Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Implications of Ultrasonication-assisted Extraction with Response Surface Methodology on Phytochemical Compositions and Antioxidant Activity of Polysaccharide Extract from Phellinus rimosus (Berk.) Pilát Cultivated Mycelia in Northeastern Thailand

Author(s): Chonlada Maingam, Watchara Kanchanarach, Nipaporn Chutiman, Anuwat Wanthong, Prayook Srivilai* and Panida Loutchanwoot*

Volume 14, Issue 6, 2024

Published on: 14 February, 2024

Article ID: e140224226988 Pages: 17

DOI: 10.2174/0122103155293542240118063111

Price: $65

Abstract

Background: Polysaccharides from the medicinal mushroom Phellinus rimosus (Berk.) Pilát (PR) are the major functional bioactive ingredients. However, there has been a marked natural decrease in the number of PR fruit bodies, leading to their increased cost. Moreover, the natural growth and development of mature PR fruit bodies takes several decades.

Objective: The objective of this study was to produce a polysaccharide extract from cultured PR mycelia (PEPRM) by using ultrasonic-assisted extraction with response surface methodology (RSM), and determine its physicochemical composition and antioxidant potential.

Methods: Polysaccharide and monosaccharide composition analyses were carried out by Fouriertransform infrared spectroscopy (FT-IR) and High-performance liquid chromatography (HPLC). Total contents of polysaccharides, beta-glucans, phenolic compounds, and flavonoids were investigated utilizing the phenol-sulfuric acid method, enzymatic-based commercial test kit, Folin-Ciocalteu method, and aluminium chloride colorimetric method, respectively. Antioxidant activity was determined by using 2,2-diphenyl-1-picrylhydrazyl-hydrate (DPPH) radical scavenging assay and 2,2- azino-bis (3-ethylbenzothiazol-6-sulfonic acid) (ABTS) radical cation decolorization assay.

Results: Optimal conditions for the production of PEPRM included a ratio of 51.29 mL water to 1 g PR mycelia and an extraction time of 46.23 minutes, resulting in a total polysaccharide content of 577.5 mg/g of PEPRM. FT-IR spectra of PEPRM showed two broad bands at 3272.08 cm-1 and 2924.8 cm-1 in the carbohydrate region and the peaks at 1078.44, 1019.05, and 853.0 cm-1 indicated the presence of the pyranose ring skeleton, glycosidic linkage, and glucans. PEPRM had molar ratios of glucose: mannose: rhamnose: Fucose, i.e., 21.86: 1.00: 2.08: 3.40, respectively. PEPRM had total contents of beta-glucans, phenolic compounds, and flavonoids as percentages of dry weight, i.e., 21.22, 2.51, and 5.71, respectively. PEPRM showed better inhibitory activity against ABTS radicals than DPPH radicals.

Conclusion: This is the first finding to reveal that ultrasonic-assisted extraction with RSM was an environmentally friendly alternative to produce antioxidant polysaccharides from cultured PR mycelia.

Graphical Abstract

[1]
Backbone Taxonomy, G.B.I.F. GBIF backbone taxonomy. Phellinus rimosus (Berk.) Pilát in GBIF secretariat (Internet]. Pilát. Annls mycol., 2021. Available from: [https://www.gbif.org/species/8173622] [cited 2021 Aug 4].
[2]
Ajith, T.A.; Janardhanan, K.K. Cytotoxic and antitumor activities of a polypore macrofungus, Phellinus rimosus (Berk). Pilat. J. Ethnopharmacol., 2003, 84(2-3), 157-162.
[http://dx.doi.org/10.1016/S0378-8741(02)00292-1] [PMID: 12648809]
[3]
Ajith, T.A.; Sheena, N.; Janardhanan, K.K. Phellinus rimosus protects carbon tetrachloride-induced chronic hepatotoxicity in rats: Antioxidant defense mechanism. Pharm. Biol., 2006, 44(6), 467-474.
[http://dx.doi.org/10.1080/13880200600798569]
[4]
Ajith, T.A.; Janardhanan, K.K. Antimutagenic effect of Phellinus rimosus (Berk) Pilat against chemical induced mutations of histidine dependent Salmonella typhimurium strains. Food Chem. Toxicol., 2011, 49(10), 2676-2680.
[http://dx.doi.org/10.1016/j.fct.2011.07.022] [PMID: 21784121]
[5]
Ajith, T.A.; Janardhanan, K.K. Antioxidant and anti-inflammatory activities of methanol extract of Phellinus rimosus (Berk). Pilat. Indian J. Exp. Biol., 2001, 39(11), 1166-1169.
[PMID: 11906113]
[6]
Rony, K.A.; Ajith, T.A.; Nima, N.; Janardhanan, K.K. Hypolipidemic activity of Phellinus rimosus against triton WR-1339 and high cholesterol diet induced hyperlipidemic rats. Environ. Toxicol. Pharmacol., 2014, 37(2), 482-492.
[http://dx.doi.org/10.1016/j.etap.2014.01.004] [PMID: 24561532]
[7]
Rony, K.A.; Ajith, T.A.; Kuttikadan, T.A.; Blaze, R.; Janardhanan, K.K. Phellinus rimosus improves mitochondrial energy status and attenuates nephrotoxicity in diabetic rats. J. Basic Clin. Physiol. Pharmacol., 2017, 28(5), 455-461.
[http://dx.doi.org/10.1515/jbcpp-2016-0163] [PMID: 28593900]
[8]
Ajith, T.A.; Janardhanan, K.K. Antioxidant and antihepatotoxic activities of Phellinus rimosus (Berk). Pilat. J. Ethnopharmacol., 2002, 81(3), 387-391.
[http://dx.doi.org/10.1016/S0378-8741(02)00042-9] [PMID: 12127241]
[9]
Zhu, F.; Du, B.; Xu, B. Preparation and Characterization of Polysaccharides from Mushrooms Fengmei; Polysaccharides, 2014, pp. 1-16.
[10]
Tian, Y.; Zeng, H.; Xu, Z.; Zheng, B.; Lin, Y.; Gan, C.; Lo, Y.M. Ultrasonic-assisted extraction and antioxidant activity of polysaccharides recovered from white button mushroom (Agaricus bisporus). Carbohydr. Polym., 2012, 88(2), 522-529.
[http://dx.doi.org/10.1016/j.carbpol.2011.12.042]
[11]
Aguiló-Aguayo, I.; Walton, J.; Viñas, I.; Tiwari, B.K. Ultrasound assisted extraction of polysaccharides from mushroom by-products. Lebensm. Wiss. Technol., 2017, 77, 92-99.
[http://dx.doi.org/10.1016/j.lwt.2016.11.043]
[12]
Guo, X.; Zou, X.; Sun, M. Optimization of extraction process by response surface methodology and preliminary characterization of polysaccharides from Phellinus igniarius. Carbohydr. Polym., 2010, 80(2), 344-349.
[http://dx.doi.org/10.1016/j.carbpol.2009.11.028]
[13]
He, P.; Geng, L.; Wang, J.; Wang, Z.; Mao, D.; Xu, C. Purification, characterization and bioactivity of an extracellular polysaccharide produced from Phellinus igniarius. Ann. Microbiol., 2012, 62(4), 1697-1707.
[http://dx.doi.org/10.1007/s13213-012-0427-6]
[14]
Luo, J.; Liu, J.; Ke, C.; Qiao, D.; Ye, H.; Sun, Y.; Zeng, X. Optimization of medium composition for the production of exopolysaccharides from Phellinus baumii Pilát in submerged culture and the immuno-stimulating activity of exopolysaccharides. Carbohydr. Polym., 2009, 78(3), 409-415.
[http://dx.doi.org/10.1016/j.carbpol.2009.04.038]
[15]
Wang, Z.; Wang, C.; Quan, Y. Extraction of polysaccharides from Phellinus nigricans mycelia and their antioxidant activities in vitro. Carbohydr. Polym., 2014, 99, 110-115.
[http://dx.doi.org/10.1016/j.carbpol.2013.08.073] [PMID: 24274486]
[16]
Wagner, T.; Fischer, M. Proceedings towards a natural classification of the worldwide taxa Phellinus s.l. and Inonotus s.l., and phylogenetic relationships of allied genera. Mycologia, 2002, 94(6), 998-1016.
[http://dx.doi.org/10.1080/15572536.2003.11833156] [PMID: 21156572]
[17]
Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser., 1999, 44(2), 95-98.
[18]
Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 1987, 4(4), 406-425.
[PMID: 3447015]
[19]
Kumar, S.; Li, K. Tamura. Phylogenetic and molecular evolutionary analyses were conducted using MEGA version X. Mol. Biol. Evol., 2018, 35(6), 1547-1549.
[http://dx.doi.org/10.1093/molbev/msy096] [PMID: 29722887]
[20]
Pramanik, M.; Chakraborty, I.; Mondal, S.; Islam, S.S. Structural analysis of a water-soluble glucan (Fr.I) of an edible mushroom, Pleurotus sajor-caju. Carbohydr. Res., 2007, 342(17), 2670-2675.
[http://dx.doi.org/10.1016/j.carres.2007.08.012] [PMID: 17854782]
[21]
Wei, S.; Helsper, J.P.F.G.; Van Griensven, L.J.L.D. Phenolic compounds present in medicinal mushroom human cells in vitro. Int. J. Med. Mushrooms, 2008, 10(1), 1-13.
[http://dx.doi.org/10.1615/IntJMedMushr.v10.i1.20]
[22]
DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem., 1956, 28(3), 350-356.
[http://dx.doi.org/10.1021/ac60111a017]
[23]
Albalasmeh, A.A.; Berhe, A.A.; Ghezzehei, T.A. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydr. Polym., 2013, 97(2), 253-261.
[http://dx.doi.org/10.1016/j.carbpol.2013.04.072] [PMID: 23911443]
[24]
Samchai, S.; Seephonkai, P.; Sangdee, A.; Puntumchai, A.; Klinhom, U. Antioxidant, cytotoxic and antimalarial activities from crude extracts of mushroom Phellinus linteus. J. Biol. Sci., 2009, 9(7), 778-783.
[http://dx.doi.org/10.3923/jbs.2009.778.783]
[25]
Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem., 1999, 64(4), 555-559.
[http://dx.doi.org/10.1016/S0308-8146(98)00102-2]
[26]
Likhitwitayawuid, K.; Klongsiriwet, C.; Jongbunprasert, V.; Sritularak, B.; Wongseripipatana, S. Flavones with free radical scavenging activity from Goniothalamus tenuifolius. Arch. Pharm. Res., 2006, 29(3), 199-202.
[http://dx.doi.org/10.1007/BF02969393] [PMID: 16596991]
[27]
Payet, B.; Shum Cheong Sing, A.; Smadja, J. Assessment of antioxidant activity of cane brown sugars by ABTS and DPPH radical scavenging assays: Determination of their polyphenolic and volatile constituents. J. Agric. Food Chem., 2005, 53(26), 10074-10079.
[http://dx.doi.org/10.1021/jf0517703] [PMID: 16366697]
[28]
Gao, N.; Zhang, W.; Hu, D.; Lin, G.; Wang, J.; Xue, F.; Wang, Q.; Zhao, H.; Dou, X.; Zhang, L. Study on extraction, physicochemical properties, and bacterio-static activity of polysaccharides from phellinus linteus. Molecules, 2023, 28(13), 5102.
[http://dx.doi.org/10.3390/molecules28135102] [PMID: 37446762]
[29]
Bendahou, A.; Dufresne, A.; Kaddami, H.; Habibi, Y. Isolation and structural characterization of hemicelluloses from palm of Phoenix dactylifera L. Carbohydr. Polym., 2007, 68(3), 601-608.
[http://dx.doi.org/10.1016/j.carbpol.2006.10.016]
[30]
XuJie, H.; Wei, C. Optimization of extraction process of crude polysaccharides from wild edible BaChu mushroom by response surface methodology. Carbohydr. Polym., 2008, 72(1), 67-74.
[http://dx.doi.org/10.1016/j.carbpol.2007.07.034]
[31]
Kozarski, M.; Klaus, A.; Niksic, M.; Jakovljevic, D.; Helsper, J.P.F.G.; Van Griensven, L.J.L.D. Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms agaricus bisporus, agaricus brasiliensis, ganoderma lucidum and phellinus linteus. Food Chem., 2011, 129(4), 1667-1675.
[http://dx.doi.org/10.1016/j.foodchem.2011.06.029]
[32]
Yan, J.K.; Wang, Y.Y.; Ma, H-L.; Wang, Z.B.; Pei, J-J. Structural characteristics and antioxidant activity in vivo of a polysaccharide isolated from Phellinus linteus mycelia. J. Taiwan Inst. Chem. Eng., 2016, 65, 110-117.
[http://dx.doi.org/10.1016/j.jtice.2016.05.052]
[33]
Ge, Q.; Zhang, A.; Sun, P. Structural investigation of a novel water-soluble heteropolysaccharide from the fruiting bodies of Phellinus baumii Pilát. Food Chem., 2009, 114(2), 391-395.
[http://dx.doi.org/10.1016/j.foodchem.2008.09.010]
[34]
Wang, Z.B.; Pei, J.J.; Ma, H.L.; Cai, P.F.; Yan, J.K. Effect of extraction media on preliminary characterizations and antioxidant activities of Phellinus linteus polysaccharides. Carbohydr. Polym., 2014, 109, 49-55.
[http://dx.doi.org/10.1016/j.carbpol.2014.03.057] [PMID: 24815400]
[35]
Kang, Q.; Chen, S.; Li, S.; Wang, B.; Liu, X.; Hao, L.; Lu, J. Comparison on characterization and antioxidant activity of polysaccharides from Ganoderma lucidum by ultrasound and conventional extraction. Int. J. Biol. Macromol., 2019, 124, 1137-1144.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.215] [PMID: 30481533]
[36]
Si, J.; Meng, G.; Wu, Y.; Ma, H.F.; Cui, B.K.; Dai, Y.C. Medium composition optimization, structural characterization, and antioxidant activity of exopolysaccharides from the medicinal mushroom Ganoderma lingzhi. Int. J. Biol. Macromol., 2019, 124, 1186-1196.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.274] [PMID: 30521923]
[37]
Zhang, H.; Wang, Z.Y.; Zhang, Z.; Wang, X. Purified Auricularia auricular-judae polysaccharide (AAP I-a) prevents oxidative stress in an ageing mouse model. Carbohydr. Polym., 2011, 84(1), 638-648.
[http://dx.doi.org/10.1016/j.carbpol.2010.12.044] [PMID: 23987393]
[38]
Shingel, K.I. Determination of structural peculiarities of dexran, pullulan and γ-irradiated pullulan by Fourier-transform IR spectroscopy. Carbohydr. Res., 2002, 337(16), 1445-1451.
[http://dx.doi.org/10.1016/S0008-6215(02)00209-4] [PMID: 12204605]
[39]
Kacuráková, M. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydr. Polym., 2000, 43(2), 195-203.
[http://dx.doi.org/10.1016/S0144-8617(00)00151-X]
[40]
Zhang, G.; Yin, Q.; Han, T.; Zhao, Y.; Su, J.; Li, M.; Ling, J. Purification and antioxidant effect of novel fungal polysaccharides from the stroma of Cordyceps kyushuensis. Ind. Crops Prod., 2015, 69, 485-491.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.006]
[41]
Hu, S.; Zhao, G.; Zheng, Y.; Qu, M.; Jin, Q.; Tong, C.; Li, W. Effect of drying procedures on the physicochemical properties and antioxidant activities of polysaccharides from Crassostrea gigas. PLoS One, 2017, 12(11), e0188536.
[http://dx.doi.org/10.1371/journal.pone.0188536] [PMID: 29176846]
[42]
Jiang, P.; Yuan, L.; Cai, D.; Jiao, L.; Zhang, L. Characterization and antioxidant activities of the polysaccharides from mycelium of Phellinus pini and culture medium. Carbohydr. Polym., 2015, 117(6), 600-604.
[http://dx.doi.org/10.1016/j.carbpol.2014.10.013] [PMID: 25498676]
[43]
Wasser, S. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. In: Applied Microbiology and Biotechnology; Springer Verlag, 2002; pp. 258-274.
[44]
Zhu, F. Du, B.; Bian, Z.; Xu, B. β-glucans from edible and medicinal mushrooms: Characteristics, physicochemical and biological activities. J. Food Compos. Anal., 2015, 41, 165-173.
[http://dx.doi.org/10.1016/j.jfca.2015.01.019]
[45]
Choi, S.J.; Lee, Y.S.; Kim, J.K.; Kim, J.K.; Lim, S.S. Physiological activities of extract from edible mushrooms. J Korean Soc Food Sci Nutr., 2010, 39(8), 1087-1096.
[http://dx.doi.org/10.3746/jkfn.2010.39.8.1087]
[46]
Sunthudlakhar, P.; Sithisarn, P.; Wannissorn, B.; Jarikasem, S.; Rojsanga, P. Phytochemical profiles, antioxidant and antibacterial activities of 11 phellinus mushrooms collected in thailand. Nat. Prod. J., 2019, 9(2), 144-156.
[http://dx.doi.org/10.2174/2210315508666180621160917]
[47]
Gogoi, P.; Chutia, P.; Singh, P.; Mahanta, C.L. Effect of optimized ultrasound-assisted aqueous and ethanolic extraction of Pleurotus citrinopileatus mushroom on total phenol, flavonoids and antioxidant properties. J. Food Process Eng., 2019, 42(6), e13172.
[http://dx.doi.org/10.1111/jfpe.13172]
[48]
li, Jin Q; fa, Zhang Z; ying, Lv G; ming, Cai W; wen, Cheng J; gong, Wang J Antioxidant and DNA damage protecting potentials of polysaccharide extracted from Phellinus baumii using a delignification method. Carbohydr. Polym., 2016, 152, 575-582.
[49]
Roginsky, V.; Lissi, E. Review of methods to determine chain-breaking antioxidant activity in food. Food Chem., 2005, 92(2), 235-254.
[http://dx.doi.org/10.1016/j.foodchem.2004.08.004]
[50]
Elmastaş, M.; Turkekul, I.; Oztürk, L.; Gülçin, I.; Isildak, O.; Aboul-Enein, H. Antioxidant activity of two wild edible mushrooms (Morchella vulgaris and Morchella esculanta) from North Turkey. Comb. Chem. High Throughput Screen., 2006, 9(6), 443-448.
[http://dx.doi.org/10.2174/138620706777698544] [PMID: 16842225]
[51]
Gülçin, İ.; Elias, R.; Gepdiremen, A.; Taoubi, K.; Köksal, E. Antioxidant secoiridoids from fringe tree (Chionanthus virginicus L.). Wood Sci. Technol., 2009, 43(3-4), 195-212.
[http://dx.doi.org/10.1007/s00226-008-0234-1]
[52]
Tang, L.; Chen, Y.; Jiang, Z.; Zhong, S.; Chen, W.; Zheng, F.; Shi, G. Purification, partial characterization and bioactivity of sulfated polysaccharides from Grateloupia livida. Int. J. Biol. Macromol., 2017, 94(Pt A), 642-652.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.067] [PMID: 27773841]
[53]
Magalhães, L.M.; Segundo, M.A.; Reis, S.; Lima, J.L.F.C. Methodological aspects about in vitro evaluation of antioxidant properties. Anal. Chim. Acta, 2008, 613(1), 1-19.
[http://dx.doi.org/10.1016/j.aca.2008.02.047] [PMID: 18374697]
[54]
Park, H.M.; Hong, J.H. Antioxidant activity of extracts with extraction methods from Phellinus linteus mycelium on Mori ramulus. Hanguk Sikpum Jeojang Yutong Hakoeji, 2014, 21(4), 565-572.
[http://dx.doi.org/10.11002/kjfp.2014.21.4.565]
[55]
Ayala-Zavala, J.F.; Silva-Espinoza, B.A.; Cruz-Valenzuela, M.R.; Villegas-Ochoa, M.A.; Esqueda, M.; González-Aguilar, G.A.; Calderón-López, Y. Antioxidant and antifungal potential of methanol extracts of Phellinus spp. from Sonora, Mexico. Rev. Iberoam. Micol., 2012, 29(3), 132-138.
[http://dx.doi.org/10.1016/j.riam.2011.09.004] [PMID: 22100531]
[56]
Lung, M.Y.; Tsai, J.C.; Huang, P.C. Antioxidant properties of edible basidiomycete Phellinus igniarius in submerged cultures. J. Food Sci., 2010, 75(1), E18-E24.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01384.x] [PMID: 20492161]
[57]
Zhang, H.; Ma, H.; Liu, W.; Pei, J.; Wang, Z.; Zhou, H.; Yan, J. Ultrasound enhanced production and antioxidant activity of polysaccharides from mycelial fermentation of Phellinus igniarius. Carbohydr. Polym., 2014, 113, 380-387.
[http://dx.doi.org/10.1016/j.carbpol.2014.07.027] [PMID: 25256498]
[58]
Ren, L.; Perera, C.; Hemar, Y. Antitumor activity of mushroom polysaccharides: A review. Food Funct., 2012, 3(11), 1118-1130.
[http://dx.doi.org/10.1039/c2fo10279j] [PMID: 22865023]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy