Prepar., 2012, 3, 143-167.
[http://dx.doi.org/10.1016/B978-0-12-381373-2.00071-5]
[62]
Miao, W. Electrogenerated chemiluminescence and its biorelated applications. Chem. Rev., 2008, 108(7), 2506-2553.
[http://dx.doi.org/10.1021/cr068083a] [PMID: 18505298]
[63]
Zhao, W.; Chen, H.Y.; Xu, J.J. Electrogenerated chemiluminescence detection of single entities. Chem. Sci., 2021, 12(16), 5720-5736.
[http://dx.doi.org/10.1039/D0SC07085H] [PMID: 34168801]
[64]
Kuhle, J.; Barro, C.; Andreasson, U.; Derfuss, T.; Lindberg, R.; Sandelius, Å.; Liman, V.; Norgren, N.; Blennow, K.; Zetterberg, H. Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin. Chem. Lab. Med. (CCLM), 2016, 54(10), 1655-1661.
[http://dx.doi.org/10.1515/cclm-2015-1195] [PMID: 27071153]
[65]
Dong, Y.P.; Zhou, Y.; Wang, J.; Zhu, J.J. Electrogenerated chemiluminescence resonance energy transfer between Ru(bpy)32+ electrogenerated chemiluminescence and gold nanoparticles/graphene oxide nanocomposites with graphene oxide as coreactant and its sensing application. Anal. Chem., 2016, 88(10), 5469-5475.
[http://dx.doi.org/10.1021/acs.analchem.6b00921] [PMID: 27101322]
[66]
Yang, J.J.; Cao, J.T.; Wang, Y.L.; Wang, H.; Liu, Y.M.; Ma, S.H. Sandwich-like electrochemiluminescence aptasensor based on dual quenching effect from hemin-graphene nanosheet and enzymatic biocatalytic precipitation for sensitive detection of carcinoembryonic antigen. J. Electroanal. Chem., 2017, 787, 88-94.
[http://dx.doi.org/10.1016/j.jelechem.2017.01.044]
[67]
Li, Q.; Xu, K.; Zhang, H.; Huang, Z.; Xu, C.; Zhou, Z.; Peng, H.; Shi, L. Ultrasensitive eletrochemiluminescence immunoassay based on signal amplification of 0D Au-2D WS2 nano-hybrid materials. Biosensors, 2022, 13(1), 58.
[http://dx.doi.org/10.3390/bios13010058] [PMID: 36671893]
[68]
Gao, X.; Ren, X.; Ai, Y.; Li, M.; Zhang, B.; Zou, G. Dual-potential encoded electrochemiluminescence for multiplexed gene assay with one luminophore as tag. Biosens. Bioelectron., 2023, 236, 115418.
[http://dx.doi.org/10.1016/j.bios.2023.115418] [PMID: 37279619]
[69]
Liu, D.; Gebreab, Y.B.; Hu, J.; Zhou, L.; Zhang, N.; Tong, H.; Chen, B.; Wang, X. Development and evaluation of an anti-biotin interference method in biotin-streptavidin immunoassays. Diagnostics, 2022, 12(7), 1729.
[http://dx.doi.org/10.3390/diagnostics12071729] [PMID: 35885633]
[70]
Yoo, S.M.; Jeon, Y.M.; Heo, S.Y. Electrochemiluminescence systems for the detection of biomarkers: Strategical and technological advances. Biosensors, 2022, 12(9), 738.
[http://dx.doi.org/10.3390/bios12090738] [PMID: 36140123]
[71]
Aoyama, M.; Mano, Y. Application of an electrochemiluminescence assay for quantification of E6011, an antifractalkine monoclonal antibody, to pharmacokinetic studies in monkeys and humans. J. Clin. Lab. Anal., 2019, 33(1), e22625.
[http://dx.doi.org/10.1002/jcla.22625] [PMID: 30030862]
[72]
Bolton, J.S.; Chaudhury, S.; Dutta, S.; Gregory, S.; Locke, E.; Pierson, T.; Bergmann-Leitner, E.S. Comparison of ELISA with electro-chemiluminescence technology for the qualitative and quantitative assessment of serological responses to vaccination. Malar. J., 2020, 19(1), 159.
[http://dx.doi.org/10.1186/s12936-020-03225-5] [PMID: 32303235]
[73]
Hao, N.; Wang, K. Recent development of electrochemiluminescence sensors for food analysis. Anal. Bioanal. Chem., 2016, 408(25), 7035-7048.
[http://dx.doi.org/10.1007/s00216-016-9548-2] [PMID: 27086020]
[74]
Ravalli, A.; Voccia, D.; Palchetti, I.; Marrazza, G. Electrochemical, electrochemiluminescence, and photoelectrochemical aptamer-based nanostructured sensors for biomarker analysis. Biosensors, 2016, 6(3), 39.
[http://dx.doi.org/10.3390/bios6030039] [PMID: 27490578]
[75]
U.S. FDA. Guidance for industry, bioanalytical method validation. 2018. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry
[76]
U.S. Department of Health and Human Services FDA, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER), Guidance for Industry, M10 bioanalytical method validation and study sample analysis, 2022. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/m10-bioanalytical-method-validation-and-study-sample-analysis

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy