Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Screening of Some Ayurvedic Phytochemicals to Identify Potential Inhibitors against SARS-CoV-2 Mpro by In Silico Computational Approach

Author(s): Veerachamy Alagarsamy*, Potabathula Shyamsundar, Bandi Narendhar, Mohaideen Thasthagir Sulthana, Viswas Raja Solomon, Alagarsamy Dharshini Aishwarya, Vemulapalli Ravikumar, Rupeshkumar Mani, Kavitha Kunchu, Manavalan Gopinath, Subramanian Nivedhitha and Periyasamy Parthiban

Volume 22, Issue 5, 2024

Published on: 15 March, 2024

Article ID: e150324228029 Pages: 9

DOI: 10.2174/0122113525255835240107162255

Price: $65

Abstract

Background: The classical drug discovery approach demands more than a decade of strenuous exploration and substantial monetary or economic support, which is difficult in pandemic conditions, such as COVID-19.

Methods: The main purpose of this work was to ascertain the best inhibitors to combat the SARS-CoV-2 Mpro (PDB ID: 6LU7) target. To achieve this, we conducted a molecular docking screening of 35 phytochemicals from eight different medicinal plants. Using a structurebased drug design of molecular docking, we studied the binding affinities and found 35 molecules that showed greater or identical affinity towards the target than the N3 inhibitor. Additionally, we conducted MD simulations for the 6LU7-schaftoside complex.

Results: The docking analysis has identified several promising phytochemicals with great binding attraction towards the key target. The phytoconstituent, schaftoside (-8.7 kcal/mol), demonstrated the most binding attraction with the target via 6 conventional hydrogen bonds. Additionally, 2'-O-methyl cajanone (-8.3 kcal/mol), isoschaftoside (-8.0 kcal/mol), cajaflavonone (-8.0 kcal/mol), and co-crystal N3 inhibitor (-7.8 kcal/mol) also displayed significant binding affinity. Interestingly, schaftoside and 2’-O-methyl cajanone showed the most promising activities with their low binding energies.

Conclusion: After thorough analysis, some compounds were found on elite docking sites that resembled drugs and had a harmless ADMET profile. Based on the study, it can be concluded that the compounds mentioned earlier possess the ability to be reused as potent inhibitors against the COVID-19 pandemic.

Graphical Abstract

[1]
Shi, Y.; Wang, G.; Cai, X.; Deng, J.; Zheng, L.; Zhu, H.; Zheng, M.; Yang, B.; Chen, Z. An overview of COVID-19. J. Zhejiang Univ. Sci. B, 2020, 21(5), 343-360.
[http://dx.doi.org/10.1631/jzus.B2000083] [PMID: 32425000]
[2]
Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; Yu, T.; Wang, Y.; Pan, S.; Zou, X.; Yuan, S.; Shang, Y. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med., 2020, 8(5), 475-481.
[http://dx.doi.org/10.1016/S2213-2600(20)30079-5] [PMID: 32105632]
[3]
Israeli, E. Novel coronavirus that recently emerged in China. Harefuah, 2020, 159(1), 70-71.
[PMID: 32048481]
[4]
Joshi, R.S.; Jagdale, S.S.; Bansode, S.B.; Shankar, S.S.; Tellis, M.B.; Pandya, V.K.; Chugh, A.; Giri, A.P.; Kulkarni, M.J. Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. J. Biomol. Struct. Dyn., 2020, 38, 1-16.
[http://dx.doi.org/10.1080/07391102.2020.1760137]
[5]
Morales-Núñez, J.J.; García-Chagollán, M.; Muñoz-Valle, J.F.; Díaz-Pérez, S.A.; Torres-Hernández, P.C.; Rodríguez-Reyes, S.C.; Santoscoy-Ascencio, G.; Sierra García de Quevedo, J.J.; Hernández-Bello, J. Differences in B-cell immunophenotypes and neutralizing antibodies against SARS-CoV-2 after administration of BNT162b2 (Pfizer-BioNTech) vaccine in individuals with and without prior COVID-19: A prospective cohort study. J. Inflamm. Res., 2022, 15, 4449-4466.
[http://dx.doi.org/10.2147/JIR.S374304] [PMID: 35958186]
[6]
Dorward, J.; Yu, L.M.; Hayward, G.; Saville, B.R.; Gbinigie, O.; Van Hecke, O.; Ogburn, E.; Evans, P.H.; Thomas, N.P.B.; Patel, M.G.; Richards, D.; Berry, N.; Detry, M.A.; Saunders, C.; Fitzgerald, M.; Harris, V.; Shanyinde, M.; de Lusignan, S.; Andersson, M.I.; Butler, C.C.; Hobbs, F.D.R. Colchicine for COVID-19 in the community (PRINCIPLE): A randomised, controlled, adaptive platform trial. Br. J. Gen. Pract., 2022, 72(720), e446-e455.
[http://dx.doi.org/10.3399/BJGP.2022.0083] [PMID: 35440469]
[7]
Xia, Q.; Dai, W.; Xu, K.; Ni, Q.; Li, Y.; Liu, J.; Zhao, H.; Guo, Y.; Yu, L.; Yi, P.; Su, J.; Lang, G.; Tao, J.; Shi, D.; Wu, W.; Wu, X.; Xu, Y.; Xu, M.; Yu, L.; Wang, X.; Cai, H.; Fang, Q.; Zhou, J.; Qiu, Y.; Li, L. Clinical efficacy of methylprednisolone and the combined use of lopinavir/ritonavir with arbidol in treatment of coronavirus disease 2019. J. Med. Virol., 2021, 93(7), 4446-4453.
[http://dx.doi.org/10.1002/jmv.26798] [PMID: 33448426]
[8]
Pilkington, V.; Pepperrell, T.; Hill, A. A review of the safety of favipiravir: A potential treatment in the COVID-19 pandemic? J. Virus Erad., 2020, 6(2), 45-51.
[http://dx.doi.org/10.1016/S2055-6640(20)30016-9] [PMID: 32405421]
[9]
Das, R.; Saini, M.; Rana, M.; Bhatti, K.; Mehta, D.K.; Chidurala, R.M. Clinical efficacy of Remdesivir and Favipiravir in the treatment of Covid-19 patients: Scenario so far. Curr. Drug Res. Rev., 2022, 14(1), 11-19.
[http://dx.doi.org/10.2174/2589977513666210806122901] [PMID: 34365935]
[10]
Lake, F. Welcome to volume 3 of future drug discovery. Future Drug Discov., 2021, 3(1), FDD58.
[http://dx.doi.org/10.4155/fdd-2020-0033]
[11]
Elfiky, A.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci., 2020, 253, 117592.
[http://dx.doi.org/10.1016/j.lfs.2020.117592] [PMID: 32222463]
[12]
Geleris, J.; Sun, Y.; Platt, J.; Zucker, J.; Baldwin, M.; Hripcsak, G.; Labella, A.; Manson, D.K.; Kubin, C.; Barr, R.G.; Sobieszczyk, M.E.; Schluger, N.W. Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N. Engl. J. Med., 2020, 382(25), 2411-2418.
[http://dx.doi.org/10.1056/NEJMoa2012410] [PMID: 32379955]
[13]
Kitazato, K.; Wang, Y.; Kobayashi, N. Viral infectious disease and natural products with antiviral activity. Drug Discov. Ther., 2007, 1(1), 14-22.
[PMID: 22504360]
[14]
Shah, B.; Modi, P.; Sagar, S.R. In silicostudies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sci., 2020, 252, 117652.
[http://dx.doi.org/10.1016/j.lfs.2020.117652]
[15]
Sun, N.; Yu, T.; Zhao, J.X.; Sun, Y.G.; Jiang, J.B.; Duan, Z.B.; Wang, W.K.; Hu, Y.L.; Lei, H.M.; Li, H.Q. Antiviral activities of natural compounds derived from traditional chinese medicines against porcine circovirus type 2 (PCV2). Biotechnol. Bioprocess Eng.; BBE, 2015, 20(1), 180-187.
[http://dx.doi.org/10.1007/s12257-014-0520-8]
[16]
Calland, N.; Albecka, A.; Belouzard, S.; Wychowski, C.; Duverlie, G.; Descamps, V.; Hober, D.; Dubuisson, J.; Rouillé, Y.; Séron, K. (−)-Epigallocatechin- 3 -gallate is a new inhibitor of hepatitis C virus entry. Hepatology, 2012, 55(3), 720-729.
[http://dx.doi.org/10.1002/hep.24803] [PMID: 22105803]
[17]
Ismail, N.A.; Jusoh, S.A. Molecular docking and molecular dynamics simulation studies to predict flavonoid binding on the surface of DENV2 E protein. Interdiscip. Sci., 2017, 9(4), 499-511.
[http://dx.doi.org/10.1007/s12539-016-0157-8] [PMID: 26969331]
[18]
Behl, T.; Rocchetti, G.; Chadha, S.; Zengin, G.; Bungau, S.; Kumar, A.; Mehta, V.; Uddin, M.S.; Khullar, G.; Setia, D.; Arora, S.; Sinan, K.I.; Ak, G.; Putnik, P.; Gallo, M.; Montesano, D. Phytochemicals from plant foods as potential source of antiviral agents: An overview. Pharmaceuticals, 2021, 14(4), 381.
[http://dx.doi.org/10.3390/ph14040381] [PMID: 33921724]
[19]
Tirado-Kulieva, V.A.; Gutiérrez-Valverde, K.S.; Villegas-Yarlequé, M.; Camacho-Orbegoso, E.W.; Villegas-Aguilar, G.F. Research trends on mango by-products: A literature review with bibliometric analysis. J. Food Meas. Charact., 2022, 16(4), 2760-2771.
[http://dx.doi.org/10.1007/s11694-022-01400-7]
[20]
Chapman, R.L.; Andurkar, S.V. A review of natural products, their effects on SARS-CoV-2 and their utility as lead compounds in the discovery of drugs for the treatment of COVID-19. Med. Chem. Res., 2022, 31(1), 40-51.
[http://dx.doi.org/10.1007/s00044-021-02826-2] [PMID: 34873386]
[21]
Chen, J.; Zhou, X.; Fu, L.; Xu, H. Natural product-based screening for lead compounds targeting SARS CoV-2 Mpro. Pharmaceuticals, 2023, 16(5), 767.
[http://dx.doi.org/10.3390/ph16050767] [PMID: 37242550]
[22]
Veerachamy Alagarsamy, V.R. In Silico screening of some active phytochemicals to identify promising inhibitors against SARS-CoV-2 targets. Curr. Drug Discov. Technol., 2023.
[http://dx.doi.org/10.2174/0115701638243222230920051050]
[23]
Ibrahim, M.A.A.; Abdelrahman, A.H.M.; Jaragh-Alhadad, L.A.; Atia, M.A.M.; Alzahrani, O.R.; Ahmed, M.N.; Moustafa, M.S.; Soliman, M.E.S.; Shawky, A.M.; Paré, P.W.; Hegazy, M.E.F.; Sidhom, P.A. Exploring toxins for hunting SARS-CoV-2 main protease inhibitors: Molecular docking, molecular dynamics, pharmacokinetic properties, and reactome study. Pharmaceuticals, 2022, 15(2), 153.
[http://dx.doi.org/10.3390/ph15020153] [PMID: 35215266]
[24]
Alagarsamy, V.; Sundar, P.S.; Narendhar, B.; Sulthana, M.T.; Kulkarni, V.S.; Aishwarya, A.D.; Solomon, V.R.; Murugesan, S.; Jubie, S.; Rohitha, K.; Dhanwar, S. An In silico investigation to identify promising inhibitors for SARS-CoV-2 Mpro target. Med. Chem., 2023, 19(9), 925-938.
[http://dx.doi.org/10.2174/1573406419666230413112802] [PMID: 37069723]
[25]
Ibrahim, M.A.A.; Mohamed, E.A.R.; Abdelrahman, A.H.M.; Allemailem, K.S.; Moustafa, M.F.; Shawky, A.M.; Mahzari, A.; Hakami, A.R.; Abdeljawaad, K.A.A.; Atia, M.A.M. Rutin and flavone analogs as prospective SARS-CoV-2 main protease inhibitors: In silico drug discovery study. J. Mol. Graph. Model., 2021, 105, 107904.
[http://dx.doi.org/10.1016/j.jmgm.2021.107904] [PMID: 33798836]
[26]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334]
[27]
Malviya, S; Rawat, S; Kharia, A; Verma, M. Medicinal attributes of Acacia nilotica Linn.-A comprehensive review on ethnopharmacological claims. Intern. J. pharma. & life sci., 2011, 2(6), 830-837.
[28]
Pan, W.; Zhang, J.; Wang, M.; Ye, J.; Xu, Y.; Shen, B.; He, H.; Wang, Z.; Ye, D.; Zhao, M.; Luo, Z.; Liu, M.; Zhang, P.; Gu, J.; Liu, M.; Li, D.; Liu, J.; Wan, J. Clinical features of COVID-19 in patients with essential hypertension and the impacts of renin-angiotensin-aldosterone system inhibitors on the prognosis of COVID-19 patients. Hypertension, 2020, 76(3), 732-741.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.15289] [PMID: 32654555]
[29]
Li, Y.; Xie, S.; Ying, J.; Wei, W.; Gao, K. Chemical structures of lignans and neolignans isolated from Lauraceae. Molecules, 2018, 23(12), 3164.
[http://dx.doi.org/10.3390/molecules23123164] [PMID: 30513687]
[30]
Ni, G.; Shi, G.R.; Zhang, D.; Fu, N.J.; Yang, H.Z.; Chen, X.G.; Yu, D.Q. Cytotoxic lignans and sesquiterpenoids from the rhizomes of Acorustatarinowii. Planta Med., 2016, 82(7), 632-638.
[http://dx.doi.org/10.1055/s-0035-1568248] [PMID: 26848706]
[31]
Chaachouay, N.; Douira, A.; Zidane, L. COVID-19, prevention and treatment with herbal medicine in the herbal markets of Salé Prefecture, North-Western Morocco. Eur. J. Integr. Med., 2021, 42, 101285.
[http://dx.doi.org/10.1016/j.eujim.2021.101285] [PMID: 33520016]
[32]
Dastagir, G.; Rizvi, M.A. Glycyrrhiza glabra L.(Liquorice). Pak. J. Pharm. Sci., 2016, 29(5), 1727-1733.
[PMID: 27731836]
[33]
Söhretoglu, D.; Kuruüzüm-Uz, A.; Simon, A.; Patócs, T.; Dékány, M. New secondary metabolites from Quercuscoccifera L. Rec. Nat. Prod., 2014, 8(4), 323.
[34]
Ito, H.; Yamaguchi, K.; Kim, T.H.; Khennouf, S.; Gharzouli, K.; Yoshida, T. Dimeric and trimeric hydrolyzable tannins from Quercus coccifera and Quercus suber. J. Nat. Prod., 2002, 65(3), 339-345.
[http://dx.doi.org/10.1021/np010465i] [PMID: 11908975]
[35]
Bag, A.; Bhattacharyya, S.K.; Chattopadhyay, R.R. The development of Terminalia chebula Retz. (Combretaceae) in clinical research. Asian Pac. J. Trop. Biomed., 2013, 3(3), 244-252.
[http://dx.doi.org/10.1016/S2221-1691(13)60059-3] [PMID: 23620847]
[36]
Pagano, E. Phytocompounds and COVID ‐19: Two years of knowledge. Phytother. Res., 2022, 36(6), 2267-2271.
[http://dx.doi.org/10.1002/ptr.7420] [PMID: 35170093]
[37]
Hossen, K.; Das, K.R.; Okada, S.; Iwasaki, A.; Suenaga, K.; Kato-Noguchi, H. Allelopathic potential and active substances from Wedelia chinensis (Osbeck). Foods, 2020, 9(11), 1591.
[http://dx.doi.org/10.3390/foods9111591] [PMID: 33147830]
[38]
Veerachamy Alagarsamy, V.R. Molecular Docking, Molecular dynamics, and ADMET investigations of selected phytochemicals as promising inhibitors of SARS CoV-2-19 targets. Pharmakeftiki., 2022, 35(1), 26-47.
[39]
Islam, MA; Zaman, S; Biswas, K; Al-Amin, MY; Hasan, MK; Alam, AH; Tanaka, T; Sadik, G Evaluation of cholinesterase inhibitory and antioxidant activity of Wedelia chinensis and isolation of apigenin as an active compound. BMC Comple. Med. Ther., 2021, 1-2.
[http://dx.doi.org/10.1186/s12906-021-03373-4]
[40]
Grifoni, A.; Sidney, J.; Zhang, Y.; Scheuermann, R.H.; Peters, B.; Sette, A. A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2. Cell Host Microbe, 2020, 27(4), 671-680.e2.
[http://dx.doi.org/10.1016/j.chom.2020.03.002] [PMID: 32183941]
[41]
Yuan, S.; Chan, H.C.S.; Hu, Z. Implementing WebGL and HTML5 in macromolecular visualization and modern computer-aided drug design. Trends Biotechnol., 2017, 35(6), 559-571.
[http://dx.doi.org/10.1016/j.tibtech.2017.03.009] [PMID: 28413096]
[42]
(a) Desmond Molecular Dynamics System; Shaw Research: New York, NY, 2020. ;
b) Maestro-Desmond Interoperability Tools; Schrödinger: New York, NY, 2020.
[43]
Mark, P.; Nilsson, L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A, 2001, 105(43), 9954-9960.
[http://dx.doi.org/10.1021/jp003020w]
[44]
Veerachamy Alagarsamy, V.R. Computational search for potential COVID-19 drugs from ayurvedic medicinal plants to identify potential inhibitors against SARS-CoV-2 targets. Curr. Computeraided Drug Des., 2022, 19(1), 51-67.
[45]
Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and testing of the OPLS all-atom force eld on conformational energetics and properties of organic liquids. J. Am. Chem. Soc., 1996, 118(45), 11225-11236.
[http://dx.doi.org/10.1021/ja9621760]
[46]
Berne, M.T. BJGJM. J. Phys. Chem., 1993, 97, 13429-13434.
[47]
Cheng, A.; Merz, K.M. Application of the Nosé− Hoover chain algorithm to the study of protein dynamics. J. Phys. Chem., 1996, 100(5), 1927-1937.
[http://dx.doi.org/10.1021/jp951968y]
[48]
Kalibaeva, G.; Ferrario, M.; Ciccotti, G. Constant pressure-constant temperature molecular dynamics: A correct constrained NPT ensemble using the molecular virial. Mol. Phys., 2003, 101(6), 765-778.
[http://dx.doi.org/10.1080/0026897021000044025]
[49]
Kumar, B.K.; Faheem, N.; Sekhar, K.V.G.C.; Ojha, R.; Prajapati, V.K.; Pai, A.; Murugesan, S. Pharmacophore based virtual screening, molecular docking, molecular dynamics and MM-GBSA approach for identification of prospective SARS-CoV-2 inhibitor from natural product da-tabases. J. Biomol. Struct. Dyn., 2022, 40(3), 1363-1386.
[http://dx.doi.org/10.1080/07391102.2020.1824814] [PMID: 32981461]
[50]
Karan Kumar, B. Design, synthesis and evaluation of novel β-carboline ester analogues as potential anti-leishmanial agents. J. Biomol. Struct. Dyn., 2021, 26, 1-6.
[51]
Jayaram, B; Singh, T; Mukherjee, G; Mathur, A; Shekhar, S; Shekhar, V. Sanjeevini: A freely accessible web-server for target directed lead molecule discovery. InBMC bioinfo., 2012, 13, 1-13.
[http://dx.doi.org/10.1186/1471-2105-13-S17-S7]
[52]
Lipinski, C.A. Lead-and drug-like compounds: The rule-of-five revolution. Drug discov. today. Techno., 2004, 1(4), 337-412.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy