Generic placeholder image

Current Topics in Chemistry

Editor-in-Chief

ISSN (Print): 2950-4023
ISSN (Online): 2950-4031

Review Article

Emerging Role of Ionic Liquids in the Fabric Industry

Author(s): Umaima Gazal*

Volume 4, 2024

Published on: 18 March, 2024

Article ID: e180324228087 Pages: 11

DOI: 10.2174/0126660016287413240306115111

Price: $65

Abstract

Profitable interest in the pervasive packaging of ionic liquids has continued to increase due to its several advantages and environmentally pleasant nature. Fabric enterprise is stated to be the most important enterprise as a result of a rapid increase in the populace across the globe. Certain ionic beverages can dissolve textile fibers. Therefore, ionic liquids are doubtlessly appropriate for material production and recycling. The dyeing of fabric substances involves numerous financial and ecological risks, resulting in an excessive intake of water, power, and chemicals. Ionic liquids surpass through their extraordinarily low vapor pressure, which enables them to deal with commonly used natural solvents. Moreover, ionic liquids display excessive temperature-associated dielectric constants, consequently displaying top-notch solvent strength for distinct fabric-associated substances, inclusive of silicones, keratin, and cellulose. This article provides a brief review of the pertinent literature that focuses on historical patterns and practical commercial applications of ionic liquids before moving on to current developments in ionic liquids and the fabric industry.

[1]
Saus, W.; Knittel, D.; Schollmeyer, E. Dyeing of textiles in supercritical carbon dioxide. Text. Res. J., 1993, 63(3), 135-142.
[http://dx.doi.org/10.1177/004051759306300302]
[2]
Knittel, D.; Schollmeyer, E. Disperse dyeing of synthetic fibers in supercritical medium. DE4344021, 1995.
[3]
Berthod, A.; Ruiz-Ángel, M.J.; Carda-Broch, S. Ionic liquids in separation techniques. J. Chromatogr. A, 2008, 1184(1-2), 6-18.
[http://dx.doi.org/10.1016/j.chroma.2007.11.109] [PMID: 18155711]
[4]
Dupont, J.; Flores, F.R. Organometallic chemistry in ionic liquids. Comp. Orga. Chem. III, 2007, 1, 847-882.
[5]
Armand, M.; Endres, F.; MacFarlane, D.R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater., 2009, 8(8), 621-629.
[http://dx.doi.org/10.1038/nmat2448] [PMID: 19629083]
[6]
Tavanaie, M.A. Ionic liquids as new solvents for textile fiber formation and modification. Chem. Eng. Technol., 2013, 36(11), 1823-1837.
[http://dx.doi.org/10.1002/ceat.201300146]
[7]
Wasserscheidt, P.; Welton, T. Ionic Liquids in Synthesis; Wiley-VCH: Weinheim, 2003.
[8]
Winterton, N. Solubilization of polymers by ionic liquids. J. Mater. Chem., 2006, 16(44), 4281-4293.
[http://dx.doi.org/10.1039/b610143g]
[9]
Ohno, H. Design of ion conductive polymers based on ionic liquids. Macromol. Symp., 2007, 249-250(1), 551-556.
[http://dx.doi.org/10.1002/masy.200750435]
[10]
Köhler, S.; Liebert, T.; Schobitz, M.; Schaller, J.; Meister, F.; Gunther, W.; Heinze, T. Interaction of ionic liquids with polysaccharides. Macromol. Rapid Commun., 2007, 28, 2311-2317.
[11]
Cuissinat, C.; Navard, P.; Heinze, T. Swelling and dissolution of cellulose, Part V: Cellulose derivatives fibres in aqueous systems and ionic liquids. Cellulose, 2008, 15(1), 75-80.
[http://dx.doi.org/10.1007/s10570-007-9159-3]
[12]
Knittel, D.; Schollmeyer, E. Ionic liquids for textile finishing. Dyeing of textiles, 2007, 88, 54-56.
[13]
Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M.A.B.H.; Watanabe, M. Physicochemical properties and structures of room temperature ionic liquids. 1. variation of anionic species. J. Phys. Chem. B, 2004, 108(42), 16593-16600.
[http://dx.doi.org/10.1021/jp047480r]
[14]
Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M.A.B.H.; Watanabe, M. Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J. Phys. Chem. B, 2005, 109(13), 6103-6110.
[http://dx.doi.org/10.1021/jp044626d] [PMID: 16851672]
[15]
Jiang, G.; Huang, W.; Zhu, T.; Zhang, C.; Kumi, A.K.; Zhang, Y.; Wang, H.; Hu, L. Diffusion dynamics of 1-Butyl-3-methylimidazolium chloride from cellulose filament during coagulation process. Cellulose, 2011, 18(4), 921-928.
[http://dx.doi.org/10.1007/s10570-011-9551-x]
[16]
Bianchini, R.; Cevasco, G.; Chiappe, C.; Pomelli, C.S.; Rodríguez Douton, M.J. Ionic liquids can significantly improve textile dyeing: An innovative application assuring economic and environmental benefits. ACS Sustain. Chem.& Eng., 2015, 3(9), 2303-2308.
[http://dx.doi.org/10.1021/acssuschemeng.5b00578]
[17]
Hina, S.; Zhang, Y.; Wang, H. Rev. Adv. Mater. Sci., 2015, 40, 215.
[18]
Swatloski, R.P.; Spear, S.K.; Holbrey, J.D.; Rogers, R.D. Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc., 2002, 124(18), 4974-4975.
[http://dx.doi.org/10.1021/ja025790m] [PMID: 11982358]
[19]
Asaadi, S.; Hummel, M.; Hellsten, S.; Härkäsalmi, T.; Ma, Y.; Michud, A.; Sixta, H. Renewable high-performance fibers from the chemical recycling of cotton waste utilizing an ionic liquid. ChemSusChem, 2016, 9(22), 3250-3258.
[http://dx.doi.org/10.1002/cssc.201600680] [PMID: 27796085]
[20]
Kantouch, A.; Khalil, E.M.; Mowafi, S.; El-Sayed, H. Antimicrobial finishing of wool fabric using ionic liquids. J. Textil. Inst., 2013, 104(4), 363-369.
[http://dx.doi.org/10.1080/00405000.2012.727586]
[21]
Liang, Z.; Zhou, Z.; Li, J.; Zhang, S.; Dong, B.; Zhao, L.; Wu, C.; Yang, H.; Chen, F.; Wang, S. Multi-functional silk fibers/fabrics with a negligible impact on comfortable and wearability properties for fiber bulk. Chem. Eng. J., 2021, 415, 128980.
[http://dx.doi.org/10.1016/j.cej.2021.128980]
[22]
Vyas, S.K.; Shukla, S.R. Degumming of eri silk using ionic liquids and optimization through response surface methodology. J. Textil. Inst., 2016, 107(9), 1096-1111.
[http://dx.doi.org/10.1080/00405000.2015.1086196]
[23]
Shukla, S.R.; Harad, A.M.; Jawale, L.S. Recycling of waste PET into useful textile auxiliaries. Waste Manag., 2008, 28(1), 51-56.
[http://dx.doi.org/10.1016/j.wasman.2006.11.002] [PMID: 17207616]
[24]
Rouette, H.K. Encyclopedia of Textile Finishing; Springer: Berlin, Germany, 2001.
[http://dx.doi.org/10.1007/978-3-642-85271-8]
[25]
Phillips, D.M.; Drummy, L.F.; Naik, R.R.; Long, H.C.D.; Fox, D.M.; Trulove, P.C.; Mantz, R.A. Regenerated silk fiber wet spinning from an ionic liquid solution. J. Mater. Chem., 2005, 15(39), 4206-4208.
[http://dx.doi.org/10.1039/b510069k]
[26]
Kantouch, A.; El-Sayed, A.A.; Salama, M.; El-Kheir, A.A.; Mowafi, S. Salicylic acid and some of its derivatives as antibacterial agents for viscose fabric. Int. J. Biol. Macromol., 2013, 62(November), 603-607.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.09.021] [PMID: 24076193]
[27]
Pawar, S.S.; Athalye, A.; Adivarekar, R.V. Solvent assisted dyeing of silk fabric using deep eutectic solvent as a swelling agent. Fibers Polym., 2021, 22(2), 405-411.
[http://dx.doi.org/10.1007/s12221-021-0142-7]
[28]
Opwis, K.; Benken, R.; Knittel, D.; Gutmann, J.S. Dyeing of PET Fibers in Ionic Liquids. Intern. J. New Techno. Res., 2017, 3(11), 101-108. [IJNTR].
[29]
Padhi, R.B.S. Pollution due to synthetic dyes: Toxicity, carcinogenicity studies, and remediation. Int. J. Environ. Sci., 2012, 3, 940.
[30]
Verma, Y. Acute toxicity assessment of textile dyes and textile and dye industrial effluents using Daphnia magna bioassay. Toxicol. Ind. Health, 2008, 24(7), 491-500.
[http://dx.doi.org/10.1177/0748233708095769] [PMID: 19028775]
[31]
Verma, Y. Toxicity assessment of dye containing industrial effluents by acute toxicity test using Daphnia magna. Toxicol. Ind. Health, 2011, 27(1), 41-49.
[http://dx.doi.org/10.1177/0748233710380218] [PMID: 20823054]
[32]
Villegas-Navarro, A.; Ramírez-M, Y.; Salvador-S, M.S.; Gallardo, J.M. Determination of wastewater LC50 of the different process stages of the textile industry. Ecotoxicol. Environ. Saf., 2001, 48(1), 56-61.
[http://dx.doi.org/10.1006/eesa.2000.1986] [PMID: 11161678]
[33]
de Campos Ventura-Camargo, B.; Marin-Morales, M.A. Azo dyes: Characterization and toxicity: A review. Text. Light Ind. Sci. Techno., 2013, 2, 85.
[34]
Kalliala, E.M.; Nousiainen, P. Environmental profile of cotton and polyester-cotton fabrics. AUTEX Res. J., 1999, 1, 8-20.
[http://dx.doi.org/10.1515/aut-1999-010102]
[35]
Patil, H.; Athalye, A. Valorization of corn husk waste for textile applications. J. Nat. Fibers, 2023, 20(1), 2156017.
[http://dx.doi.org/10.1080/15440478.2022.2156017]
[36]
Fakin, D.; Ojstršek, A.; Benkovič, S.Č. The impact of corona modified fibres’ chemical changes on wool dyeing. J. Mater. Process. Technol., 2009, 209(1), 584-589.
[http://dx.doi.org/10.1016/j.jmatprotec.2008.02.034]
[37]
Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed., 2005, 44(22), 3358-3393.
[http://dx.doi.org/10.1002/anie.200460587] [PMID: 15861454]
[38]
Lin, L.; Tsuchii, K. Dissolution behavior of cellulose in a novel cellulose solvent. Carbohydr. Res., 2022, 511, 108490.
[http://dx.doi.org/10.1016/j.carres.2021.108490] [PMID: 34952277]
[39]
Chen, L.; Wang, L.; Wu, X.; Ding, X. A process-level water conservation and pollution control performance evaluation tool of cleaner production technology in textile industry. J. Clean. Prod., 2017, 143, 1137-1143.
[http://dx.doi.org/10.1016/j.jclepro.2016.12.006]
[40]
Reigel, E.R.; Kent, J.A. Riegel’s Handbook of Industrial Chemistry, 10th ed; Springer Publishing: New York, NY, USA, 2003, pp. 896-904.
[41]
Broadbent, A.D. Basic Principles of Textile Coloration. Society of Dyers and Colorists; Thanet Press Ltd: Kent, West Yorkshire, England, 2001, pp. 322-331.
[42]
Lai, C.C.; Chen, K.M. Dyeing properties of modified gemini surfactants on a disperse dye-polyester system. Text. Res. J., 2008, 78(5), 382-389.
[http://dx.doi.org/10.1177/0040517507087676]
[43]
Ren, Z.; Qin, C.; Tanga, R.C.; Chen, G. Study on the dyeing properties of hemicyanine dyes. II. Cationic dyeable polyester. J. Soc. Dyers Colour., 2012, 128, 147-152.
[44]
Gebert, K. The dyeing of polyester textile fabric in perchloroethylene: The exhaust process; Exhaust Dyeing of Polyester in Perchloroethylene, 1971, pp. 509-513.
[45]
Milićević, B. The use of non-aqueous solvents in coloration and textile processing: Literature Survey. Rev. Prog. Color. Relat. Top., 1967, 1(1), 49-52.
[http://dx.doi.org/10.1111/j.1478-4408.1967.tb00169.x]
[46]
Wang, Y.; Lee, C.; Tang, Y.; Kan, C. Dyeing cotton in alkane solvent using polyethylene glycol-based reverse micelle as reactive dye carrier. Cellulose, 2016, 23(1), 965-980.
[http://dx.doi.org/10.1007/s10570-015-0831-8]
[47]
Yuan, J.; Wang, Q.; Fan, X. Dyeing behaviors of ionic liquid treated wool. J. Appl. Polym. Sci., 2010, 117(4), 2278-2283.
[http://dx.doi.org/10.1002/app.32020]
[48]
Opwis, K.; Celik, B.; Benken, R.; Knittel, D.; Gutmann, J.S. Dyeing of m-aramid fibers in ionic liquids. Polymers, 2020, 12(8), 1824.
[http://dx.doi.org/10.3390/polym12081824] [PMID: 32824007]
[49]
Andreaus, J.; Sidou, L.F. Comment on sustainable cotton dyeing in nonaqueous medium applying protic ionic liquids. ACS Sustain. Chem.& Eng., 2019, 7(9), 7999-8000.
[http://dx.doi.org/10.1021/acssuschemeng.9b01112]
[50]
Parvathi, C.; Maruthavanan, T.; Prakash, C. Environmental impacts of textile industries; Indian Textile Journal, 2009, pp. 22-26.
[51]
Paraschiv, D.; Tudor, C.; Petrariu, R. The textile industry and sustainable development: A Holt-Winters forecasting investigation for the Eastern European area. Sustainability, 2015, 7(2), 1280-1291.
[http://dx.doi.org/10.3390/su7021280]
[52]
Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manage., 2016, 182, 351-366.
[http://dx.doi.org/10.1016/j.jenvman.2016.07.090] [PMID: 27497312]
[53]
Antal, B.; Kuki, Á.; Nagy, L.; Nagy, T.; Zsuga, M.; Kéki, S. Rapid detection of hazardous chemicals in textiles by direct analysis in real-time mass spectrometry (DART-MS). Anal. Bioanal. Chem., 2016, 408(19), 5189-5198.
[http://dx.doi.org/10.1007/s00216-016-9603-z] [PMID: 27236310]
[54]
Mao, X.; Zhong, Y.; Xu, H.; Zhang, L.; Sui, X. A novel low add-on technology of dyeing cotton fabric with reactive dyestuff. Textile Research, 2018, 88(12)
[http://dx.doi.org/10.1177/0040517517700195]
[55]
Andrade, R.S.; Torres, D.; Ribeiro, F.R.; Chiari-Andréo, B.G.; Oshiro, J.A. Junior; Iglesias, M. Sustainable cotton dyeing in nonaqueous medium applying protic ionic liquids. ACS Sustain. Chem.& Eng., 2017, 5(10), 8756-8765.
[http://dx.doi.org/10.1021/acssuschemeng.7b01555]
[56]
Jiménez, A.E.; Avilés, M.D.; Pamies, R.; Bermúdez, M.D.; Carrión-Vilches, F.J.; Sanes, J. Ecofriendly protic ionic liquid lubricants for Ti6Al4V. Lubricants, 2022, 11(1), 5.
[http://dx.doi.org/10.3390/lubricants11010005]
[57]
Lee, C.H.; Tang, Y.L.; Wang, Y.; Kan, C. Dyeing of cotton fabric in decamethylcyclopentasiloxane using alkyl polyglucoside-based reverse micelle as reactive dye carrier. Fibers Polym., 2022, 23(1), 107-118.
[http://dx.doi.org/10.1007/s12221-021-0382-6]
[58]
Shang, D.; Zhang, X.; Zeng, S.; Jiang, K.; Gao, H.; Dong, H.; Yang, Q.; Zhang, S. Protic ionic liquid [Bim][NTf 2] with strong hydrogen bond donating ability for highly efficient ammonia absorption. Green Chem., 2017, 19(4), 937-945.
[http://dx.doi.org/10.1039/C6GC03026B]
[59]
Jiugang Yuan; Qiang Wang; Xuerong Fan; Ping Wang Enhancing dye adsorption of wool fibers with 1-butyl-3-methylimidazolium chloride ionic liquid processing. Text. Res. J., 2010, 80(18), 1898-1904.
[http://dx.doi.org/10.1177/0040517510371865]
[60]
Gadilohar, B.L.; Shankarling, G.S. Choline based ionic liquids and their applications in organic transformation. J. Mol. Liq., 2017, 227, 234-261.
[http://dx.doi.org/10.1016/j.molliq.2016.11.136]
[61]
Mamun, M.A.A.; Rahman, M.; Ayatullah, A.K.M.; Sarkar, P. Effects of dyeing parameters on color strength and fastness properties of cotton knitted fabric dyed with direct dyes. Intern. J. Curr. Eng. Techno., 2014, 4(2)
[62]
Di Carmine, G.; Abbott, A.P.; D’Agostino, C. Deep eutectic solvents: Alternative reaction media for organic oxidation reactions. React. Chem. Eng., 2021, 6(4), 582-598.
[http://dx.doi.org/10.1039/D0RE00458H]
[63]
Park, J.H.; Oh, K.W.; Choi, H.M. Preparation and characterization of cotton fabrics with antibacterial properties treated by crosslinkable benzophenone derivative in choline chloride-based deep eutectic solvents. Cellulose, 2013, 20(4), 2101-2114.
[http://dx.doi.org/10.1007/s10570-013-9957-8]
[64]
Silva, F.P. Eco-friendly natural dyeing using choline-based deep eutectic solvents. J. Clean. Prod., 2020, 266, 121916.
[65]
Miao, J.; Zhang, X.; Wei, Z.; Liu, J. Dyeing of cotton with disperse dyes using protic ionic liquids. J. Appl. Polym. Sci., 2018, 135(16), 46002.
[66]
Wang, W.; Wang, Q.; Sun, J.; Zhang, W.; Li, X. Protic ionic liquids: A novel strategy for enhancing the flame retardancy of cotton fabrics. J. Hazard. Mater., 2020, 38, 9122098.
[67]
Huang, J.; Li, Y.; Wang, J.; Chen, Y. Protic ionic liquids for wool dyeing with acid dyes. J. Mol. Liq., 2016, 220, 454-460.
[68]
Kuang, Q.L.; Zhao, J.C.; Niu, Y.H.; Zhang, J.; Wang, Z.G. Celluloses in an ionic liquid: the rheological properties of the solutions spanning the dilute and semidilute regimes. J. Phys. Chem. B, 2008, 112(33), 10234-10240.
[http://dx.doi.org/10.1021/jp804167n] [PMID: 18661932]
[69]
Isik, M.; Sardon, H.; Mecerreyes, D. Ionic liquids and cellulose: Dissolution, chemical modification and preparation of new cellulosic materials. Int. J. Mol. Sci., 2014, 15(7), 11922-11940.
[http://dx.doi.org/10.3390/ijms150711922] [PMID: 25000264]
[70]
Zhang, J.; Wu, J.; Yu, J.; Zhang, X.; He, J.; Zhang, J. Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: State of the art and future trends. Mater. Chem. Front., 2017, 1(7), 1273-1290.
[http://dx.doi.org/10.1039/C6QM00348F]
[71]
Wendler, F.; Todi, L.N.; Meister, F. Thermostability of imidazolium ionic liquids as direct solvents for cellulose. Thermochim. Acta, 2012, 528, 76-84.
[http://dx.doi.org/10.1016/j.tca.2011.11.015]
[72]
Zhang, Y.; Mao, Y.; Zhang, J.; Hu, L. Molecular mechanism of ionic liquid-assisted cellulose dissolution: Insight from molecular dynamics simulations. ACS Sustain. Chem.& Eng., 2019, 7(17), 14945-14953.
[73]
Si, C.; Zhang, Y.; Zhang, J.; Hu, L. The dissolution mechanism of cellulose in ionic liquids: An update review. Carbohydr. Polym., 2021, 256, 117506.
[74]
Lopes, R.; Almeida, A.; Roseiro, L.B.; Padrão, J.; Ferreira, F.C.; Vilela, C. Sustainable textiles based on ionic liquids. ACS Sustain. Chem.& Eng., 2020, 8(18), 6826-6837.
[75]
Pinkert, A.; Marsh, K.N.; Pang, S.; Staiger, M.P. Ionic liquids and their interaction with cellulose. Chem. Rev., 2009, 109(12), 6712-6728.
[http://dx.doi.org/10.1021/cr9001947] [PMID: 19757807]
[76]
Lisboa, M.J.; Maciel Filho, D.R.; Freire, M.G. Ionic liquids as solvents for cellulose: Fundamentals and applications. Green Chem., 2020, 22, 3432-3458.
[77]
Hayes, R.; Warr, G.G.; Atkin, R. Factors affecting the dissolution of cellulose in ionic liquids and their practical implications. Green Chem., 2015, 17(2), 756-774.
[78]
Zhang, Y.; Xu, A.; Lu, B.; Li, Z.; Wang, J. Dissolution of cellulose in 1-allyl-3-methylimizodalium carboxylates at room temperature: A structure–property relationship study. Carbohydr. Polym., 2015, 117, 666-672.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.101] [PMID: 25498686]
[79]
Minnick, D.L.; Flores, R.A.; DeStefano, M.R.; Scurto, A.M. Cellulose solubility in ionic liquid mixtures: Temperature, cosolvent, and antisolvent effects. J. Phys. Chem. B, 2016, 120(32), 7906-7919.
[http://dx.doi.org/10.1021/acs.jpcb.6b04309] [PMID: 27447741]
[80]
Andanson, J.M.; Pádua, A.A.H.; Costa Gomes, M.F. Thermodynamics of cellulose dissolution in an imidazolium acetate ionic liquid. Chem. Commun., 2015, 51(21), 4485-4487.
[http://dx.doi.org/10.1039/C4CC10249E] [PMID: 25683335]
[81]
Vitz, J.; Erdmenger, T.; Haensch, C.; Schubert, U.S. Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem., 2009, 11(3), 417.
[http://dx.doi.org/10.1039/b818061j]
[82]
Jiang, J.; Wu, J.; Chen, Y.; Xu, J.; Huang, C.; Cai, Y.; Wang, X. Choline-based ionic liquids as solvents for cellulose and silk: Effects of cation alkyl chain length and anion type. ACS Sustain. Chem.& Eng., 2021, 9(22), 7656-7667.
[83]
Sharma, A.; Singh, B.; Bharti, A.; Kumar, V. Ionic liquids as novel solvents for cotton: Impact of alkyl chain length on triethylammonium-based ionic liquids. Cellulose, 2021, 28(2), 1033-1048.
[84]
Salas, C. Electrospun nanofibers. In: Solution electrospinning of nanofibers; Woodhead Publishing Series in Textiles, 2017; pp. 73-108.
[http://dx.doi.org/10.1016/B978-0-08-100907-9.00004-0]
[85]
Ul-Haq, N.; Nasir, H. Cleaner production technologies in desizing of cotton fabric. The J. Text. Inst., 2012, 103(3), 304-310.
[86]
Canetta, E.; Montiel, K.; Adya, A.K. Morphological changes in textile fibres exposed to environmental stresses: Atomic force microscopic examination. Forensic Sci. Int., 2009, 191(1-3), 6-14.
[http://dx.doi.org/10.1016/j.forsciint.2009.05.022] [PMID: 19570629]
[87]
Ütebay, B.; Çelik, P.; Çay, A. Textile Wastes: Status and Perspectives; Waste in Textile and Leather Sectors, IntechOpen, 2020.
[88]
Yaman, M.; Lu, P.; Vasanthan, N. Crystal-to-crystal transition and the structure development of electrospun poly(ethylene 2,6 naphthalate) (PEN) nanofibers from solution. J. Phys. Chem. B, 2019, 123(27), 5954-5961.
[http://dx.doi.org/10.1021/acs.jpcb.9b04278] [PMID: 31250640]
[89]
Loum, J.; Byamukama, R.; Wanyama, P.A.G. Efficient extraction of natural dyes from selected plant species. Chem. Africa, 2021, 4(3), 677-689.
[http://dx.doi.org/10.1007/s42250-021-00248-6]
[90]
Madhav, S.; Ahamad, A.; Singh, P.; Mishra, P.K. A review of textile industry: Wet processing, environmental impacts, and effluent treatment methods. Environ. Qual. Manage., 2018, 27(3), 31-41.
[http://dx.doi.org/10.1002/tqem.21538]
[91]
Aghmih, K.; Bouftou, A.; El Bouchti, M.; Boukhriss, A.; Gmouh, S.; Majid, S. Synthesis and application of functionalized ionic liquids-based imidazolium as solvent for cotton fibre cellulose dissolution. Cellulose, 2023, 30(3), 1467-1481.
[http://dx.doi.org/10.1007/s10570-022-04974-z]
[92]
Singha, A.S.; Thakur, V.K. Mechanical properties of natural fibre reinforced polymer composites. Bull. Mater. Sci., 2008, 31(5), 791-799.
[http://dx.doi.org/10.1007/s12034-008-0126-x]
[93]
Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv., 2017, 3(7), e1700782.
[http://dx.doi.org/10.1126/sciadv.1700782] [PMID: 28776036]
[94]
Kahoush, M.; Kadi, N. Towards sustainable textile sector: Fractionation and separation of cotton/polyester fibers from blended textile waste. Sustainable Materials and Technologies, 2022, 34, e00513.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy