Abstract
This article highlights current developments in iron-doped nanocatalyst-based solvent-free organic reactions. These catalysts have the potential to speed up processes under safe environmental settings and eliminate the need for hazardous organic solvents. Its application in a variety of fields is mostly due to its superparamagnetic nano diameters, which are affordable, easily separable, reusable, and eco-friendly. Thus, the present review article focuses on the compendious account of various doped iron nanocatalysts reported catalyzing organic transformation, including synthesis of bioactive compounds, condensation, multicomponent, annulation, esterification, coupling, alkylation, acylation reactions. The development of innovative, highly active, and reusable magnetic iron nanocomposite catalysts is crucial for the future of catalysis as it will pave the way for the creation of environmentally friendly and sustainable technology. The review will provide valuable insights for researchers who are designing new functionalized doped iron catalysts or utilizing these catalysts for various organic transformations that promote sustainable development. The development of new precursors and synthesis techniques, as well as recent improvements in the synthesis of these catalysts, are described. The article also emphasizes the significance of comprehending the underlying processes of these catalytic events, as well as the difficulties and possibilities for further study in this field. The potential of iron-doped nanocatalysts as an environmentally friendly and long-lasting method of organic synthesis is emphasized throughout this review.
Graphical Abstract
[http://dx.doi.org/10.1039/C6OB00936K] [PMID: 27282396]
[http://dx.doi.org/10.1021/acs.jmedchem.8b00876] [PMID: 30024747]
[http://dx.doi.org/10.19070/2167-910X-1500029]
[http://dx.doi.org/10.1002/slct.202100906]
[http://dx.doi.org/10.1002/cmdc.201800119] [PMID: 29603634]
[http://dx.doi.org/10.2174/1570178620666230510122033]
[http://dx.doi.org/10.2174/1570178618666210405151600]
[http://dx.doi.org/10.2174/1570178619666220113114613]
[http://dx.doi.org/10.2147/DDDT.S299678] [PMID: 33688168]
[http://dx.doi.org/10.2174/1871520621666211108091444] [PMID: 34749628]
[http://dx.doi.org/10.1016/j.phyplu.2021.100191]
[http://dx.doi.org/10.1080/10406638.2021.1916543]
[http://dx.doi.org/10.7150/ijms.49801] [PMID: 33173417]
[http://dx.doi.org/10.1007/s11095-019-2692-6];
(b) Chao, W.; Gui, L.; Jiapei, W.; Lixin, X.; Dang, G.; Fengqiu, C.; Yusuke, A.; Yunqing, K.; Yusuke, Y. Modulating electronic metal-support interactions to boost visible-light-driven hydrolysis of ammonia borane: Nickelplatinum nanoparticles supported on phosphorus-doped titania. Angew. Chem. Int. Ed., 2023, 62, e202305371.
[http://dx.doi.org/10.1002/anie.202305371];
(c) Chao, W.; Xiaoling, L.; Jiapei, W.; Fengqiu, C.; Dang-Guo, C. Heterostructuring 2D Co2P nanosheets with 0D CoP via a salt-assisted strategy for boosting hydrogen evolution from ammonia borane hydrolysis. Nano Res., 2023, 16, 6260-6269.
[http://dx.doi.org/10.1007/s1227402353885];
(d) Chao, W.; Yu, L.; Liu, Z.; Jindou, H.C.; Jiapei, W.; Fengqiu, C.; Xiaoli, Z.; Dang-Guo, C. Integration of morphology and electronic structure modulation on cobalt phosphide nanosheets to boost photocatalytic hydrogen evolution from ammonia borane hydrolysis. Green Ener. Environ., 2024, 9(2), 333343.
[http://dx.doi.org/10.1016/j.gee.2022.06.007]
[http://dx.doi.org/10.1111/joim.13254] [PMID: 33480120]
[http://dx.doi.org/10.3390/pr8121683]
[http://dx.doi.org/10.1039/D0CY00086H]
[http://dx.doi.org/10.1021/acs.chemrev.6b00772] [PMID: 28378590]
[http://dx.doi.org/10.1021/acs.chemrev.8b00372] [PMID: 30548065]
[http://dx.doi.org/10.1039/D0TA04541A]
[http://dx.doi.org/10.1021/acscatal.9b00201]
[http://dx.doi.org/10.1080/10406638.2021.2019795]
[http://dx.doi.org/10.1016/j.jorganchem.2018.06.012]
[http://dx.doi.org/10.1016/j.jscs.2020.01.001]
[http://dx.doi.org/10.1080/10406638.2021.1887298]
[http://dx.doi.org/10.1088/2053-1591/ab6c9c]
[http://dx.doi.org/10.1007/s11164-018-3366-4]
[http://dx.doi.org/10.1016/j.ultsonch.2017.06.022] [PMID: 28946485]
[http://dx.doi.org/10.1007/s11030-019-10025-w] [PMID: 31927717]
[http://dx.doi.org/10.1007/s42250-019-00042-5]
[http://dx.doi.org/10.1080/10406638.2021.1973520]
[http://dx.doi.org/10.1080/00958972.2021.1954172]
[http://dx.doi.org/10.1080/10406638.2022.2032768]
[http://dx.doi.org/10.1016/j.jorganchem.2018.07]
[http://dx.doi.org/10.1007/s13738-021-02170-7]
[http://dx.doi.org/10.1002/slct.202201590]
[http://dx.doi.org/10.1080/17518253.2010.487841]
[http://dx.doi.org/10.1016/j.tetlet.2019.05.024]
[http://dx.doi.org/10.1080/00397910601055230]
[http://dx.doi.org/10.1002/aoc.3566]
[http://dx.doi.org/10.3390/ma12152386] [PMID: 31357446]
[http://dx.doi.org/10.1039/C3RA47860B]
[http://dx.doi.org/10.1016/j.tet.2013.03.073]
[http://dx.doi.org/10.1002/aoc.3955]
[http://dx.doi.org/10.1002/aoc.6387]
[http://dx.doi.org/10.1002/aoc.4573]
[http://dx.doi.org/10.1016/j.jtice.2017.10.013]
[http://dx.doi.org/10.1016/j.molcata.2015.04.002]
[http://dx.doi.org/10.1002/aoc.6321]
[http://dx.doi.org/10.1007/s13738-019-01689-0]
[http://dx.doi.org/10.1002/aoc.4918]
[http://dx.doi.org/10.1007/s11164-019-03992-0]
[http://dx.doi.org/10.1016/j.tetlet.2016.08.066]
[http://dx.doi.org/10.1007/s10562-019-02675-0]
[http://dx.doi.org/10.1002/adsc.201000365]
[http://dx.doi.org/10.1016/j.mcat.2018.12.029]
[http://dx.doi.org/10.3390/ma9070557] [PMID: 28773685]
[http://dx.doi.org/10.1039/C7NJ03281A]
[http://dx.doi.org/10.1002/slct.201800053]
[http://dx.doi.org/10.1016/S1566-7367(03)00111-0]
[http://dx.doi.org/10.4314/bcse.v31i2.12]
[http://dx.doi.org/10.1002/jccs.201800291]