Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Electrochemical Detection of Nitrofurantoin using Green Synthesized Silver-doped Palladium Nanocluster-Modified Sensor

Author(s): Rounak Subash, Gokul Sridharan, Deepak Nallaswamy, Raji Atchudan, Sandeep Arya and Ashok K. Sundramoorthy*

Volume 14, Issue 3, 2024

Published on: 25 March, 2024

Article ID: e250324228304 Pages: 9

DOI: 10.2174/0122106812282033240320102203

Price: $65

Abstract

Aim: This study presents a novel green synthesis approach for successfully fabricating silver-doped palladium nanoclusters (Ag-Pd NCs) using the aqueous leaf extract of Strobilanthes kunthiana as a reducing and stabilizing agent.

Background: The environmentally benign method offers a sustainable alternative to conventional chemical synthesis, circumventing hazardous chemicals and minimizing the generation of toxic byproducts.

Objective: The successful green synthesis of Ag-Pd NCs using Strobilanthes kunthiana leaf extract and their application as an efficient electrochemical sensing platform for determining nitrofurantoin (NFT).

Method: The synthesized Ag-Pd NCs were extensively characterized by using diverse analytical techniques, including UV-Vis spectroscopy, X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and cyclic voltammetry (CV).

Results: As-synthesized Ag-Pd NCs were employed as a sensing platform for electrochemical detection of NFT, an important antibiotic widely used in clinical applications. The electrochemical method demonstrated a remarkable sensitivity of about 1.56 μA μM−1 cm−2, the lowest detection limit (LOD) of 3.2 μM and a linear range of determination from 5 to 210 μM. This new electrochemical sensor exhibited excellent stability and reproducibility, making it suitable for practical applications in real-world samples.

Conclusion: The green synthesis of Ag-Pd NCs using Strobilanthes kunthiana leaf extract and their application as an efficient electrochemical sensing platform for detecting NFT was demonstrated. The combination of green synthesis and advanced electrochemical sensing underscores the potential of these nanomaterials in developing environmentally friendly sensors for pharmaceutical analysis and clinical diagnostics. The findings presented herein will contribute to the growing field of green nanotechnology and sustainable sensor development for advanced healthcare and environmental monitoring.

Graphical Abstract

[1]
Muller, A.E.; Verhaegh, E.M.; Harbarth, S.; Mouton, J.W.; Huttner, A. Nitrofurantoin’s efficacy and safety as prophylaxis for urinary tract infections: A systematic review of the literature and meta-analysis of controlled trials. Clin. Microbiol. Infect., 2017, 23(6), 355-362.
[http://dx.doi.org/10.1016/j.cmi.2016.08.003] [PMID: 27542332]
[2]
Gardiner, B.J.; Stewardson, A.J.; Abbott, I.J.; Peleg, A.Y. Nitrofurantoin and fosfomycin for resistant urinary tract infections: Old drugs for emerging problems. Aust. Prescr., 2019, 42(1), 14-19.
[http://dx.doi.org/10.18773/austprescr.2019.002] [PMID: 30765904]
[3]
Karpman, E.; Kurzrock, E.A. Adverse reactions of nitrofurantoin, trimethoprim and sulfamethoxazole in children. J. Urol., 2004, 172(2), 448-453.
[http://dx.doi.org/10.1097/01.ju.0000130653.74548.d6] [PMID: 15247700]
[4]
Kabbara, W.K.; Kordahi, M.C. Nitrofurantoin-induced pulmonary toxicity: A case report and review of the literature. J. Infect. Public Health, 2015, 8(4), 309-313.
[http://dx.doi.org/10.1016/j.jiph.2015.01.007] [PMID: 25747822]
[5]
Martins, M.; Mourato, C.; Sanches, S.; Noronha, J.P.; Crespo, M.T.B.; Pereira, I.A.C. Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds. Water Res., 2017, 108, 160-168.
[http://dx.doi.org/10.1016/j.watres.2016.10.071] [PMID: 27817891]
[6]
Koskun, Y. ; Şavk, A.; Şen, B.; Şen, F. Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites. Anal. Chim. Acta, 2018, 1010, 37-43.
[http://dx.doi.org/10.1016/j.aca.2018.01.035] [PMID: 29447669]
[7]
Chen, X.; Li, G.; Zhang, G.; Hou, K.; Pan, H.; Du, M. Self-assembly of palladium nanoparticles on functional TiO2 nanotubes for a nonenzymatic glucose sensor. Mater. Sci. Eng. C, 2016, 62, 323-328.
[http://dx.doi.org/10.1016/j.msec.2016.01.068] [PMID: 26952430]
[8]
Sharma, J.N.; Pattadar, D.K.; Mainali, B.P.; Zamborini, F.P. Size determination of metal nanoparticles based on electrochemically measured surface-area-to-volume ratios. Anal. Chem., 2018, 90(15), 9308-9314.
[http://dx.doi.org/10.1021/acs.analchem.8b01905] [PMID: 29926722]
[9]
Nagarajan, R.D.; Kavitha, J.; Sundramoorthy, A.K.; Atchudan, R.; Arya, S.; Kamalasekaran, K.; Khosla, A. Electrochemical detection and isolation of cancer cells using nano-materials based biosensors: A review. Int. J. Electrochem. Sci., 2023, 18(7), 100203.
[http://dx.doi.org/10.1016/j.ijoes.2023.100203]
[10]
Magesh, V.; Kothari, V.S.; Ganapathy, D.; Atchudan, R.; Arya, S.; Nallaswamy, D.; Sundramoorthy, A.K. Using sparfloxacin-capped gold nanoparticles to modify a screen-printed carbon electrode sensor for ethanol determination. Sensors , 2023, 23(19), 8201.
[http://dx.doi.org/10.3390/s23198201] [PMID: 37837031]
[11]
Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Nat., 2014, 6(1), 35-44.
[http://dx.doi.org/10.32607/20758251-2014-6-1-35-44] [PMID: 24772325]
[12]
Ajaykumar, A.P.; Sabira, O.; Sebastian, M.; Varma, S.R.; Roy, K.B.; Binitha, V.S.; Rasheed, V.A.; Jayaraj, K.N.; Vignesh, A.R. A novel approach for the biosynthesis of silver nanoparticles using the defensive gland extracts of the beetle, Luprops tristis Fabricius. Sci. Rep., 2023, 13(1), 10186.
[http://dx.doi.org/10.1038/s41598-023-37175-0] [PMID: 37349362]
[13]
AlNadhari, S.; Al-Enazi, N.M.; Alshehrei, F.; Ameen, F. A review on biogenic synthesis of metal nanoparticles using marine algae and its applications. Environ. Res., 2021, 194, 110672.
[http://dx.doi.org/10.1016/j.envres.2020.110672] [PMID: 33373611]
[14]
Mashwani, Z.R.; Khan, M.A.; Khan, T.; Nadhman, A. Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles. Adv. Colloid Interface Sci., 2016, 234, 132-141.
[http://dx.doi.org/10.1016/j.cis.2016.04.008] [PMID: 27181393]
[15]
Wangkheirakpam, S.D.; Devi, W.R.; Singh, C.B.; Laitonjam, W.S. Green synthesis of silver nanoparticles using strobilanthes flaccidifolius nees. leaf extract and its antibacterial activity. J. Advan. Chem., 2016, 8(1), 1523-1532.
[http://dx.doi.org/10.24297/jac.v8i1.4033]
[16]
Murugan, R.V.; Sridharan, G.; Atchudan, R.; Arya, S.; Nallaswamy, D.; Sundramoorthy, A. A facile synthesis of bimetallic copper-silver nanocomposite and their application in ascorbic acid detection. Curr. Nanosci., 2024, 20, 1-10.
[http://dx.doi.org/10.2174/0115734137281377240103062220]
[17]
Bard, A.J.; Faulkner, L.R.; White, H.S. Electrochemical methods: fundamentals and applications; John Wiley & Sons, 2022.
[18]
Holze, R.; Compton, R.G.; Banks, C.E. Understanding cyclic voltammetry. J. Solid State Electrochem., 2009, 13(10), 1629-1632.
[http://dx.doi.org/10.1007/s10008-008-0753-6]
[19]
Kissinger, P.T.; Heineman, W.R. Cyclic voltammetry. J. Chem. Educ., 1983, 60(9), 702.
[http://dx.doi.org/10.1021/ed060p702]
[20]
Scholz, F. Books on fundamental electrochemistry and electroanalytical techniques. In: Electroanalytical Methods; Springer Berlin Heidelberg, 2010, pp. 343-345.
[http://dx.doi.org/10.1007/978-3-642-02915-8_19]
[21]
Sridharan, G.; Atchudan, R.; Magesh, V.; Arya, S.; Ganapathy, D.; Nallaswamy, D.; Sundramoorthy, A.K. Advanced electrocatalytic materials based biosensors for cancer cell detection: A review. Electroanalysis, 2023, 35(9), e202300093.
[http://dx.doi.org/10.1002/elan.202300093]
[22]
Sridharan, G.; Ganapathy, D.; Ramadoss, R.; Atchudan, R.; Arya, S.; Sundramoorthy, A.K. Biosensors for rapid and accurate determination of oral cancer. Oral Oncology Reports, 2023, 5, 100021.
[http://dx.doi.org/10.1016/j.oor.2023.100021]
[23]
Zanjage, A.; Khan, S.A. Ultra-fast synthesis of antibacterial and photo catalyst silver nanoparticles using neem leaves. JCIS Open, 2021, 3, 100015.
[http://dx.doi.org/10.1016/j.jciso.2021.100015]
[24]
Basavegowda, N.; Mishra, K.; Lee, Y.R. Ultrasonic-assisted green synthesis of palladium nanoparticles and their nanocatalytic application in multicomponent reaction. New J. Chem., 2015, 39(2), 972-977.
[http://dx.doi.org/10.1039/C4NJ01543F]
[25]
Mohan Kumar, K.; Mandal, B.K.; Siva Kumar, K.; Sreedhara Reddy, P.; Sreedhar, B. Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 102, 128-133.
[http://dx.doi.org/10.1016/j.saa.2012.10.015] [PMID: 23220527]
[26]
Athilakshmi, J.; Chand, D.K. Synthesis of azamacrocycle stabilized palladium nanoparticles: Controlled size and one-dimensional growth. J. Chem. Sci., 2011, 123(6), 875-881.
[http://dx.doi.org/10.1007/s12039-011-0165-5]
[27]
Siddiqi, K.S.; Husen, A. Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Res. Lett., 2016, 11(1), 482.
[http://dx.doi.org/10.1186/s11671-016-1695-z] [PMID: 27807824]
[28]
Momeni, S.; Nabipour, I. A simple green synthesis of palladium nanoparticles with sargassum alga and their electrocatalytic activities towards hydrogen peroxide. Appl. Biochem. Biotechnol., 2015, 176(7), 1937-1949.
[29]
Berta, L.; Coman, N.A.; Rusu, A.; Tanase, C. A review on plant-mediated synthesis of bimetallic nanoparticles, characterisation and their biological applications. Materials , 2021, 14(24), 7677.
[http://dx.doi.org/10.3390/ma14247677] [PMID: 34947271]
[30]
Nagarajan, R.D.; Magesh, V.; Sundramoorthy, A.K.; Murugan, P.; Atchudan, R.; Ganapathy, D.; Arya, S.; Mahmoud Karami, A.; Govindasamy, M. Graphene nanoribbons/manganese oxide nanocomposite modified electrode for detection of antimicrobial drug nitrofurantoin. J. Nanomater., 2023, 2023, 1-13.
[http://dx.doi.org/10.1155/2023/5484059]
[31]
Sridharan, G.; Godwin, C.J.T.; Atchudan, R.; Arya, S.; Govindasamy, M.; Osman, S.M.; Sundramoorthy, A.K. Iron oxide decorated hexagonal boron nitride modified electrochemical sensor for the detection of nitrofurantoin in human urine samples. J. Taiwan Inst. Chem. Eng., 2024, 105320.
[http://dx.doi.org/10.1016/j.jtice.2023.105320]
[32]
Kumar, S.A.; Chen, S.M. Myoglobin/arylhydroxylamine film modified electrode: Direct electrochemistry and electrochemical catalysis. Talanta, 2007, 72(2), 831-838.
[http://dx.doi.org/10.1016/j.talanta.2006.10.038] [PMID: 19071694]
[33]
Wei, X.; Zeng, L.; Lu, W.; Miao, J.; Zhang, R.; Zhou, M.; Zhang, J. A polypyrrole-modified pd-ag bimetallic electrode for the electrocatalytic reduction of 4-chlorophenol. Catalysts, 2019, 9(11), 931.
[http://dx.doi.org/10.3390/catal9110931]
[34]
Sridharan, G.; Babu, K.L.; Ganapathy, D.; Atchudan, R.; Arya, S.; Sundramoorthy, A.K. Determination of nicotine in human saliva using electrochemical sensor modified with green synthesized silver nanoparticles using Phyllanthus reticulatus fruit extract. Crystals , 2023, 13(4), 589.
[http://dx.doi.org/10.3390/cryst13040589]
[35]
Murugan, P.; Nagarajan, R.D.; Sundramoorthy, A.K.; Ganapathy, D.; Atchudan, R.; Nallaswamy, D.; Khosla, A. Electrochemical detection of H2O2 using an activated glassy carbon electrode. ECS Sens. Plus, 2022, 1(3), 034401.
[http://dx.doi.org/10.1149/2754-2726/ac7c78]
[36]
He, B.; Li, J. A sensitive electrochemical sensor based on reduced graphene oxide/Fe3O4 nanorod composites for detection of nitrofurantoin and its metabolite. Anal. Methods, 2019, 11(11), 1427-1435.
[http://dx.doi.org/10.1039/C9AY00197B]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy