Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Synthesis of Novel Propynyl Monoterpene Analogues and their Conjugates with β-DGlucopyranosides

Author(s): Rinat R. Gubaidullin*, Yulia A. Perfilova and Lyudmila V. Parfenova

Volume 28, Issue 4, 2024

Published on: 08 March, 2024

Page: [298 - 304] Pages: 7

DOI: 10.2174/0113852728283109240216051223

Price: $65

Abstract

Camphor and carvone exhibit a broad spectrum of biological activity, which determines the prospect of their use as a platform for functionalization to obtain the analogues as potential drugs. The functionalization of camphor and carvone often involves changes to the skeleton of the molecules or their fragmentation. Therefore, in modern medicinal chemistry, research aimed at the development of effective approaches to the synthesis of semisynthetic derivatives of camphor and carvone with preservation of the native framework, demonstrating high biological activity, is in demand. The present work is aimed at the synthesis of new propynyl analogues of camphor and carvone, as well as their conjugates with mono- and disaccharides via Cu-catalyzed cycloaddition of acetylenes and azides (Cu- AAC). Alkylation of camphor and carvone with propargyl bromide in the presence of the base KN(SiMe3)2–Et3B in 1,2-dimethoxyethane (DME) at room temperature provides the target products with yields of 69% and 47%, respectively. Glycosyl azides were obtained by the reaction of peracetylated sugars with trimethylsilyl azide in the presence of SnCl4.The synthesis of 1,2,3-triazolyl glycoconjugates of camphor and carvone with mono- and disaccharides was carried out through Cu(I)-catalyzed 1,3-dipolar cycloaddition of azides to acetylenes (CuAAC) in the presence of Cu and CuSO4·5H2O. The structures of the synthesized compounds were determined by NMR. The new propynyl-substituted camphor and carvone, as well as their 1,2,3- triazolylglycoconjugates, can be used as promising building blocks for medicine chemistry.

Graphical Abstract

[1]
Zielińska-Błajet, M.; Feder-Kubis, J. Monoterpenes and their derivatives-recent development in biological and medical applications. Int. J. Mol. Sci., 2020, 21(19), 7078.
[http://dx.doi.org/10.3390/ijms21197078] [PMID: 32992914]
[2]
Lei, Y.; Fu, P.; Jun, X.; Cheng, P. Pharmacological properties of geraniol: A review. Planta Med., 2019, 85(1), 48-55.
[http://dx.doi.org/10.1055/a-0750-6907] [PMID: 30308694]
[3]
Makhaeva, G.F.; Elkina, N.A.; Shchegolkov, E.V.; Boltneva, N.P.; Lushchekina, S.V.; Serebryakova, O.G.; Rudakova, E.V.; Kovaleva, N.V.; Radchenko, E.V.; Palyulin, V.A.; Burgart, Y.V.; Saloutin, V.I.; Bachurin, S.O.; Richardson, R.J. Synthesis, molecular docking, and biological evaluation of 3-oxo-2-tolylhydrazinylidene-4,4,4-trifluorobutanoates bearing higher and natural alcohol moieties as new selective carboxylesterase inhibitors. Bioorg. Chem., 2019, 91, 103097.
[http://dx.doi.org/10.1016/j.bioorg.2019.103097] [PMID: 31323527]
[4]
Wattanasatcha, A.; Rengpipat, S.; Wanichwecharungruang, S. Thymol nanospheres as an effective anti-bacterial agent. Int. J. Pharm., 2012, 434(1-2), 360-365.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.017] [PMID: 22698863]
[5]
Veras, H.N.H.; Araruna, M.K.A.; Costa, J.G.M.; Coutinho, H.D.M.; Kerntopf, M.R.; Botelho, M.A.; Menezes, I.R.A. Topical antiinflammatory activity of essential oil of Lippia sidoides cham: Possible mechanism of action. Phytother. Res., 2013, 27(2), 179-185.
[http://dx.doi.org/10.1002/ptr.4695] [PMID: 22511564]
[6]
Riella, K.R.; Marinho, R.R.; Santos, J.S.; Pereira-Filho, R.N.; Cardoso, J.C.; Albuquerque-Junior, R.L.C.; Thomazzi, S.M. Anti-inflammatory and cicatrizing activities of thymol, a monoterpene of the essential oil from Lippia gracilis, in rodents. J. Ethnopharmacol., 2012, 143(2), 656-663.
[http://dx.doi.org/10.1016/j.jep.2012.07.028] [PMID: 22885071]
[7]
Kang, S.H.; Kim, Y.S.; Kim, E.K.; Hwang, J.W.; Jeong, J.H.; Dong, X.; Lee, J.W.; Moon, S.H.; Jeon, B.T.; Park, P.J. Anticancer effect of thymol on AGS human gastric carcinoma cells. J. Microbiol. Biotechnol., 2016, 26(1), 28-37.
[http://dx.doi.org/10.4014/jmb.1506.06073] [PMID: 26437948]
[8]
Bkhaitan, M.M.; Alarjah, M.; Mirza, A.Z.; Abdalla, A.N.; El-Said, H.M.; Faidah, H.S. Preparation and biological evaluation of metronidazole derivatives with monoterpenes and eugenol. Chem. Biol. Drug Des., 2018, 92(6), 1954-1962.
[http://dx.doi.org/10.1111/cbdd.13366] [PMID: 30022596]
[9]
Singh, H.; Sahoo, T.; Sen, C.; Galani, S.M.; Ghosh, S.C. Aerobic oxidative alkynylation of H-phosphonates and amides: An efficient route for the synthesis of alkynylphosphonates and ynamides using a recyclable Cu–MnO catalyst. Catal. Sci. Technol., 2019, 9(7), 1691-1698.
[http://dx.doi.org/10.1039/C9CY00275H]
[10]
Nesterkina, M.; Kravchenko, I. Synthesis and pharmacological properties of novel esters based on monoterpenoids and glycine. Pharmaceuticals, 2017, 10(4), 47.
[http://dx.doi.org/10.3390/ph10020047] [PMID: 28524111]
[11]
Trytek, M.; Paduch, R.; Pięt, M.; Kozieł, A.; Kandefer-Szerszeń, M.; Szajnecki, Ł.; Gromada, A. Biological activity of oxygenated pinene derivatives on human colon normal and carcinoma cells. Flavour Fragrance J., 2018, 33(6), 428-437.
[http://dx.doi.org/10.1002/ffj.3471]
[12]
Barbuceanu, S.F.; Saramet, G.; Almajan, G.L.; Draghici, C.; Barbuceanu, F.; Bancescu, G. New heterocyclic compounds from 1,2,4-triazole and 1,3,4-thiadiazole class bearing diphenylsulfone moieties. Synthesis, characterization and antimicrobial activity evaluation. Eur. J. Med. Chem., 2012, 49, 417-423.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.031] [PMID: 22309915]
[13]
Gonda, T.; Bérdi, P.; Zupkó, I.; Fülöp, F.; Szakonyi, Z. Stereoselective synthesis, synthetic and pharmacological application of monoterpene-based 1,2,4- and 1,3,4-oxadiazoles. Int. J. Mol. Sci., 2017, 19(1), 81.
[http://dx.doi.org/10.3390/ijms19010081] [PMID: 29283373]
[14]
Nikitina, L.E.; Startseva, V.A.; Vakulenko, I.A.; Khismatulina, I.M.; Lisovskaya, S.A.; Glushko, N.P.; Fassakhov, R.S. Synthesis and antifungal activity of compounds of the pinane series. Pharm. Chem. J., 2009, 43(5), 251.
[http://dx.doi.org/10.1007/s11094-009-0282-3]
[15]
Chernyshov, V.V.; Yarovaya, O.I.; Fadeev, D.S.; Gatilov, Y.V.; Esaulkova, Y.L.; Muryleva, A.S.; Sinegubova, K.O.; Zarubaev, V.V.; Salakhutdinov, N.F. Single-stage synthesis of heterocyclic alkaloid-like compounds from (+)-camphoric acid and their antiviral activity. Mol. Divers., 2020, 24(1), 61-67.
[http://dx.doi.org/10.1007/s11030-019-09932-9] [PMID: 30820742]
[16]
Sokolova, A.S.; Baranova, D.V.; Yarovaya, O.I.; Baev, D.S.; Polezhaeva, O.A.; Zybkina, A.V.; Shcherbakov, D.N.; Tolstikova, T.G.; Salakhutdinov, N.F. Synthesis of (1S)-(+)-camphor-10-sulfonic acid derivatives and investigations in vitro and in silico of their antiviral activity as the inhibitors of filovirus infections. Russ. Chem. Bull., 2019, 68(5), 1041-1046.
[http://dx.doi.org/10.1007/s11172-019-2517-0]
[17]
Vasconcelos, R.M.C.; Leite, F.C.; Leite, J.A.; Rodrigues Mascarenhas, S.; Rodrigues, L.C.; Piuvezam, M.R. Synthesis, acute toxicity and anti-inflammatory effect of bornyl salicylate, a salicylic acid derivative. Immunopharmacol. Immunotoxicol., 2012, 34(6), 1028-1038.
[http://dx.doi.org/10.3109/08923973.2012.694891] [PMID: 22712758]
[18]
Sokolova, A.S.; Yarovaya, O.I.; Shtro, A.A.; Borisova, M.S.; Morozova, E.A.; Tolstikova, T.G.; Zarubaev, V.V.; Salakhutdinov, N.F. Synthesis and biological activity of heterocyclic borneol derivatives. Chem. Heterocycl. Compd., 2017, 53(3), 371-377.
[http://dx.doi.org/10.1007/s10593-017-2063-3]
[19]
da Silva, E.; da Silva Araújo, A.; Moraes, A.; de Souza, L.; Silva Lourenço, M.; de Souza, M.; Wardell, J.; Wardell, S. Synthesis and biological activities of camphor hydrazone and imine derivatives. Sci. Pharm., 2015, 84(3), 467-483.
[http://dx.doi.org/10.3390/scipharm84030467] [PMID: 28117313]
[20]
Shokova, E.A.; Kim, J.K.; Kovalev, V.V. Camphor and its derivatives. Unusual transformations and biological activity. Russ. J. Org. Chem., 2016, 52(4), 459-488.
[http://dx.doi.org/10.1134/S1070428016040011]
[21]
Oreshko, V.V.; Kovaleva, K.S.; Mordvinova, E.D.; Yarovaya, O.I.; Gatilov, Y.V.; Shcherbakov, D.N.; Bormotov, N.I.; Serova, O.A.; Shishkina, L.N.; Salakhutdinov, N.F. Synthesis and antiviral properties of camphor-derived iminothiazolidine-4-ones and 2,3-dihydrothiazoles. Molecules, 2022, 27(15), 4761.
[http://dx.doi.org/10.3390/molecules27154761] [PMID: 35897931]
[22]
Bouyahya, A.; Mechchate, H.; Benali, T.; Ghchime, R.; Charfi, S.; Balahbib, A.; Burkov, P.; Shariati, M.A.; Lorenzo, J.M.; Omari, N.E. Health benefits and pharmacological properties of carvone. Biomolecules, 2021, 11(12), 1803.
[http://dx.doi.org/10.3390/biom11121803] [PMID: 34944447]
[23]
Oubella, A.; Bimoussa, A.; N’ait Oussidi, A.; Fawzi, M.; Auhmani, A.; Morjani, H.; Riahi, A.; Esseffar, M.; Parish, C.; Ait Itto, M.Y. New 1,2,3-triazoles from (R)-Carvone: Synthesis, DFT mechanistic study and in vitro cytotoxic evaluation. Molecules, 2022, 27(3), 769.
[http://dx.doi.org/10.3390/molecules27030769] [PMID: 35164037]
[24]
Verstegen-Haaksma, A.A.; Swarts, H.J.; Jansen, B.J.M.; de Groot, A.; Bottema-MacGillavry, N.; Witholt, B. Application of S-(+)-carvone in the synthesis of biologically active natural products using chemical transformations and bioconversions. Ind. Crops Prod., 1995, 4(1), 15-21.
[http://dx.doi.org/10.1016/0926-6690(95)00006-X]
[25]
Sokolova, A.S.; Yarovaya, О.I.; Baev, D.S.; Shernyukov, А.V.; Shtro, A.A.; Zarubaev, V.V.; Salakhutdinov, N.F. Aliphatic and alicyclic camphor imines as effective inhibitors of influenza virus H1N1. Eur. J. Med. Chem., 2017, 127, 661-670.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.035] [PMID: 27823881]
[26]
Kovaleva, K.S.; Zubkov, F.I.; Bormotov, N.I.; Novikov, R.A.; Dorovatovskii, P.V.; Khrustalev, V.N.; Gatilov, Y.V.; Zarubaev, V.V.; Yarovaya, O.I.; Shishkina, L.N.; Salakhutdinov, N.F. Synthesis of D-(+)-camphor-based N-acylhydrazones and their antiviral activity. MedChemComm, 2018, 9(12), 2072-2082.
[http://dx.doi.org/10.1039/C8MD00442K] [PMID: 30746065]
[27]
Sokolova, A.S.; Yarovaya, O.I.; Bormotov, N.I.; Shishkina, L.N.; Salakhutdinov, N.F. Discovery of a new class of inhibitors of vaccinia virus based on (−)‐Borneol from Abies sibirica and (+)‐. Camphor. Chem. Biodivers., 2018, 15(9), e1800153.
[http://dx.doi.org/10.1002/cbdv.201800153] [PMID: 29956885]
[28]
Pina, L.T.S.; Serafini, M.R.; Oliveira, M.A.; Sampaio, L.A.; Guimarães, J.O.; Guimarães, A.G. Carvone and its pharmacological activities: A systematic review. Phytochemistry, 2022, 196, 113080.
[http://dx.doi.org/10.1016/j.phytochem.2021.113080] [PMID: 34999510]
[29]
Chen, J.; Lu, M.; Jing, Y.; Dong, J. The synthesis of l-carvone and limonene derivatives with increased antiproliferative effect and activation of ERK pathway in prostate cancer cells. Bioorg. Med. Chem., 2006, 14(19), 6539-6547.
[http://dx.doi.org/10.1016/j.bmc.2006.06.013] [PMID: 16806947]
[30]
Dai, M.; Wu, L.; Yu, K.; Xu, R.; Wei, Y.; Chinnathambi, A.; Alahmadi, T.A.; Zhou, M. D-Carvone inhibit cerebral ischemia/reperfusion induced inflammatory response TLR4/NLRP3 signaling pathway. Biomed. Pharmacother., 2020, 132, 110870.
[http://dx.doi.org/10.1016/j.biopha.2020.110870] [PMID: 33080468]
[31]
Gopalakrishnan, T.; Ganapathy, S.; Veeran, V.; Namasivayam, N. Preventive effect of D-carvone during DMBA induced mouse skin tumorigenesis by modulating xenobiotic metabolism and induction of apoptotic events. Biomed. Pharmacother., 2019, 111, 178-187.
[http://dx.doi.org/10.1016/j.biopha.2018.12.071] [PMID: 30583225]
[32]
Sokolova, A.S.; Yarovaya, O.I.; Shernyukov, A.V.; Gatilov, Y.V.; Razumova, Y.V.; Zarubaev, V.V.; Tretiak, T.S.; Pokrovsky, A.G.; Kiselev, O.I.; Salakhutdinov, N.F. Discovery of a new class of antiviral compounds: Camphor imine derivatives. Eur. J. Med. Chem., 2015, 105, 263-273.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.010] [PMID: 26498572]
[33]
Zarubaev, V.V.; Pushkina, E.A.; Borisevich, S.S.; Galochkina, A.V.; Garshinina, A.V.; Shtro, A.A.; Egorova, A.A.; Sokolova, A.S.; Khursan, S.L.; Yarovaya, O.I.; Salakhutdinov, N.F. Selection of influenza virus resistant to the novel camphor-based antiviral camphecene results in loss of pathogenicity. Virology, 2018, 524, 69-77.
[http://dx.doi.org/10.1016/j.virol.2018.08.011] [PMID: 30165308]
[34]
García Martínez, A.; Teso Vilar, E.; García Fraile, A.; de la Moya Cerero, S.; de Oro Osuna, S.; Lora Maroto, B. From natural camphor to (1R,2S)-2-chloromethyl-3-oxocyclopentanecarboxylic acid: a stereocontrolled approach to enantiopure sarkomycin. Tetrahedron Lett., 2001, 42(44), 7795-7799.
[http://dx.doi.org/10.1016/S0040-4039(01)01663-X]
[35]
Knizhnikov, V.O.; Voitenko, Z.V.; Golovko, V.B.; Gorichko, M.V. A route to a wide range of cyclopentanecarboxylic acids via 4-substituted camphors. Tetrahedron, 2012, 68(7), 1972-1978.
[http://dx.doi.org/10.1016/j.tet.2011.12.053]
[36]
Kinzl, F.R.; Riepl, H.M. Synthesis of terpene diamines based on camphor derived dinitriles. Helv. Chim. Acta, 2015, 98(4), 447-452.
[http://dx.doi.org/10.1002/hlca.201400346]
[37]
Biggs, R.A.; Ogilvie, W.W. Facile synthesis of isocampholenic acids by the rearrangement of camphor derivatives. Tetrahedron, 2013, 69(5), 1539-1545.
[http://dx.doi.org/10.1016/j.tet.2012.12.011]
[38]
Grošelj, U.; Sevšek, A.; Ričko, S.; Golobič, A.; Svete, J.; Stanovnik, B. Synthesis and structural characterization of novel camphor-derived amines. Chirality, 2012, 24(10), 778-788.
[http://dx.doi.org/10.1002/chir.22069] [PMID: 22740342]
[39]
Yang, T.F.; Zhang, Z.N.; Tseng, C.H.; Chen, L.H. Grignard reagent-promoted selective ring expansion and alkylation of formyl borneol and isoborneol: A new route to highly substituted cyclopentanes. Tetrahedron Lett., 2005, 46(11), 1917-1920.
[http://dx.doi.org/10.1016/j.tetlet.2005.01.102]
[40]
Li, W.D.Z.; Yang, Y.R. Unusual cyclopropanation of 9-bromocamphor derivatives: A novel formal C(1)-C(7) bond cleavage of camphor. Org. Lett., 2005, 7(14), 3107-3110.
[http://dx.doi.org/10.1021/ol051141e] [PMID: 15987217]
[41]
Vostrikov, N.S.; Abutkov, A.V.; Spirikhin, L.V.; Fatykhov, A.A.; Miftahov, M.S. Synthetic approaches to homochiral bicyclo[5.2.1]decanes based on d-camphor. Russ. Chem. Bull., 2001, 50(4), 654-658.
[http://dx.doi.org/10.1023/A:1011360828286]
[42]
Yang, T.F.; Tseng, C.H.; Shen, C.H.; Chen, L.H.; Kao, L.T. Regio- and stereoselective rearrangements of formyl [2.2.1]bicyclic carbinols in methanol. Tetrahedron, 2009, 65(47), 9854-9861.
[http://dx.doi.org/10.1016/j.tet.2009.09.057]
[43]
García Martínez, A.; Teso Vilar, E.; García Fraile, A.; de la Moya Cerero, S.; Lora Maroto, B.; Díaz Morillo, C.; García Martínez, A.; Teso Vilar, E.; García Fraile, A.; De La Moya Cerero, S.; Lora Maroto, B.; Díaz Morillo, C. Chemoselective reaction of spiro[oxirane-2,2′-norborn]-1′-yl triflates with nucleophiles: A new case of HSAB-principle dependence. Tetrahedron Lett., 2001, 42(47), 8293-8296.
[http://dx.doi.org/10.1016/S0040-4039(01)01773-7]
[44]
Thomas, A.A.; Monk, K.A.; Abraham, S.; Lee, S.; Garner, C.M. Rearrangement of methylenecamphor during electrophilic bromination: Remarkably clean access to the unnatural fenchyl (1,3,3-trimethylbicyclo[2.2.1]heptane) system. Tetrahedron Lett., 2001, 42(12), 2261-2263.
[http://dx.doi.org/10.1016/S0040-4039(01)00089-2]
[45]
Huters, A.D.; Styduhar, E.D.; Garg, N.K. Total syntheses of the elusive welwitindolinones with bicyclo[4.3.1] cores. Angew. Chem. Int. Ed., 2012, 51(16), 3758-3765.
[http://dx.doi.org/10.1002/anie.201107567] [PMID: 22415889]
[46]
Berrué, F.; McCulloch, M.W.B.; Kerr, R.G. Marine diterpene glycosides. Bioorg. Med. Chem., 2011, 19(22), 6702-6719.
[http://dx.doi.org/10.1016/j.bmc.2011.06.083] [PMID: 21783368]
[47]
Foley, D.A.; Maguire, A.R. Synthetic approaches to bicyclo[5.3.0]decane sesquiterpenes. Tetrahedron, 2010, 66(6), 1131-1175.
[http://dx.doi.org/10.1016/j.tet.2009.11.045]
[48]
Nicolaou, K.C.; Chen, J.S.; Edmonds, D.J.; Estrada, A.A. Recent advances in the chemistry and biology of naturally occurring antibiotics. Angew. Chem. Int. Ed., 2009, 48(4), 660-719.
[http://dx.doi.org/10.1002/anie.200801695] [PMID: 19130444]
[49]
Artyushin, O.I.; Moiseeva, A.A.; Zarubaev, V.V.; Slita, A.V.; Galochkina, A.V.; Muryleva, A.A.; Borisevich, S.S.; Yarovaya, O.I.; Salakhutdinov, N.F.; Brel, V.K. Synthesis of camphecene and cytisine conjugates using click chemistry methodology and study of their antiviral activity. Chem. Biodivers., 2019, 16(11), e1900340.
[http://dx.doi.org/10.1002/cbdv.201900340] [PMID: 31647170]
[50]
Silalai, P.; Sirion, U.; Piyachaturawat, P.; Chairoungdua, A.; Suksen, K.; Saeeng, R. Design, synthesis and evaluations of new 10‐Triazolyl‐1‐methoxygenipin analogues for their cytotoxicity to cancer cells. ChemistrySelect, 2020, 5(30), 9540-9546.
[http://dx.doi.org/10.1002/slct.202001908]
[51]
Ding, Y.; Guo, H.; Ge, W.; Chen, X.; Li, S.; Wang, M.; Chen, Y.; Zhang, Q. Copper(I) oxide nanoparticles catalyzed click chemistry based synthesis of melampomagnolide B-triazole conjugates and their anti-cancer activities. Eur. J. Med. Chem., 2018, 156, 216-229.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.058] [PMID: 30006167]
[52]
Janganati, V.; Ponder, J.; Balasubramaniam, M.; Bhat-Nakshatri, P.; Bar, E.E.; Nakshatri, H.; Jordan, C.T.; Crooks, P.A. MMB triazole analogs are potent NF-κB inhibitors and anti-cancer agents against both hematological and solid tumor cells. Eur. J. Med. Chem., 2018, 157, 562-581.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.010] [PMID: 30121494]
[53]
Bangalore, P.K.; Vagolu, S.K.; Bollikanda, R.K.; Veeragoni, D.K.; Choudante, P.C.; Misra, S.; Sriram, D.; Sridhar, B.; Kantevari, S. Usnic acid enaminone-coupled 1,2,3-triazoles as antibacterial and antitubercular agents. J. Nat. Prod., 2020, 83(1), 26-35.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00475] [PMID: 31858800]
[54]
Guo, H.Y.; Jin, C.; Zhang, H.M.; Jin, C.M.; Shen, Q.K.; Quan, Z.S. Synthesis and biological evaluation of (+)-usnic acid derivatives as potential anti- toxoplasma gondii agents. J. Agric. Food Chem., 2019, 67(34), 9630-9642.
[http://dx.doi.org/10.1021/acs.jafc.9b02173] [PMID: 31365255]
[55]
Shen, Q.K.; Deng, H.; Wang, S.B.; Tian, Y.S.; Quan, Z.S. Synthesis, and evaluation of in vitro and in vivo anticancer activity of 14-substituted oridonin analogs: A novel and potent cell cycle arrest and apoptosis inducer through the p53-MDM2 pathway. Eur. J. Med. Chem., 2019, 173, 15-31.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.005] [PMID: 30981113]
[56]
Zhang, X.; Zhang, S.; Zhao, S.; Wang, X.; Liu, B.; Xu, H. Click chemistry in natural product modification. Front Chem., 2021, 9, 774977.
[http://dx.doi.org/10.3389/fchem.2021.774977] [PMID: 34869223]
[57]
Zaki, M.; Allouchi, H.; El Bouakher, A.; Duverger, E.; El Hakmaoui, A.; Daniellou, R.; Guillaumet, G.; Akssira, M. Synthesis and anticancer evaluation of novel 9α-substituted-13-(1,2,3-triazolo)-parthenolides. Tetrahedron Lett., 2016, 57(24), 2591-2594.
[http://dx.doi.org/10.1016/j.tetlet.2016.04.115]
[58]
Pavan Kumar, C.; Devi, A.; Ashok Yadav, P.; Rao Vadaparthi, R.; Shankaraiah, G.; Sowjanya, P.; Jain, N.; Suresh Babu, K. “Click” reaction mediated synthesis of costunolide and dehydrocostuslactone derivatives and evaluation of their cytotoxic activity. J. Asian Nat. Prod. Res., 2016, 18(11), 1063-1078.
[http://dx.doi.org/10.1080/10286020.2016.1193012] [PMID: 27329166]
[59]
Jana, S.; Iram, S.; Thomas, J.; Liekens, S.; Dehaen, W. Synthesis and anticancer activity of novel aza-artemisinin derivatives. Bioorg. Med. Chem., 2017, 25(14), 3671-3676.
[http://dx.doi.org/10.1016/j.bmc.2017.04.041] [PMID: 28529044]
[60]
Crane, E.A.; Gademann, K. Capturing biological activity in natural product fragments by chemical synthesis. Angew. Chem. Int. Ed., 2016, 55(12), 3882-3902.
[http://dx.doi.org/10.1002/anie.201505863] [PMID: 26833854]
[61]
Kapkoti, D.S.; Singh, S.; Luqman, S.; Bhakuni, R.S. Synthesis of novel 1,2,3-triazole based artemisinin derivatives and their antiproliferative activity. New J. Chem., 2018, 42(8), 5978-5995.
[http://dx.doi.org/10.1039/C7NJ04271J]
[62]
Tian, Y.; Liang, Z.; Xu, H.; Mou, Y.; Guo, C. Design, synthesis and cytotoxicity of novel dihydroartemisinin-coumarin hybrids via click chemistry. Molecules, 2016, 21(6), 758.
[http://dx.doi.org/10.3390/molecules21060758] [PMID: 27294901]
[63]
Tien, D.D.; Giang, L.N.T.; Anh, D.T.T.; Dung, N.T.; Ha, T.N.; Ha, N.T.T.; Phuong, H.T.; Chinh, P.T.; Van Kiem, P.; Van Tuyen, N. Synthesis and cytotoxic evaluation of artemisinin–triazole hybrids. Nat. Prod. Commun., 2016, 11.
[http://dx.doi.org/10.1177/1934578X1601101204]
[64]
Ousidi, A.N.; Bimoussa, A.; Loubidi, M.; Fawzi, M.; Laamari, Y.; Oubella, A.; Maatallah, M.; Berteina-Raboin, S.; Auhmani, A.; Taha, M.L.; Morjani, H.; Ait Itto, M.Y. Design, synthesis, cytotoxic effect evaluation and molecular docking of (R)‐camphor‐based thiazolidinone‐isoxazole and thiazolidinone‐1,2,3‐triazole hybrids“. Chem. Select, 2023, 8(1), e202203349.
[http://dx.doi.org/10.1002/slct.202203349]
[65]
Hachim, M.E.; Oubella, A.; Byadi, S.; Fawzi, M.; Laamari, Y.; Bahsis, L.; Aboulmouhajir, A.; Morjani, H.; Podlipnik, Č.; Auhmani, A.; Ait Itto, M.Y. Newly synthesized (R)-carvone-derived 1,2,3-triazoles: Structural, mechanistic, cytotoxic and molecular docking studies. J. Biomol. Struct. Dyn., 2022, 40(16), 7205-7217.
[http://dx.doi.org/10.1080/07391102.2021.1894984] [PMID: 33719863]
[66]
Oubella, A.; Bimoussa, A.; Byadi, S.; Fawzi, M.; Laamari, Y.; Auhmani, A.; Morjani, H.; Robert, A.; Riahi, A.; Ait Itto, M.Y. Design, synthesis, in vitro anticancer activity, and molecular docking studies of new (R)-carvone-pyrazole-1,2,3-triazoles. J. Mol. Struct., 2022, 1265, 133383.
[http://dx.doi.org/10.1016/j.molstruc.2022.133383]
[67]
Galstyan, A.; Martiryan, A.; Grigoryan, K.; Ghazaryan, A.; Samvelyan, M.; Ghochikyan, T.; Nenajdenko, V. Synthesis of carvone-derived 1,2,3-triazoles study of their antioxidant properties and interaction with bovine serum albumin. Molecules, 2018, 23(11), 2991.
[http://dx.doi.org/10.3390/molecules23112991] [PMID: 30453471]
[68]
Spivak, A.Y.; Gubaidullin, R.R.; Galimshina, Z.R.; Nedopekina, D.A.; Odinokov, V.N. Effective synthesis of novel C(2)-propargyl derivatives of betulinic and ursolic acids and their conjugation with β-d-glucopyranoside azides via click chemistry. Tetrahedron, 2016, 72(9), 1249-1256.
[http://dx.doi.org/10.1016/j.tet.2016.01.024]
[69]
Spivak, A.Y.; Galimshina, Z.R.; Nedopekina, D.A.; Odinokov, V.N. Synthesis of new C-2 triazole-linked analogs of triterpenoid pentacyclic saponins. Chem. Nat. Compd., 2018, 54(2), 315-323.
[http://dx.doi.org/10.1007/s10600-018-2331-1]
[70]
Wang, Q.; Li, Y.; Zheng, L.; Huang, X.; Wang, Y.; Chen, C.H.; Cheng, Y.Y.; Morris-Natschke, S.L.; Lee, K.H. Novel betulinic acid–nucleoside hybrids with potent anti-HIV activity. ACS Med. Chem. Lett., 2020, 11(11), 2290-2293.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00414] [PMID: 33214842]
[71]
Negishi, E. A highly selective method for α-alkylation of ketones via potassium enoxytrialkylborates. Tetrahedron Lett., 1979, 20, 845-848.
[http://dx.doi.org/10.1016/S0040-4039(01)93567-1]
[72]
Negishi, E. Highly regio and stereospecific palladium-catalyzed allylation of enolates derived from ketones. J. Org. Chem., 1982, 47, 3188-3190.
[http://dx.doi.org/10.1021/jo00137a038]
[73]
Spivak, A.Y.; Nedopekina, D.A.; Shakurova, E.R.; Khalitova, R.R.; Gubaidullin, R.R.; Odinokov, V.N.; Dzhemilev, U.M.; Bel’skii, Y.P.; Bel’skaya, N.V.; Stankevich, S.A.; Korotkaya, E.V.; Khazanov, V.A. Synthesis of lupane triterpenoids with triphenylphosphonium substituents and studies of their antitumor activity. Russ. Chem. Bull., 2013, 62(1), 188-198.
[http://dx.doi.org/10.1007/s11172-013-0028-y]
[74]
Bianchi, A.; Bernardi, A. Traceless Staudinger ligation of glycosyl azides with triaryl phosphines: Stereoselective synthesis of glycosyl amides. J. Org. Chem., 2006, 71(12), 4565-4577.
[http://dx.doi.org/10.1021/jo060409s] [PMID: 16749790]
[75]
Kommera, H.; Kaluđerović, G.N.; Bette, M.; Kalbitz, J.; Fuchs, P.; Fulda, S.; Mier, W.; Paschke, R. In vitro anticancer studies of α- and β-D-gluco- pyranose betulin anomers. Chem. Biol. Interact., 2010, 185(2), 128-136.
[http://dx.doi.org/10.1016/j.cbi.2010.02.038] [PMID: 20193672]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy