Generic placeholder image

Current Signal Transduction Therapy

Editor-in-Chief

ISSN (Print): 1574-3624
ISSN (Online): 2212-389X

Mini-Review Article

Therapeutic Potential of MSC-conditioned Medium: A Multifactorial Approach to Enhance Wound Healing

Author(s): Amir Anbiyaiee, Shirin Azizidoost and Maryam Farzaneh*

Volume 19, Issue 1, 2024

Published on: 12 February, 2024

Article ID: e120224226870 Pages: 10

DOI: 10.2174/0115743624266715240202104221

Price: $65

Abstract

Wound healing is a highly intricate process that involves a coordinated interplay of various cellular and molecular events. In recent years, mesenchymal stem cells (MSCs) have garnered significant attention as a promising therapeutic modality due to their remarkable regenerative properties. In addition to their capacity for direct tissue repair and differentiation, MSCs release a diverse repertoire of bioactive factors into the surrounding microenvironment, collectively termed an MSC-conditioned Medium (MSC-CM). This review aims to elucidate the therapeutic potential of MSC-CM as a multifactorial approach to enhance wound healing. MSCCM encompasses an extensive range of factors, including growth factors, cytokines, chemokines, extracellular matrix proteins, and non-coding RNAs, which collectively orchestrate and stimulate multiple cellular processes crucial for effective wound healing. Notably, these factors play pivotal roles in promoting angiogenesis, stimulating the proliferation and migration of various cell types involved in wound repair, modulating the immune response, and facilitating extracellular matrix remodeling. Moreover, compelling evidence from preclinical and clinical studies demonstrates that MSC-CM administration accelerates wound closure, enhances reepithelialization, and improves the quality of granulation tissue. By harnessing the therapeutic potential of MSC-CM, we can pave the way for significant advancements in wound care, ultimately leading to improved patient outcomes.

[1]
Wilkinson HN, Hardman MJ. Wound healing: Cellular mechanisms and pathological outcomes. Open Biol 2020; 10(9): 200223.
[http://dx.doi.org/10.1098/rsob.200223] [PMID: 32993416]
[2]
Diller RB, Tabor AJ. The role of the extracellular matrix (ECM) in wound healing: A review. Biomimetics 2022; 7(3): 87.
[http://dx.doi.org/10.3390/biomimetics7030087] [PMID: 35892357]
[3]
Mathew-Steiner SS, Roy S, Sen CK. Collagen in wound healing. Bioengineering 2021; 8(5): 63.
[http://dx.doi.org/10.3390/bioengineering8050063] [PMID: 34064689]
[4]
Raziyeva K, Kim Y, Zharkinbekov Z, Kassymbek K, Jimi S, Saparov A. Immunology of acute and chronic wound healing. Biomolecules 2021; 11(5): 700.
[http://dx.doi.org/10.3390/biom11050700] [PMID: 34066746]
[5]
G El Baassiri M, Dosh L, Haidar H, et al. Nerve growth factor and burn wound healing: Update of molecular interactions with skin cells. Burns 2023; 49(5): 989-1002.
[http://dx.doi.org/10.1016/j.burns.2022.11.001] [PMID: 36379825]
[6]
Nurden AT. Molecular basis of clot retraction and its role in wound healing. Thromb Res 2022.
[PMID: 36008192]
[7]
Bayer IS. Advances in fibrin-based materials in wound repair: A review. Molecules 2022; 27(14): 4504.
[http://dx.doi.org/10.3390/molecules27144504] [PMID: 35889381]
[8]
Pawar KB, Desai S, Bhonde RR, Bhole RP, Deshmukh AA. Wound with diabetes: Present scenario and future. Curr Diabetes Rev 2021; 17(2): 136-42.
[http://dx.doi.org/10.2174/18756417MTA3jODgzw] [PMID: 32619172]
[9]
Falanga V, Isseroff RR, Soulika AM, et al. Chronic wounds. Nat Rev Dis Primers 2022; 8(1): 50.
[http://dx.doi.org/10.1038/s41572-022-00377-3] [PMID: 35864102]
[10]
Krzyszczyk P, Schloss R, Palmer A, Berthiaume F. The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol 2018; 9: 419.
[http://dx.doi.org/10.3389/fphys.2018.00419] [PMID: 29765329]
[11]
Shi C, Wang C, Liu H, et al. Selection of appropriate wound dressing for various wounds. Front Bioeng Biotechnol 2020; 8: 182.
[http://dx.doi.org/10.3389/fbioe.2020.00182] [PMID: 32266224]
[12]
Ngoepe MP, Battison A, Mufamadi S. Nano-enabled chronic wound healing strategies: Burn and diabetic ulcer wounds. J Biomed Nanotechnol 2022; 18(9): 2081-99.
[http://dx.doi.org/10.1166/jbn.2022.3427]
[13]
Oliveira A. Simُões S, Ascenso A, Reis CP. Therapeutic advances in wound healing. J Dermatolog Treat 2022; 33(1): 2-22.
[http://dx.doi.org/10.1080/09546634.2020.1730296] [PMID: 32056472]
[14]
Monika P, Chandraprabha MN, Rangarajan A, Waiker PV, Chidambara Murthy KN. Challenges in healing wound: Role of complementary and alternative medicine. Front Nutr 2022; 8: 791899.
[http://dx.doi.org/10.3389/fnut.2021.791899] [PMID: 35127787]
[15]
Matsuzaka Y, Yashiro R. Therapeutic strategy of mesenchymal-stem-cell-derived extracellular vesicles as regenerative medicine. Int J Mol Sci 2022; 23(12): 6480.
[http://dx.doi.org/10.3390/ijms23126480] [PMID: 35742923]
[16]
Bian D, Wu Y, Song G, Azizi R, Zamani A. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: A comprehensive review. Stem Cell Res Ther 2022; 13(1): 24.
[http://dx.doi.org/10.1186/s13287-021-02697-9] [PMID: 35073970]
[17]
Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells 2019; 8(8): 886.
[http://dx.doi.org/10.3390/cells8080886] [PMID: 31412678]
[18]
Zakrzewski W. Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: Past, present, and future. Stem Cell Res Ther 2019; 10(1): 68.
[http://dx.doi.org/10.1186/s13287-019-1165-5] [PMID: 30808416]
[19]
Saadh MJ, Ramírez-Coronel AA, Saini RS, et al. Advances in mesenchymal stem/stromal cell-based therapy and their extracellular vesicles for skin wound healing. Hum Cell 2023; 36(4): 1253-64.
[http://dx.doi.org/10.1007/s13577-023-00904-8] [PMID: 37067766]
[20]
Ma H, Siu WS, Leung PC. The potential of MSC-based cell-free therapy in wound healing—a thorough literature review. Int J Mol Sci 2023; 24(11): 9356.
[http://dx.doi.org/10.3390/ijms24119356] [PMID: 37298306]
[21]
An S, Anwar K, Ashraf M, et al. Wound-healing effects of mesenchymal stromal cell secretome in the cornea and the role of exosomes. Pharmaceutics 2023; 15(5): 1486.
[http://dx.doi.org/10.3390/pharmaceutics15051486] [PMID: 37242728]
[22]
Montero-Vilchez T, Sierra-Sánchez Á, Sanchez-Diaz M, et al. Mesenchymal stromal cell-conditioned medium for skin diseases: A systematic review. Front Cell Dev Biol 2021; 9: 654210.
[http://dx.doi.org/10.3389/fcell.2021.654210] [PMID: 34368115]
[23]
Zhu X, Xu X, Shen M, et al. Transcriptomic heterogeneity of human mesenchymal stem cells derived from bone marrow, dental pulp, adipose tissue, and umbilical cord. Cell Reprogram 2023; 25(4): 162-70.
[http://dx.doi.org/10.1089/cell.2023.0019] [PMID: 37384924]
[24]
Ebrahimi F, Pirouzmand F, Cosme Pecho RD, et al. Application of mesenchymal stem cells in regenerative medicine: A new approach in modern medical science. Biotechnol Prog 2023; 39(6): e3374.
[http://dx.doi.org/10.1002/btpr.3374] [PMID: 37454344]
[25]
Gopalarethinam J, Nair AP, Iyer M, Vellingiri B, Subramaniam MD. Advantages of mesenchymal stem cell over the other stem cells. Acta Histochem 2023; 125(4): 152041.
[http://dx.doi.org/10.1016/j.acthis.2023.152041] [PMID: 37167794]
[26]
Dhinekaran A, Lakshmi M, Graceline H, et al. Regulation of mesenchymal stem cell differentiation by key cell signaling pathwaysStem Cells and Signaling Pathways. Elsevier 2024; pp. 1-25.
[http://dx.doi.org/10.1016/B978-0-443-18800-8.00007-1]
[27]
Berebichez-Fridman R, Montero-Olvera PR. Sources and clinical applications of mesenchymal stem cells: State-of-the-art review. Sultan Qaboos Univ Med J 2018; 18(3): 264.
[http://dx.doi.org/10.18295/squmj.2018.18.03.002] [PMID: 30607265]
[28]
Maqsood M, Kang M, Wu X, Chen J, Teng L, Qiu L. Adult mesenchymal stem cells and their exosomes: Sources, characteristics, and application in regenerative medicine. Life Sci 2020; 256: 118002.
[http://dx.doi.org/10.1016/j.lfs.2020.118002] [PMID: 32585248]
[29]
Kamal M, Kassem D, Haider KH. Sources and therapeutic strategies of mesenchymal stem cells in regenerative medicine. In: Haider KH, Ed. Handbook of Stem Cell Therapy. Singapore: Springer 2022.
[http://dx.doi.org/10.1007/978-981-19-2655-6_2]
[30]
Kozlowska U, Krawczenko A, Futoma K, et al. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J Stem Cells 2019; 11(6): 347-74.
[http://dx.doi.org/10.4252/wjsc.v11.i6.347] [PMID: 31293717]
[31]
Rady D, Abbass M, El-Rashidy AA, et al. Mesenchymal stem/ progenitor cells: The prospect of human clinical translation. Stem Cells Int 2020; 2020
[32]
Shammaa R, El-Kadiry AEH, Abusarah J, Rafei M. Mesenchymal stem cells beyond regenerative medicine. Front Cell Dev Biol 2020; 8: 72.
[http://dx.doi.org/10.3389/fcell.2020.00072] [PMID: 32133358]
[33]
Poggi A, Zocchi MR. Immunomodulatory properties of mesenchymal stromal cells: Still unresolved “Yin and Yang”. Curr Stem Cell Res Ther 2019; 14(4): 344-50.
[http://dx.doi.org/10.2174/1574888X14666181205115452] [PMID: 30516112]
[34]
Wang M, Yuan Q, Xie L. Mesenchymal stem cell-based immunomodulation: Properties and clinical application. Stem Cells Int 2018; 2018: 1-12.
[http://dx.doi.org/10.1155/2018/3057624] [PMID: 30013600]
[35]
Wu F, She Z, Li C, et al. Therapeutic potential of MSCs and MSC-derived extracellular vesicles in immune thrombocytopenia. Stem Cell Res Ther 2023; 14(1): 79.
[http://dx.doi.org/10.1186/s13287-023-03323-6] [PMID: 37041587]
[36]
Nogueira-Pedro A, Makiyama EN, Segreto HRC, Fock RA. The role of low-dose radiation in association with TNF-α on immunomodulatory properties of mesenchymal stem cells. Stem Cell Rev Rep 2021; 17(3): 968-80.
[http://dx.doi.org/10.1007/s12015-020-10084-9] [PMID: 33206285]
[37]
Muralikumar M, Manoj Jain S, Ganesan H, Duttaroy AK, Pathak S, Banerjee A. Current understanding of the mesenchymal stem cell-derived exosomes in cancer and aging. Biotechnol Rep 2021; 31: e00658.
[http://dx.doi.org/10.1016/j.btre.2021.e00658] [PMID: 34377681]
[38]
Schulman CI, Namias N, Pizano L, et al. The effect of mesenchymal stem cells improves the healing of burn wounds: A phase 1 dose-escalation clinical trial. Scars Burn Heal 2022; 8.
[http://dx.doi.org/10.1177/20595131211070783] [PMID: 35781931]
[39]
Huang CC, Kang M, Narayanan R, et al. Evaluating the endocytosis and lineage-specification properties of mesenchymal stem cell derived extracellular vesicles for targeted therapeutic applications. Front Pharmacol 2020; 11: 163.
[http://dx.doi.org/10.3389/fphar.2020.00163] [PMID: 32194405]
[40]
Ragni E, Perucca Orfei C, De Luca P, et al. Inflammatory priming enhances mesenchymal stromal cell secretome potential as a clinical product for regenerative medicine approaches through secreted factors and EV-miRNAs: The example of joint disease. Stem Cell Res Ther 2020; 11(1): 165.
[http://dx.doi.org/10.1186/s13287-020-01677-9] [PMID: 32345351]
[41]
De Gregorio C, Contador D, Díaz D, et al. Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice. Stem Cell Res Ther 2020; 11(1): 168.
[http://dx.doi.org/10.1186/s13287-020-01680-0] [PMID: 32357914]
[42]
Vizoso F, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 2017; 18(9): 1852.
[http://dx.doi.org/10.3390/ijms18091852] [PMID: 28841158]
[43]
Aryan A, Bayat M, Bonakdar S, et al. Human bone marrow mesenchymal stem cell conditioned medium promotes wound healing in deep second-degree burns in male rats. Cells Tissues Organs 2018; 206(6): 317-29.
[http://dx.doi.org/10.1159/000501651] [PMID: 31340210]
[44]
Ahangar P, Mills SJ, Cowin AJ. Mesenchymal stem cell secretome as an emerging cell-free alternative for improving wound repair. Int J Mol Sci 2020; 21(19): 7038.
[http://dx.doi.org/10.3390/ijms21197038] [PMID: 32987830]
[45]
Liang X, Lin F, Ding Y, et al. Conditioned medium from induced pluripotent stem cell-derived mesenchymal stem cells accelerates cutaneous wound healing through enhanced angiogenesis. Stem Cell Res Ther 2021; 12(1): 295.
[http://dx.doi.org/10.1186/s13287-021-02366-x] [PMID: 34016178]
[46]
Hou C, Shen L, Huang Q, et al. The effect of heme oxygenase-1 complexed with collagen on MSC performance in the treatment of diabetic ischemic ulcer. Biomaterials 2013; 34(1): 112-20.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.022] [PMID: 23059006]
[47]
Payushina OV, Butorina NN, Sheveleva ON, Domaratskaya EI. Effect of mesenchymal stromal cells and conditioned media on healing of skin wound. Bull Exp Biol Med 2018; 165(4): 572-5.
[http://dx.doi.org/10.1007/s10517-018-4215-6] [PMID: 30121920]
[48]
Joseph A, Baiju I, Bhat IA, et al. Mesenchymal stem cell‐conditioned media: A novel alternative of stem cell therapy for quality wound healing. J Cell Physiol 2020; 235(7-8): 5555-69.
[http://dx.doi.org/10.1002/jcp.29486] [PMID: 31960454]
[49]
Gao M, Zhang J, Wang JZ, Liu Y, Zhang X, Shi Y. [Effects of hypoxia-pretreated rat adipose-derived mesenchymal stem cells conditioned medium on wound healing of rats with full-thickness defects]. Zhonghua Shao Shang Za Zhi 2020; 36(9): 803-12.
[PMID: 32972065]
[50]
Hendrawan S, Kusnadi Y, Lagonda CA, et al. Wound healing potential of human umbilical cord mesenchymal stem cell conditioned medium: An in vitro and in vivo study in diabetes-induced rats. Vet World 2021; 14(8): 2109-17.
[http://dx.doi.org/10.14202/vetworld.2021.2109-2117] [PMID: 34566328]
[51]
Cassano JM, Kennedy JG, Ross KA, Fraser EJ, Goodale MB, Fortier LA. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg Sports Traumatol Arthrosc 2018; 26(1): 333-42.
[http://dx.doi.org/10.1007/s00167-016-3981-9] [PMID: 26831858]
[52]
Hu CH, Tseng YW, Chiou CY, et al. Bone marrow concentrate-induced mesenchymal stem cell conditioned medium facilitates wound healing and prevents hypertrophic scar formation in a rabbit ear model. Stem Cell Res Ther 2019; 10(1): 275-5.
[http://dx.doi.org/10.1186/s13287-019-1383-x] [PMID: 31462299]
[53]
Jun E, Zhang Q, Yoon B, et al. Hypoxic conditioned medium from human amniotic fluid-derived mesenchymal stem cells accelerates skin wound healing through TGF-β/SMAD2 and PI3K/Akt pathways. Int J Mol Sci 2014; 15(1): 605-28.
[http://dx.doi.org/10.3390/ijms15010605] [PMID: 24398984]
[54]
Yew TL, Hung YT, Li HY, et al. Enhancement of wound healing by human multipotent stromal cell conditioned medium: The paracrine factors and p38 MAPK activation. Cell Transplant 2011; 20(5): 693-706.
[http://dx.doi.org/10.3727/096368910X550198] [PMID: 21176394]
[55]
Arno AI, Amini-Nik S, Blit PH, et al. Human Wharton’s jelly mesenchymal stem cells promote skin wound healing through paracrine signaling. Stem Cell Res Ther 2014; 5(1): 28.
[http://dx.doi.org/10.1186/scrt417] [PMID: 24564987]
[56]
Yu HT, Yu M, Li CY, et al. Specific expression and regulation of hepassocin in the liver and down-regulation of the correlation of HNF1α with decreased levels of hepassocin in human hepatocellular carcinoma. J Biol Chem 2009; 284(20): 13335-47.
[http://dx.doi.org/10.1074/jbc.M806393200] [PMID: 19304666]
[57]
Saheli M, Bayat M, Ganji R, et al. Human mesenchymal stem cells-conditioned medium improves diabetic wound healing mainly through modulating fibroblast behaviors. Arch Dermatol Res 2020; 312(5): 325-36.
[http://dx.doi.org/10.1007/s00403-019-02016-6] [PMID: 31786709]
[58]
Amini A, Pouriran R, Abdollahifar MA, et al. Stereological and molecular studies on the combined effects of photobiomodulation and human bone marrow mesenchymal stem cell conditioned medium on wound healing in diabetic rats. J Photochem Photobiol B 2018; 182: 42-51.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.03.010] [PMID: 29604553]
[59]
Tan WS, Arulselvan P, Ng SF, Mat Taib CN, Sarian MN, Fakurazi S. Improvement of diabetic wound healing by topical application of Vicenin-2 hydrocolloid film on Sprague Dawley rats. BMC Complement Altern Med 2019; 19(1): 20.
[http://dx.doi.org/10.1186/s12906-018-2427-y] [PMID: 30654793]
[60]
Dabrowska S, Andrzejewska A, Janowski M, Lukomska B. Immunomodulatory and regenerative effects of mesenchymal stem cells and extracellular vesicles: Therapeutic outlook for inflammatory and degenerative diseases. Front Immunol 2021; 11: 591065.
[http://dx.doi.org/10.3389/fimmu.2020.591065] [PMID: 33613514]
[61]
Li P, Gong Z, Shultz LD, Ren G. Mesenchymal stem cells: From regeneration to cancer. Pharmacol Ther 2019; 200: 42-54.
[http://dx.doi.org/10.1016/j.pharmthera.2019.04.005] [PMID: 30998940]
[62]
Kato J, Kamiya H, Himeno T, et al. Mesenchymal stem cells ameliorate impaired wound healing through enhancing keratinocyte functions in diabetic foot ulcerations on the plantar skin of rats. J Diabetes Complications 2014; 28(5): 588-95.
[http://dx.doi.org/10.1016/j.jdiacomp.2014.05.003] [PMID: 25027388]
[63]
Li M, Zhao Y, Hao H, et al. Mesenchymal stem cell-conditioned medium improves the proliferation and migration of keratinocytes in a diabetes-like microenvironment. Int J Low Extrem Wounds 2015; 14(1): 73-86.
[http://dx.doi.org/10.1177/1534734615569053] [PMID: 25759411]
[64]
Kouhkheil R, Fridoni M, Piryaei A, et al. The effect of combined pulsed wave low‐level laser therapy and mesenchymal stem cell‐conditioned medium on the healing of an infected wound with methicillin‐resistant Staphylococcal aureus in diabetic rats. J Cell Biochem 2018; 119(7): 5788-97.
[http://dx.doi.org/10.1002/jcb.26759] [PMID: 29574990]
[65]
Xu YF, Wu YX, Wang HM, Gao CH, Xu YY, Yan Y. Bone marrow-derived mesenchymal stem cell-conditioned medium ameliorates diabetic foot ulcers in rats. Clinics 2023; 78: 100181.
[http://dx.doi.org/10.1016/j.clinsp.2023.100181] [PMID: 36948071]
[66]
Qin K, Zhong X, Wang D. MicroRNA-7-5p regulates human alveolar epithelial sodium channels by targeting the mTORC2/SGK-1 signaling pathway. Exp Lung Res 2016; 42(5): 237-44.
[http://dx.doi.org/10.1080/01902148.2016.1197347] [PMID: 27331901]
[67]
Sessa R, Hata A. Role of microRNAs in lung development and pulmonary diseases. Pulm Circ 2013; 3(2): 315-28.
[http://dx.doi.org/10.4103/2045-8932.114758] [PMID: 24015331]
[68]
Banerjee S, Kalyani Yabalooru SR, Karunagaran D. Identification of mRNA and non-coding RNA hubs using network analysis in organ tropism regulated triple negative breast cancer metastasis. Comput Biol Med 2020; 127: 104076.
[http://dx.doi.org/10.1016/j.compbiomed.2020.104076] [PMID: 33126129]
[69]
Zhou Z, Hua Y, Ding Y, et al. Conditioned medium of bone marrow mesenchymal stem cells involved in acute lung injury by regulating epithelial sodium channels via miR-34c. Front Bioeng Biotechnol 2021; 9: 640116.
[http://dx.doi.org/10.3389/fbioe.2021.640116] [PMID: 34368091]
[70]
Yang X, Fu J, Wan H, et al. Protective roles and mechanisms of taurine on myocardial hypoxia/reoxygenation-induced apoptosis. Zhonghua Minguo Xinzangxue Hui Zazhi 2019; 35(4): 415-24.
[PMID: 31371903]
[71]
Hao G, Han Z, Meng Z, et al. Ets-1 upregulation mediates angiotensin II-related cardiac fibrosis. Int J Clin Exp Pathol 2015; 8(9): 10216-27.
[PMID: 26617730]
[72]
Lee TL, Lai TC, Lin SR, et al. Conditioned medium from adipose-derived stem cells attenuates ischemia/reperfusion-induced cardiac injury through the microRNA-221/222/PUMA/ETS-1 pathway. Theranostics 2021; 11(7): 3131-49.
[http://dx.doi.org/10.7150/thno.52677] [PMID: 33537078]
[73]
Ormazabal V, Nova-Lampeti E, Rojas D, et al. Secretome from human mesenchymal stem cells-derived endothelial cells promotes wound healing in a type-2 diabetes mouse model. Int J Mol Sci 2022; 23(2): 941.
[http://dx.doi.org/10.3390/ijms23020941] [PMID: 35055129]
[74]
Liang ZH, Pan YC, Lin SS, Qiu ZY, Zhang Z. LncRNA MALAT1 promotes wound healing via regulating miR-141-3p/ZNF217 axis. Regen Ther 2020; 15: 202-9.
[http://dx.doi.org/10.1016/j.reth.2020.09.006] [PMID: 33426220]
[75]
Ren L, Wei C, Li K, Lu Z. LncRNA MALAT1 up-regulates VEGF-A and ANGPT2 to promote angiogenesis in brain microvascular endothelial cells against oxygen–glucose deprivation via targetting miR-145. Biosci Rep 2019; 39(3): BSR20180226.
[http://dx.doi.org/10.1042/BSR20180226] [PMID: 30038058]
[76]
Zhang X, Tang X, Hamblin M, Yin KJ. Long non-coding rna malat1 regulates angiogenesis in hindlimb ischemia. Int J Mol Sci 2018; 19(6): 1723.
[http://dx.doi.org/10.3390/ijms19061723] [PMID: 29891768]
[77]
Fu S, Zhang H, Li X, et al. Exosomes derived from human amniotic mesenchymal stem cells facilitate diabetic wound healing by angiogenesis and enrich multiple lncRNAs. Tissue Eng Regen Med 2023; 20(2): 295-308.
[http://dx.doi.org/10.1007/s13770-022-00513-w] [PMID: 36696086]
[78]
Li B, Luan S, Chen J, et al. The MSC-derived exosomal lncRNA H19 promotes wound healing in diabetic foot ulcers by upregulating PTEN via MicroRNA-152-3p. Mol Ther Nucleic Acids 2020; 19: 814-26.
[http://dx.doi.org/10.1016/j.omtn.2019.11.034] [PMID: 31958697]
[79]
Wang B, Suen CW, Ma H, et al. The roles of H19 in regulating inflammation and aging. Front Immunol 2020; 11: 579687.
[http://dx.doi.org/10.3389/fimmu.2020.579687] [PMID: 33193379]
[80]
Pachera E, Assassi S, Salazar GA, et al. Long noncoding RNA H19X is a key mediator of TGF-β–driven fibrosis. J Clin Invest 2020; 130(9): 4888-905.
[http://dx.doi.org/10.1172/JCI135439] [PMID: 32603313]
[81]
Zhang L, Tian R, Wang K. NEAT1 promotes keratinocyte migration and proliferation during wound healing by regulating miR-26a-5p/LGR4 axis. Mol Cell Toxicol 2023; 19(3): 473-81.
[http://dx.doi.org/10.1007/s13273-022-00275-5]
[82]
Han B, Xu S, Liu X, et al. Competing endogenous Rna network in non-keloid-prone individuals during wound healing. J Craniofac Surg 2022; 33(1): 29-34.
[http://dx.doi.org/10.1097/SCS.0000000000007824] [PMID: 34882650]
[83]
Luan A, Hu MS, Leavitt T, et al. Noncoding RNAs in wound healing: A new and vast frontier. Adv Wound Care 2018; 7(1): 19-27.
[http://dx.doi.org/10.1089/wound.2017.0765] [PMID: 29344431]
[84]
Guillamat-Prats R. The role of MSC in wound healing, scarring and regeneration. Cells 2021; 10(7): 1729.
[http://dx.doi.org/10.3390/cells10071729] [PMID: 34359898]
[85]
Kolimi P, Narala S, Nyavanandi D, Youssef AAA, Dudhipala N. Innovative treatment strategies to accelerate wound healing: Trajectory and recent advancements. Cells 2022; 11(15): 2439.
[http://dx.doi.org/10.3390/cells11152439] [PMID: 35954282]
[86]
Zhang B, Wu Y, Mori M, Yoshimura K. Adipose-derived stem cell conditioned medium and wound healing: A systematic review. Tissue Eng Part B Rev 2022; 28(4): 830-47.
[http://dx.doi.org/10.1089/ten.teb.2021.0100] [PMID: 34409890]
[87]
Vu HT, Han MR, Lee JH, et al. Investigating the effects of conditioned media from stem cells of human exfoliated deciduous teeth on dental pulp stem cells. Biomedicines 2022; 10(4): 906.
[http://dx.doi.org/10.3390/biomedicines10040906] [PMID: 35453661]
[88]
Guo X, Schaudinn C, Blume-Peytavi U, Vogt A, Rancan F. Effects of adipose-derived stem cells and their conditioned medium in a human ex vivo wound model. Cells 2022; 11(7): 1198.
[http://dx.doi.org/10.3390/cells11071198] [PMID: 35406762]
[89]
Putra A, Ibrahim S, Muhar AM, et al. Topical gel of mesenchymal stem cells-conditioned medium under TNF-α precondition accelerates wound closure healing in full-thickness skin defect animal model. J Med Life 2022; 15(2): 214-21.
[http://dx.doi.org/10.25122/jml-2019-0103] [PMID: 35419097]
[90]
Székiová E, Michalová Z, Blaško J, et al. Characterisation of mesenchymal stem cells conditioned media obtained at different conditioning times: Their effect on glial cells in in vitro scratch model. Growth Factors 2023; 41(2): 57-70.
[http://dx.doi.org/10.1080/08977194.2023.2182145] [PMID: 36825505]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy