Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

The Botany, Phytochemistry, Pharmacology, Toxicology, and Quality Control of Epimedium: A Review

Author(s): Tao Wang, Xiangfeng Kong, Xiaomeng Tang, Mingxia Xie, Xia Zhang, Jianjun Zhao, Xiaojuan Gao and Hanqing Wang*

Volume 15, Issue 1, 2025

Published on: 11 March, 2024

Article ID: e110324227858 Pages: 20

DOI: 10.2174/0122103155284336240227092937

Price: $65

Abstract

Epimedium has long been used as an ethnic drug in Asia and Europe for its high medicinal value and health benefits, which is often used for anti-tumor, anti-osteoporosis, sexual dysfunction, and other related diseases. In this research, Epimedium is reviewed in the botany, phytochemistry, pharmacology, toxicology, processing, and quality control to make it better for clinical services. More than 106 compounds, including flavonoids, polysaccharides, alkaloids, lignans, and others, were isolated from Epimedium. Based on multiple chemically active components, Epimedium has a wide range of pharmacological action. Several studies have demonstrated Epimedium has multiple biological activities, including neuroprotective effects, anti-inflammatory, anti-aging, and antioxidant effects, anti-osteoporosis, anti-cancer, anti-tumor, anti-diabetes, anti-influenza, effects on sexual dysfunction, etc. Recently, the toxicity of Epimedium has been brought into focus, and its hepatotoxicity has been confirmed through animal experiments. Moreover, it is particularly important to control its quality. To date, great progress has been made in the study of Epimedium. This study systematically reviews the achievements of research on Epimedium. Moreover, the shortcomings of the current research on Epimedium were pointed out, and some suggestions were given.

[1]
Chen, X.J.; Tang, Z.H.; Li, X.W.; Xie, C.X.; Lu, J.J.; Wang, Y.T. Chemical constituents, quality control, and bioactivity of epimedii folium (Yinyanghuo). Am. J. Chin. Med., 2015, 43(5), 783-834.
[http://dx.doi.org/10.1142/S0192415X15500494] [PMID: 26243581]
[2]
Zhang, H.; Wang, H.; Wei, J.; Chen, X.; Sun, M.; Ouyang, H.; Hao, J.; Chang, Y.; Dou, Z.; He, J. Comparison of the active compositions between raw and processed epimedium from different species. Molecules, 2018, 23(7), 1656.
[http://dx.doi.org/10.3390/molecules23071656] [PMID: 29986486]
[3]
Zhang, H.F.; Yang, T.S.; Li, Z.Z.; Wang, Y. Simultaneous extraction of epimedin A, B, C and icariin from Herba Epimedii by ultrasonic technique. Ultrason. Sonochem., 2008, 15(4), 376-385.
[http://dx.doi.org/10.1016/j.ultsonch.2007.09.002] [PMID: 17951093]
[4]
Bae, J.Y.; Avula, B.; Zhao, J.; Raman, V.; Wang, Y.H.; Wang, M.; Zulfiqar, F.; Feng, W.; Park, J.H.; Abe, N.; Ali, Z.; Khan, I.A. Analysis of prenylflavonoids from aerial parts of Epimedium grandiflorum and dietary supplements using HPTLC, UHPLC-PDA and UHPLC-QToF along with chemometric tools to differentiate Epimedium species. J. Pharm. Biomed. Anal., 2020, 177, 112843.
[http://dx.doi.org/10.1016/j.jpba.2019.112843] [PMID: 31509788]
[5]
Yang, X.H.; Zhang, H.F.; Niu, L.L.; Wang, Y.; Lai, J.H. Contents of heavy metals in chinese edible herbs: Evidence from a case study of epimedii folium. Biol. Trace Elem. Res., 2018, 182(1), 159-168.
[http://dx.doi.org/10.1007/s12011-017-1075-2] [PMID: 28620728]
[6]
Huang, W.; Zeng, S.; Xiao, G.; Wei, G.; Liao, S.; Chen, J.; Sun, W.; Lv, H.; Wang, Y. Elucidating the biosynthetic and regulatory mechanisms of flavonoid-derived bioactive components in Epimedium sagittatum. Front. Plant Sci., 2015, 6, 689.
[http://dx.doi.org/10.3389/fpls.2015.00689] [PMID: 26388888]
[7]
Chen, X.; Tu, P.; Jiang, Y.; Wang, Y.; Li, S.P. Effect of stability of internal standard on quantification of 15 flavonoids in Epimedium using CZE. J. Sep. Sci., 2009, 32(2), 275-281.
[http://dx.doi.org/10.1002/jssc.200800497] [PMID: 19101945]
[8]
Zhao, H.Y.; Sun, J.H.; Fan, M.X.; Fan, L.; Zhou, L.; Li, Z.; Han, J.; Wang, B.R.; Guo, D.A. Analysis of phenolic compounds in Epimedium plants using liquid chromatography coupled with electrospray ionization mass spectrometry. J. Chromatogr. A, 2008, 1190(1-2), 157-181.
[http://dx.doi.org/10.1016/j.chroma.2008.02.109] [PMID: 18374931]
[9]
Su, X.D.; Li, W.; Ma, J.Y.; Kim, Y.H. Chemical constituents from Epimedium koreanum Nakai and their chemotaxonomic significance. Nat. Prod. Res., 2018, 32(19), 2347-2351.
[http://dx.doi.org/10.1080/14786419.2017.1405412] [PMID: 29157003]
[10]
Zhang, X.; Oh, M.; Kim, S.; Kim, J.; Kim, H.; Kim, S.; Houghton, P.J.; Whang, W. Epimediphine, a novel alkaloid from Epimedium koreanum inhibits acetylcholinesterase. Nat. Prod. Res., 2013, 27(12), 1067-1074.
[http://dx.doi.org/10.1080/14786419.2012.708660] [PMID: 22823459]
[11]
Sun, J.; Xu, W.; Zheng, S.; Lv, C.; Lin, J.; Chen, S.; Qiu, Y.; Jiang, X.; Draz, E.; Wang, S. Icariin promotes mouse Leydig cell testosterone synthesis via the Esr1/Src/Akt/Creb/Sf-1 pathway. Toxicol. Appl. Pharmacol., 2022, 441, 115969.
[http://dx.doi.org/10.1016/j.taap.2022.115969] [PMID: 35259346]
[12]
Sun, Y.; Jia, D.; Xue, M.; Huang, Z.; Huang, C. Trifluoro-icaritin alleviates chronic inflammatory pain through α7nAChR-mediated suppression of HMGB1/NF-κB signaling in the spinal cord of rats. Brain Res. Bull., 2022, 183, 13-26.
[http://dx.doi.org/10.1016/j.brainresbull.2022.02.014] [PMID: 35202753]
[13]
Niu, H.M.; Ma, D.L.; Wang, M.Y.; Chen, X.P.; Zhang, L.; Li, Y.L.; Zhang, L.; Li, L. Epimedium flavonoids protect neurons and synapses in the brain via activating NRG1/ErbB4 and BDNF/Fyn signaling pathways in a chronic cerebral hypoperfusion rat model. Brain Res. Bull., 2020, 162, 132-140.
[http://dx.doi.org/10.1016/j.brainresbull.2020.06.012] [PMID: 32592805]
[14]
Bi, Z.; Zhang, W.; Yan, X. Anti-inflammatory and immunoregulatory effects of icariin and icaritin. Biomed. Pharmacother., 2022, 151, 113180.
[http://dx.doi.org/10.1016/j.biopha.2022.113180] [PMID: 35676785]
[15]
Li, L.R.; Sethi, G.; Zhang, X.; Liu, C.L.; Huang, Y.; Liu, Q.; Ren, B.X.; Tang, F.R. The neuroprotective effects of icariin on ageing, various neurological, neuropsychiatric disorders, and brain injury induced by radiation exposure. Aging , 2022, 14(3), 1562-1588.
[http://dx.doi.org/10.18632/aging.203893] [PMID: 35165207]
[16]
Khezri, M.R.; Nazari-Khanamiri, F.; Mohammadi, T.; Moloodsouri, D.; Ghasemnejad-Berenji, M. Potential effects of icariin, the Epimedium-derived bioactive compound in the treatment of COVID‐19: A hypothesis. Naunyn Schmiedebergs Arch. Pharmacol., 2022, 395(9), 1019-1027.
[http://dx.doi.org/10.1007/s00210-022-02262-y] [PMID: 35657423]
[17]
Shi, S.; Wang, F.; Huang, Y.; Chen, B.; Pei, C.; Huang, D.; Wang, X.; Wang, Y.; Kou, S.; Li, W.; Ma, T.; Wu, Y.; Wang, Z. Epimedium for osteoporosis based on western and eastern medicine: An updated systematic review and meta-analysis. Front. Pharmacol., 2022, 13, 782096.
[http://dx.doi.org/10.3389/fphar.2022.782096] [PMID: 35431937]
[18]
Dongye, Z.; Wu, X.; Wen, Y.; Ding, X.; Wang, C.; Zhao, T.; Li, J.; Wu, Y. Icaritin and intratumoral injection of CpG treatment synergistically promote T cell infiltration and antitumor immune response in mice. Int. Immunopharmacol., 2022, 111, 109093.
[http://dx.doi.org/10.1016/j.intimp.2022.109093] [PMID: 35930912]
[19]
Chen, G.; Huang, J.; Lei, H.; Wu, F.; Chen, C.; Song, Y.; Cao, Z.; Zhang, C.; Zhang, C.; Ma, Y.; Huang, M.; Zhou, J.; Lu, Y.; Zhao, Y.; Zhang, L.; Icariside, I.; Icariside, I. A novel inhibitor of the kynurenine-AhR pathway with potential for cancer therapy by blocking tumor immune escape. Biomed. Pharmacother., 2022, 153, 113387.
[http://dx.doi.org/10.1016/j.biopha.2022.113387] [PMID: 35834991]
[20]
Yang, X.J.; Xi, Y.M.; Li, Z.J. Icaritin: A novel natural candidate for hematological malignancies therapy. BioMed Res. Int., 2019, 2019, 1-7.
[http://dx.doi.org/10.1155/2019/4860268] [PMID: 31032347]
[21]
Jung, J.Y.; Park, S.M.; Ko, H.L.; Lee, J.R.; Park, C.A.; Byun, S.H.; Ku, S.K.; Cho, I.J.; Kim, S.C. Epimedium koreanum ameliorates oxidative stress-mediated liver injury by activating nuclear factor erythroid 2-related factor 2. Am. J. Chin. Med., 2018, 46(2), 469-488.
[http://dx.doi.org/10.1142/S0192415X18500246] [PMID: 29433393]
[22]
Zhang, L.; Xu, A.L.; Yang, S.; Zhao, B.S.; Wang, T. In vitro screening and toxic mechanism exploring of leading components with potential hepatotoxicity of Herba Epimedii extracts. Toxicol. In Vitro, 2020, 62, 104660.
[http://dx.doi.org/10.1016/j.tiv.2019.104660] [PMID: 31629066]
[23]
Gao, Y.; Wang, Z.; Tang, J.; Liu, X.; Shi, W.; Qin, N.; Wang, X.; Pang, Y.; Li, R.; Zhang, Y.; Wang, J.; Niu, M.; Bai, Z.; Xiao, X. New incompatible pair of TCM: Epimedii folium combined with psoraleae fructus induces idiosyncratic hepatotoxicity under immunological stress conditions. Front. Med., 2020, 14(1), 68-80.
[http://dx.doi.org/10.1007/s11684-019-0690-z] [PMID: 30924023]
[24]
Gao, Y.; Xu, G.; Ma, L.; Shi, W.; Wang, Z.; Zhan, X.; Qin, N.; He, T.; Guo, Y.; Niu, M.; Wang, J.; Bai, Z.; Xiao, X. Icariside I specifically facilitates ATP or nigericin-induced NLRP3 inflammasome activation and causes idiosyncratic hepatotoxicity. Cell Commun. Signal., 2021, 19(1), 13.
[http://dx.doi.org/10.1186/s12964-020-00647-1] [PMID: 33573688]
[25]
Flora of China. Specialized information services: Encyclopedia. Available from: http://www.iplant.cn/info/ (Accessed February 02, 2024).
[26]
Ren, L.; Guo, M.; Pang, X. Identification and classification of medicinal plants in Epimedium. Chin. Herb. Med., 2018, 10(3), 249-254.
[http://dx.doi.org/10.1016/j.chmed.2018.05.004]
[27]
Plants of the world online. Specialized information services. Available from: https://powo.science.kew.org/results?q= (Accessed February 02, 2024).
[28]
Ma, Z. Effects of Yishen Tongluo Decoction on the protection of sperm DNA damage of male rats against toxicity of benzo( a)pyrene. In: M.D. Thesis. Henan; University of Traditional Chinese Medicine: Henan, 2017.
[29]
Wang, B.; Li, Z.; Fan, C.; Tong, Ji. Commonly used drugs for asthma syndrome should be used. Chin. Med. Emer., 2017, 26(02), 371-373.
[30]
Li, S.; Zhao, Z.; Lu, L.; Zhang, K.; Wang, F.; Cai, Z. Clinical observation of Longlu pill combined with sertraline in the treatment of premature ejaculation. Yunnan Medicine, 2019, 40(04), 305-307.
[31]
Cai, T. Observation of the clinical efficacy of self-simulated Yixin decoction in the treatment of idiopathic premature ventricular contractions. In: (heart and spleen deficiency syndrome) with depressive state. M.D. Thesis; Chengdu University of Traditional Chinese Medicine: Chengdu, 2021.
[32]
Li, H.; You, Y.; Jiang, B.; Li, H.; Li, X.; Wu, W.; Cao, H.; Shen, X.; Zou, J. Wang-Bi tablet ameliorates DMM-induced knee osteoarthritis through suppressing the activation of p38-MAPK and NF-κB signaling pathways in mice. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-9.
[http://dx.doi.org/10.1155/2021/3930826] [PMID: 34426743]
[33]
Tang, Y.; Zhang, Y.; Li, L.; Xie, Z.; Wen, C.; Huang, L. Kunxian capsule for rheumatoid arthritis: Inhibition of inflammatory network and reducing adverse reactions through drug matching. Front. Pharmacol., 2020, 11, 485.
[http://dx.doi.org/10.3389/fphar.2020.00485] [PMID: 32362827]
[34]
Fan, K. Clinical study on the alleviation of adverse reactions and enhanced efficacy of pegylated recombinant granulocyte-stimulating factor injection in the secondary prevention of lung cancer chemotherapy. In: M.D. Thesis. Shandong; University of Traditional Chinese Medicine: Shandong, 2018.
[35]
Xiang-Lin, L.; Le-Ping, L.; Rong, H.; Shu-Qi, Z.; Zi-Yi, Z.; Ting, P.; Hui-Ping, L.; Guo-Min, Z. Effects of Zhuang Gu Zhi tong formula on wnt/β-catenin osteoporosis pathway antagonist sost in osteoporosis. Digital Chin. Med., 2019, 2(2), 105-116.
[http://dx.doi.org/10.1016/j.dcmed.2019.09.005]
[36]
Zhao, Y.; Wang, Q.; Liu, S.; Wang, Y.; Shu, B.; Zhao, D. Preparation of gushukang (gsk) granules for in vivo and in vitro experiments. J. Vis. Exp., 2019, 147.
[37]
Ma, Z.; Zhao, Y. Composition for prevention or treatment of coronavirus infection including Epimedium koreanum extract. WO2022065972A2 2022.
[38]
Lin, L.; Zhang, L.; Zhou, J.; Chen, G.; Lu, Y. Use of Epimediumderived flavonoid glycoside in preparation of medicine for treating melanoma. AU2021106930A4, 2021.
[39]
Hu, J.; Yu, Li.; Zhang, L.; Zhang, X.; Ren, F.; Xi, H.; Niu, T.; Han, N.; Wang, L.; Li, Y. Application of Epimedium polysaccharide in preparation of goat semen cryopreservation diluent. CN111771871A, 2020.
[40]
Li, W.; Jin, M.; Jin, T.; Quan, T. Pharmaceutical composition comprising extraction of Epimedium koreanum Nakai as an effective component for prevention and treatment of thrombosis. KOR20200027701A, 2020.
[41]
Li, Q.; Ge, M.; Zheng, C. Application of extract of total flavone of Epimedium in preparing medicine or health care product for preventing and treating Hashimoto thyroiditis. CN110251549B, 2021.
[42]
Liu, Z.; Li, X. Composition for prevention or treatment of oral disease comprising Epimedium Herb extract. KOR102177066B1, 2021.
[43]
Liu, Y.; Ye, C.; Wang, Y.; Tang, Z.; Zeng, Y. Medicine is prepared by using Epimedium as drug effect raw material for eyes. CN103830258A, 2014.
[44]
Feng, S. Epimedium capsules. CN105560775A 2016.
[45]
Gao, L.; Yang, X. Medicinal application and preparation method of shorthorned Epimedium. CN102008533B 2014.
[46]
Wang, P.; Wei, Y.; Duan, X.; Liu, L.; Ji, C. Formula and preparation method of Epimedium health beverage for improving immunity. CN110663853A 2020.
[47]
Chen, J. Epimedium compound health care liquor and preparation method thereof. CN108823042A, 2018.
[48]
Zhang, G.; Yang, J.; Lu, X. Composition containing Epimedium extract and phellodendron amurense extract and application thereof. CN113599331A, 2020.
[49]
Jin, J; Li, Z.; Li, G.; Li, X.; Jian, G. Cosmetic composition for pore-minimizing containing extract of Epimedium koreanum as active ingredient. KOR100855456B1, 2020.
[50]
Zhang, G. Epimedium powder hair conditioner. CN106389237A, 2017.
[51]
Zhang, L. Compound antioxidant function food additive based on radix astragali and Epimedium herbs. CN105815652A 2016.
[52]
Han, F.; Lee, I.S. A new flavonol glycoside from the aerial parts of Epimedium koreanum Nakai. Nat. Prod. Res., 2017, 31(3), 320-325.
[http://dx.doi.org/10.1080/14786419.2016.1239092] [PMID: 27690633]
[53]
Wu, Y.; Li, Y.; Liu, C.; Li, E.; Gao, Z.; Liu, C.; Gu, W.; Huang, Y.; Liu, J.; Wang, D.; Hu, Y. Structural characterization of an acidic Epimedium polysaccharide and its immune-enhancement activity. Carbohydr. Polym., 2016, 138, 134-142.
[http://dx.doi.org/10.1016/j.carbpol.2015.11.014] [PMID: 26794746]
[54]
Zhao, J.Q.; Zhao, Z.; Zhang, C.; Sun, J.X.; Liu, F.J.; Yu, T.; Jiang, Y.; Li, H.J. Long-term oral administration of Epimedii Folium induced cholestasis in mice by interfering with bile acid transport. J. Ethnopharmacol., 2022, 293, 115254.
[http://dx.doi.org/10.1016/j.jep.2022.115254] [PMID: 35381309]
[55]
Zhou, M.; Zheng, W.; Sun, X.; Yuan, M.; Zhang, J.; Chen, X.; Yu, K.; Guo, B.; Ma, B. Comparative analysis of chemical components in different parts of Epimedium Herb. J. Pharm. Biomed. Anal., 2021, 198, 113984.
[http://dx.doi.org/10.1016/j.jpba.2021.113984] [PMID: 33691203]
[56]
Ma, M.; Fan, A.; Liu, Z.; Yang, L.; Huang, J.; Pang, Z.; Yin, F.; Baohuoside, I. Baohuoside I inhibits osteoclastogenesis and protects against ovariectomy-induced bone loss. Front. Pharmacol., 2022, 13, 874952.
[http://dx.doi.org/10.3389/fphar.2022.874952] [PMID: 35571086]
[57]
Zhao, Y.; Zhang, R.; Mu, L.; Yang, W.; Zhang, X.; Han, L.; Lv, C.; Lu, J. Total flavonoids in Epimedium koreanum Nakai alleviated chronic renal failure via promoting AMPK activation. Food Funct., 2022, 13(2), 904-919.
[http://dx.doi.org/10.1039/D1FO03494D] [PMID: 34994765]
[58]
Zhao, H.; Song, L.; Huang, W.; Liu, J.; Yuan, D.; Wang, Y.; Zhang, C. Total flavonoids of Epimedium reduce ageing-related oxidative DNA damage in testis of rats via p53-dependent pathway. Andrologia, 2017, 49(10), e12756.
[http://dx.doi.org/10.1111/and.12756] [PMID: 28370226]
[59]
Lu, X.; Xue, B.; Zhang, T.; Zhang, X.Z.Y.; Zhang, Y. Down-regulation of microRNA-10a mediates the anti-tumor effect of icaritin in A549 cells via the PTEN/AKT and ERK pathway. Gen. Physiol. Biophys., 2019, 38(6), 525-533.
[http://dx.doi.org/10.4149/gpb_2019041] [PMID: 31829310]
[60]
Cheng, Y.; Yang, Z.; Shi, J.; Yang, J.; Zhao, J.; He, Y.; Qi, M. Total flavonoids of Epimedium ameliorates testicular damage in streptozotocin‐induced diabetic rats by suppressing inflammation and oxidative stress. Environ. Toxicol., 2020, 35(2), 268-276.
[http://dx.doi.org/10.1002/tox.22864] [PMID: 31696645]
[61]
Zeng, Y.; Xiong, Y.; Yang, T.; Wang, Y.; Zeng, J.; Zhou, S.; Luo, Y.; Li, L. Icariin and its metabolites as potential protective phytochemicals against cardiovascular disease: From effects to molecular mechanisms. Biomed. Pharmacother., 2022, 147, 112642.
[http://dx.doi.org/10.1016/j.biopha.2022.112642] [PMID: 35078094]
[62]
Xiao, H.H.; Zhang, M.B.; Xu, J.T.; Deng, Y.; Li, N.; Gao, P.; Li, Y.; Kong, L.; Li, W.; Chen, J.C.; Li, H.Y.; Shan, G.S.; Tai, H.; Yang, J.X. Icarisid II promotes proliferation and neuronal differentiation of neural stem cells via activating Wnt/β‐catenin signaling pathway. Phytother. Res., 2021, 35(5), 2773-2784.
[http://dx.doi.org/10.1002/ptr.7022] [PMID: 33455039]
[63]
Wang, C.; Feng, L.; Su, J.; Cui, L.; Dan Liu; Yan, J.; Ding, C.; Tan, X.; Jia, X. Polysaccharides from Epimedium koreanum Nakai with immunomodulatory activity and inhibitory effect on tumor growth in LLC-bearing mice. J. Ethnopharmacol., 2017, 207, 8-18.
[http://dx.doi.org/10.1016/j.jep.2017.06.014] [PMID: 28627460]
[64]
He, J.; Zang, S.; Liu, N.; Ji, M.; Ma, D.; Ji, C. Epimedium polysaccharides attenuates hematotoxicity by reducing oxidative stress and enhancing immune function in mice model of benzene-induced bone marrow failure. Biomed. Pharmacother., 2020, 125, 109908.
[http://dx.doi.org/10.1016/j.biopha.2020.109908] [PMID: 32014688]
[65]
Zheng, H.; He, B.; Wu, T.; Cai, J.; Wei, J. Extraction, purification and anti-osteoporotic activity of a polysaccharide from Epimedium brevicornum Maxim. in vitro. Int. J. Biol. Macromol., 2020, 156, 1135-1145.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.145] [PMID: 31751710]
[66]
Zhang, H.F.; Niu, L.L.; Yang, X.H.; Li, L. Analysis of water-soluble polysaccharides in an edible medicinal plant Epimedium: method development, validation, and application. J. AOAC Int., 2014, 97(3), 784-790.
[http://dx.doi.org/10.5740/jaoacint.12-379] [PMID: 25051626]
[67]
Xu, Z.; Feng, S.; Shen, S.; Wang, H.; Yuan, M.; Liu, J.; Huang, Y.; Ding, C. The antioxidant activities effect of neutral and acidic polysaccharides from Epimedium acuminatum Franch. on Caenorhabditis elegans. Carbohydr. Polym., 2016, 144, 122-130.
[http://dx.doi.org/10.1016/j.carbpol.2016.02.041] [PMID: 27083801]
[68]
Li, N.; Xie, L.; Yang, N.; Sun, G.; Liu, H.; Bi, C.; Duan, J.; Yuan, Y.; Yu, H.; Xu, Y.; Li, Y. Rapid classification and identification of chemical constituents in Epimedium koreanum Nakai by UPLC‐Q‐TOF‐MS combined with data post‐processing techniques. Phytochem. Anal., 2021, 32(4), 575-591.
[http://dx.doi.org/10.1002/pca.3007] [PMID: 33167069]
[69]
Zhang, D.; Cheng, Y.; Zhang, J.; Wang, X.; Wang, N.; Chen, Y.; Yang, M.; Yao, X. Synergistic effect of trace elements and flavonoids from Epimedium koreanum Nakai on primary osteoblasts. Chin. Sci. Bull., 2008, 53(3), 347-356.
[http://dx.doi.org/10.1007/s11434-007-0485-5]
[70]
Xu, T.; Kuang, T.; Du, H.; Li, Q.; Feng, T.; Zhang, Y.; Fan, G. Magnoflorine: A review of its pharmacology, pharmacokinetics and toxicity. Pharmacol. Res., 2020, 152, 104632.
[http://dx.doi.org/10.1016/j.phrs.2020.104632] [PMID: 31911246]
[71]
Dong, F.; Tan, J.; Zheng, Y. Chlorogenic acid alleviates allergic inflammatory responses through regulating th1/th2 balance in ovalbumin-induced allergic rhinitis mice. Med. Sci. Monit., 2020, 26, e923358.
[http://dx.doi.org/10.12659/MSM.923358] [PMID: 32868754]
[72]
Ti, H.; Wu, P.; Xu, L.; Wei, X. Anti-inflammatory neolignans from Epimedium pseudowushanese. Nat. Prod. Res., 2017, 31(22), 2621-2628.
[http://dx.doi.org/10.1080/14786419.2017.1289200] [PMID: 28278623]
[73]
Oh, Y.C.; Jeong, Y.H.; Cho, W.K.; Ha, J.H.; Lee, S.J.; Ma, J.Y. Inhibitory effects of epimedium herb on the inflammatory response in vitro and in vivo. Am. J. Chin. Med., 2015, 43(5), 953-968.
[http://dx.doi.org/10.1142/S0192415X1550055X] [PMID: 26224028]
[74]
Alam, M.B.; Kwon, Y.G.; Simu, S.Y.; Abrar Shahriyar, S.; Lee, S.H. Attenuation of inflammatory symptoms by icariside b2 in carrageenan and lps-induced inflammation models via regulation of MAPK/NF-κB signaling cascades. Biomolecules, 2020, 10(7), 1037.
[http://dx.doi.org/10.3390/biom10071037] [PMID: 32664577]
[75]
Wu, L.; Du, Z.R.; Xu, A.L.; Yan, Z.; Xiao, H.H.; Wong, M.S.; Yao, X.S.; Chen, W.F. Neuroprotective effects of total flavonoid fraction of the Epimedium koreanum Nakai extract on dopaminergic neurons: In vivo and in vitro. Biomed. Pharmacother., 2017, 91, 656-663.
[http://dx.doi.org/10.1016/j.biopha.2017.04.083] [PMID: 28494419]
[76]
Indran, I.R.; Liang, R.L.Z.; Min, T.E.; Yong, E.L. Preclinical studies and clinical evaluation of compounds from the genus Epimedium for osteoporosis and bone health. Pharmacol. Ther., 2016, 162, 188-205.
[http://dx.doi.org/10.1016/j.pharmthera.2016.01.015] [PMID: 26820757]
[77]
Xue, L.; Jiang, Y.; Han, T.; Zhang, N.; Qin, L.; Xin, H.; Zhang, Q. Comparative proteomic and metabolomic analysis reveal the antiosteoporotic molecular mechanism of icariin from Epimedium brevicornu maxim. J. Ethnopharmacol., 2016, 192, 370-381.
[http://dx.doi.org/10.1016/j.jep.2016.07.037] [PMID: 27422162]
[78]
Songlin, P.; Ge, Z.; Yixin, H.; Xinluan, W.; Pingchung, L.; Kwoksui, L.; Ling, Q. Epimedium-derived flavonoids promote osteoblastogenesis and suppress adipogenesis in bone marrow stromal cells while exerting an anabolic effect on osteoporotic bone. Bone, 2009, 45(3), 534-544.
[http://dx.doi.org/10.1016/j.bone.2009.05.022] [PMID: 19501202]
[79]
Nakashima, K.; Miyashita, H.; Yoshimitsu, H.; Fujiwara, Y.; Nagai, R.; Ikeda, T. Two new prenylflavonoids from Epimedii Herba and their inhibitory effects on advanced glycation end-products. J. Nat. Med., 2016, 70(2), 290-295.
[http://dx.doi.org/10.1007/s11418-015-0962-0] [PMID: 26758618]
[80]
Cho, W.K.; Ma, J.Y. Antiviral activity of Epimedium koreanum Nakai water extract against influenza viruses. Biomed. Pharmacother., 2022, 146, 112581.
[http://dx.doi.org/10.1016/j.biopha.2021.112581] [PMID: 34965505]
[81]
Cho, W.K.; Weeratunga, P.; Lee, B.H.; Park, J.S.; Kim, C.J.; Ma, J.; Lee, J.S. Epimedium koreanum Nakai displays broad spectrum of antiviral activity in vitro and in vivo by inducing cellular antiviral state. Viruses, 2015, 7(1), 352-377.
[http://dx.doi.org/10.3390/v7010352] [PMID: 25609307]
[82]
Yang, X.; Cui, Y.; Zhou, Z.; Zhao, H.; Zhang, Y. Analysis of pharmacological mechanisms of Yinyanghuo as treatment of erectile dysfunction with network pharmacology‐based strategy. Andrologia, 2021, 53(2), e13943.
[http://dx.doi.org/10.1111/and.13943] [PMID: 33368466]
[83]
Yan, S.; Wu, B.; Lin, Z.; Jin, H.; Huang, J.; Yang, Y.; Zhang, X.; Shen, Z.; Zhang, W. Metabonomic characterization of aging and investigation on the anti-aging effects of total flavones of Epimedium. Mol. Biosyst., 2009, 5(10), 1204-1213.
[http://dx.doi.org/10.1039/b816407j] [PMID: 19756310]
[84]
Cheng, H.; Feng, S.; Shen, S.; Zhang, L.; Yang, R.; Zhou, Y.; Ding, C. Extraction, antioxidant and antimicrobial activities of Epimedium acuminatum Franch. polysaccharide. Carbohydr. Polym., 2013, 96(1), 101-108.
[http://dx.doi.org/10.1016/j.carbpol.2013.03.072] [PMID: 23688459]
[85]
Naseer, S.; Lone, S.H.; Lone, J.A.; Khuroo, M.A.; Bhat, K.A. LC–MS guided isolation, quantification and antioxidant evaluation of bioactive principles from Epimedium elatum. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 989, 62-70.
[http://dx.doi.org/10.1016/j.jchromb.2015.02.046] [PMID: 25804994]
[86]
Wang, P.; Meng, Q.; Wang, W.; Zhang, S.; Xiong, X.; Qin, S.; Zhang, J.; Li, A.; Liu, Z. Icariin inhibits the inflammation through down-regulating NF-κB/HIF-2α signal pathways in chondrocytes. Biosci. Rep., 2020, 40(11), BSR20203107.
[http://dx.doi.org/10.1042/BSR20203107] [PMID: 33155655]
[87]
Chen, H.A.; Chen, C.M.; Guan, S.S.; Chiang, C.K.; Wu, C.T.; Liu, S.H. The antifibrotic and anti-inflammatory effects of icariin on the kidney in a unilateral ureteral obstruction mouse model. Phytomedicine, 2019, 59, 152917.
[http://dx.doi.org/10.1016/j.phymed.2019.152917] [PMID: 30978648]
[88]
Zhang, X.; Han, N.; Li, G.; Yang, H.; Cao, Y.; Fan, Z.; Zhang, F. Local icariin application enhanced periodontal tissue regeneration and relieved local inflammation in a minipig model of periodontitis. Int. J. Oral Sci., 2018, 10(2), 19.
[http://dx.doi.org/10.1038/s41368-018-0020-3] [PMID: 29895944]
[89]
Shi, K.; Chen, L.; Chen, L.; Tan, A.; Xie, G.; Long, Q.; Ning, F.; Lan, Z.; Wang, P. Epimedii folium and curculiginis rhizoma ameliorate lipopolysaccharides-induced cognitive impairment by regulating the TREM2 signaling pathway. J. Ethnopharmacol., 2022, 284, 114766.
[http://dx.doi.org/10.1016/j.jep.2021.114766] [PMID: 34688798]
[90]
Jiang, J.; Xiao, S.; Xu, X.; Ma, H.; Feng, C.; Jia, X. Isomeric flavonoid aglycones derived from Epimedii Folium exerted different intensities in anti-osteoporosis through OPG/RANKL protein targets. Int. Immunopharmacol., 2018, 62, 277-286.
[http://dx.doi.org/10.1016/j.intimp.2018.07.017] [PMID: 30036771]
[91]
Yang, L.; Lu, D.; Guo, J.; Meng, X.; Zhang, G.; Wang, F. Icariin from epimedium brevicornum maxim promotes the biosynthesis of estrogen by aromatase (CYP19). J. Ethnopharmacol., 2013, 145(3), 715-721.
[http://dx.doi.org/10.1016/j.jep.2012.11.031] [PMID: 23261485]
[92]
Xu, F.; Ding, Y.; Guo, Y.; Liu, B.; Kou, Z.; Xiao, W.; Zhu, J. Anti-osteoporosis effect of Epimedium via an estrogen-like mechanism based on a system-level approach. J. Ethnopharmacol., 2016, 177, 148-160.
[http://dx.doi.org/10.1016/j.jep.2015.11.007] [PMID: 26593211]
[93]
Ma, Z.; Li, X.; Chen, Y.; Tang, X.; Gao, Y.; Wang, H.; Liu, R. Comprehensive evaluation of the combined extracts of Epimedii Folium and Ligustri Lucidi Fructus for PMOP in ovariectomized rats based on MLP-ANN methods. J. Ethnopharmacol., 2021, 268, 113563.
[http://dx.doi.org/10.1016/j.jep.2020.113563] [PMID: 33176184]
[94]
Cheng, X.; Tan, S.; Duan, F.; Yuan, Q.; Li, Q.; Deng, G. Icariin induces apoptosis by suppressing autophagy in tamoxifen-resistant breast cancer cell line MCF-7/TAM. Breast Cancer, 2019, 26(6), 766-775.
[http://dx.doi.org/10.1007/s12282-019-00980-5] [PMID: 31172425]
[95]
Sun, Y.S.; Thakur, K.; Hu, F.; Cespedes-Acuña, C.L.; Zhang, J.G.; Wei, Z.J. Icariside II suppresses cervical cancer cell migration through JNK modulated matrix metalloproteinase-2/9 inhibition in vitro and in vivo. Biomed. Pharmacother., 2020, 125, 110013.
[http://dx.doi.org/10.1016/j.biopha.2020.110013] [PMID: 32092821]
[96]
Fu, J.; Jia, Q.; Liang, P.; Wang, S.; Zhou, H.; Zhang, L.; Gao, C.; Wang, H.; Lv, Y.; Han, S. Targeting and covalently immobilizing the EGFR through SNAP-Tag technology for screening drug leads. Anal. Chem., 2021, 93(34), 11719-11728.
[http://dx.doi.org/10.1021/acs.analchem.1c01664] [PMID: 34415741]
[97]
Sun, C.; Pan, L.; Yang, J.; Yao, J.; Li, B.; Tan, Y.; Zhang, G.; Sun, Y. Protective effect of icaritin on focal cerebral ischemic–reperfusion mice. Chin. Herb. Med., 2018, 10(1), 40-45.
[http://dx.doi.org/10.1016/j.chmed.2017.12.005]
[98]
Yang, X.; Zhang, H.; Li, L.; Zhou, X.; Liu, Y.; Lai, J. Proteomic analysis of protective effects of epimedium flavonoids against ethanol-induced toxicity in retinoic acid-treated SH-SY5Y cells. Molecules, 2022, 27(3), 1026.
[http://dx.doi.org/10.3390/molecules27031026] [PMID: 35164291]
[99]
Wu, B.; Xiao, X.; Li, S.; Zuo, G. Transcriptomics and metabonomics of the anti-aging properties of total flavones of Epimedium in relation to lipid metabolism. J. Ethnopharmacol., 2019, 229, 73-80.
[http://dx.doi.org/10.1016/j.jep.2018.09.039] [PMID: 30278205]
[100]
Li, N.; Wang, J.; Wang, X.; Sun, J.; Li, Z. Icariin exerts a protective effect against d-galactose induced premature ovarian failure via promoting DNA damage repair. Biomed. Pharmacother., 2019, 118, 109218.
[http://dx.doi.org/10.1016/j.biopha.2019.109218] [PMID: 31330441]
[101]
Shen, Y.; Wang, M.; Zhou, J.; Chen, Y.; Wu, M.; Yang, Z.; Yang, C.; Xia, G.; Tam, J.P.; Zhou, C.; Yang, H.; Jia, X. Construction of Fe3O4alpha-glucosidase magnetic nanoparticles for ligand fishing of alpha-glucosidase inhibitors from a natural tonic epimedii folium. Int. J. Biol. Macromol., 2020, 165, 1361-1372.
[102]
Kim, D.H.; Jung, H.A.; Sohn, H.S.; Kim, J.W.; Choi, J.S. Potential of icariin metabolites from epimedium koreanum nakai as antidiabetic therapeutic agents. Molecules, 2017, 22(6), 986.
[http://dx.doi.org/10.3390/molecules22060986] [PMID: 28608833]
[103]
Zhou, Y.; Hou, J.; Yang, G.; Jiang, S.; Chen, C.; Wang, Z.; Liu, Y.; Ren, S.; Li, W. Icariin ameliorates cisplatin-induced cytotoxicity in human embryonic kidney 293 cells by suppressing ROS-mediated PI3K/Akt pathway. Biomed. Pharmacother., 2019, 109, 2309-2317.
[http://dx.doi.org/10.1016/j.biopha.2018.11.108] [PMID: 30551489]
[104]
Zhang, J.; Wang, Y. Bilobetin, a novel small molecule inhibitor targeting influenza virus polymerase acidic (PA) endonuclease was screened from plant extracts. Nat. Prod. Res., 2021, 35(24), 5968-5971.
[http://dx.doi.org/10.1080/14786419.2020.1808636] [PMID: 32820654]
[105]
Li, P.; Zhang, L.; Guo, Z.; Kang, Q.; Chen, C.; Liu, X.; Ma, Q.; Zhang, J.; Hu, Y.; Wang, T. Epimedium koreanum nakai–induced liver injury—a mechanistic study using untargeted metabolomics. Front. Pharmacol., 2022, 13, 934057.
[http://dx.doi.org/10.3389/fphar.2022.934057] [PMID: 35910368]
[106]
Wang, Z.; Xu, G.; Wang, H.; Zhan, X.; Gao, Y.; Chen, N.; Li, R.; Song, X.; Guo, Y.; Yang, R.; Niu, M.; Wang, J.; Liu, Y.; Xiao, X.; Bai, Z. Icariside Ⅱ, a main compound in Epimedii Folium, induces idiosyncratic hepatotoxicity by enhancing NLRP3 inflammasome activation. Acta Pharm. Sin. B, 2020, 10(9), 1619-1633.
[http://dx.doi.org/10.1016/j.apsb.2020.03.006] [PMID: 33088683]
[107]
Zhao, Z.; Liang, Z.; Chan, K.; Lu, G.; Lai Mei Lee, E; Chen, H.; Li, L. A unique issue in the standardization of Chinese materia medica: Processing. Planta Med., 2010, 76(17), 1975-1986.
[http://dx.doi.org/10.1055/s-0030-1250522] [PMID: 21049396]
[108]
Zhao, Y.; Chen, S.; Wang, Y.; Lv, C.; Wang, J.; Lu, J. Effect of drying processes on prenylflavonoid content and antioxidant activity of Epimedium koreanum Nakai. Yao Wu Shi Pin Fen Xi, 2018, 26(2), 796-806.
[PMID: 29567251]
[109]
He, F.; Li, M.; He, Y.; Dong, Z.; Cao, J.; Dai, Z.; Ma, S. Authentication of Processed Epimedii folium by EA-IRMS. J. Anal. Methods Chem., 2020, 2020, 1-5.
[http://dx.doi.org/10.1155/2020/8920380] [PMID: 32089950]
[110]
Zai-you, J.; Gui-fang, X.; Hong-zhi, C.; Hong-sheng, W.; Xi-qiao, H. Study on the differences of major pharmaceutical ingredients in different parts and processed medicinal material of epimedium brevicornu maxim in taihang mountain. Nutr. Hosp., 2015, 32(2), 913-917.
[PMID: 26268128]
[111]
Zhang, Y.; Li, J.; Wang, Y.; Liang, Q. Taxonomy of Epimedium (Berberidaceae) with special reference to Chinese species. Chin. Herb. Med., 2021, 14(1), 20-35.
[PMID: 36120133]
[112]
Li, B.; Lima, M.R.M.; Nie, Y.; Xu, L.; Liu, X.; Yuan, H.; Chen, C.; Dias, A.C.P.; Zhang, X. HPLC-DAD fingerprints combined with multivariate analysis of epimedii folium from major producing areas in eastern asia: Effect of geographical origin and species. Front. Pharmacol., 2021, 12, 761551.
[http://dx.doi.org/10.3389/fphar.2021.761551] [PMID: 34899314]
[113]
Geng, J.; Dai, Y.; Yao, Z.; Qin, Z.; Wang, X.; Qin, L.; Yao, X. Metabolites profile of Xian-Ling-Gu-Bao capsule, a traditional Chinese medicine prescription, in rats by ultra performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry analysis. J. Pharm. Biomed. Anal., 2014, 96, 90-103.
[http://dx.doi.org/10.1016/j.jpba.2014.03.024] [PMID: 24731969]
[114]
Li, F.; Du, B.W.; Lu, D.F.; Wu, W.X.; Wongkrajang, K.; Wang, L.; Pu, W.C.; Liu, C.L.; Liu, H.W.; Wang, M.K.; Wang, F. Flavonoid glycosides isolated from Epimedium brevicornum and their estrogen biosynthesis-promoting effects. Sci. Rep., 2017, 7(1), 7760.
[http://dx.doi.org/10.1038/s41598-017-08203-7] [PMID: 28798396]
[115]
Li, H.; Guan, X.; Yang, W.; Liu, K.; Ye, M.; Sun, C.; Lu, S.; Guo, D. Antioxidant flavonoids from Epimedium wushanense. Fitoterapia, 2012, 83(1), 44-48.
[http://dx.doi.org/10.1016/j.fitote.2011.09.010] [PMID: 21968061]
[116]
Ren, F.C.; Jiang, X.J.; Wen, S.Z.; Wang, L.X.; Li, X.M.; Wang, F. Prenylated 2-phenoxychromones and flavonoids from epimedium brevicornum and revised structures of epimedonins A and B. J. Nat. Prod., 2018, 81(1), 16-21.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00514] [PMID: 29338226]
[117]
Choi, H.; Kim, J.; Li, Z.; Jenis, J.; Ban, Y.; Baiseitova, A.; Park, K. Effectiveness of prenyl group on flavonoids from epimedium koreanum nakai on bacterial neuraminidase inhibition. Molecules, 2019, 24(2), 317.
[http://dx.doi.org/10.3390/molecules24020317] [PMID: 30654565]
[118]
Zhao, Y.D.; Zhang, X.; Yang, W.Y.; Zhang, R.Q.; Mu, L.T.; Han, L.; Lv, C.N.; Lu, J.C. New anti-pulmonary fibrosis prenylflavonoid glycosides from Epimedium koreanum. Chin. J. Nat. Med., 2022, 20(3), 221-228.
[http://dx.doi.org/10.1016/S1875-5364(21)60116-4] [PMID: 35369967]
[119]
Pang, X.; Yin, S.S.; Yu, H.Y.; Zhang, Y.; Wang, T.; Hu, L.M.; Han, L.F. Prenylated flavonoids and dihydrophenanthrenes from the leaves of Epimedium brevicornu and their cytotoxicity against HepG2 cells. Nat. Prod. Res., 2018, 32(19), 2253-2259.
[http://dx.doi.org/10.1080/14786419.2017.1405410] [PMID: 29172686]
[120]
Hong, X.; Wang, X.; Yong, E.L.; Gong, Y. Determination of breviflavone A and B in Epimedium herbs with liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal., 2009, 49(3), 853-857.
[http://dx.doi.org/10.1016/j.jpba.2008.12.036] [PMID: 19186021]
[121]
Zhang, X.; Kang, Z.; Li, Q.; Zhang, J.; Cheng, S.; Chang, H.; Wang, S.; Cao, S.; Li, T.; Li, J.; Wang, Y.; Song, Y.; Yu, H. Antigen-adjuvant effects of icariin in enhancing tumor-specific immunity in mastocytoma-bearing DBA/2J mice. Biomed. Pharmacother., 2018, 99, 810-816.
[http://dx.doi.org/10.1016/j.biopha.2018.01.139] [PMID: 29710479]
[122]
Niu, H.; Wang, M.; Ma, D.; Chen, X.; Zhang, L.; Li, Y.; Zhang, L.; Li, L. Epimedium flavonoids improve cognitive impairment and white matter lesions induced by chronic cerebral hypoperfusion through inhibiting the Lingo-1/Fyn/ROCK pathway and activating the BDNF/NRG1/PI3K pathway in rats. Brain Res., 2020, 1743, 146902.
[http://dx.doi.org/10.1016/j.brainres.2020.146902] [PMID: 32446949]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy