Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Interplay between LncRNA/miRNA and TGF-β Signaling in the Tumorigenesis of Gynecological Cancer

Author(s): Pegah Safavi, Kimia Behrouz Moghadam, Zahra Haghighi, Gordon A. Ferns and Farzad Rahmani*

Volume 30, Issue 5, 2024

Published on: 01 February, 2024

Page: [352 - 361] Pages: 10

DOI: 10.2174/0113816128284380240123071409

Price: $65

Abstract

Gynecologic cancers are among the most common malignancies with aggressive features and poor prognosis. Tumorigenesis in gynecologic cancers is a complicated process that is influenced by multiple factors, including genetic mutations that activate various oncogenic signaling pathways, including the TGF-β pathway. Aberrant activation of TGF-β signaling is correlated with tumor recurrence and metastasis. It has been shown that non-coding RNAs (ncRNAs) have crucial effects on cancer cell proliferation, migration, and metastasis. Upregulation of various ncRNAs, including long non-coding RNAs (lncRNA) and microRNAs (miRNAs), has been reported in several tumors, like cervical, ovarian, and endometrial cancers, but their cellular mechanisms remain to be investigated. Thus, recognizing the role of ncRNAs in regulating the TGF-β pathway may provide novel strategies for better treatment of cancer patients. The present study summarizes recent findings on the role of ncRNAs in regulating the TGF-β signaling involved in tumor progression and metastasis in gynecologic cancers.

[1]
Wahid M, Dar SA, Jawed A, Mandal RK, Akhter N, Khan S, Eds. Microbes in gynecologic cancers: Causes or consequences and therapeutic potential. Seminars in cancer biology. Elsevier 2022.
[2]
Aboutalebi H, Bahrami A, Soleimani A, et al. The diagnostic, prognostic and therapeutic potential of circulating microRNAs in ovarian cancer. Int J Biochem Cell Biol 2020; 124: 105765.
[http://dx.doi.org/10.1016/j.biocel.2020.105765] [PMID: 32428568]
[3]
Faridnejad H. The impact of physicochemical modification on iron oxide nanoparticle relaxation enhancement in biomedical imaging in the anticancer sector. Sch Res J 2022; 10: 26-33.
[4]
Perelli F, Mattei A, Scambia G, Cavaliere AF. Editorial: Methods in gynecological oncology. Front Oncol 2023; 13: 1167088.
[http://dx.doi.org/10.3389/fonc.2023.1167088] [PMID: 36969075]
[5]
Armanpour S, Malekzade S, Maftooh M, Tolou V, Avan A, Amerizadeh F. Association of a genetic variant in the ATP-binding cassette sub-family B member 1 with risk of cervical cancer. Hum Genet 2022; 34: 201097.
[6]
Atabati M, Saber R, Malakuti P, et al. Association of a genetic variant in chromosome 9p21 with increased risk of developing cervical cancer. Curr Cancer Ther Rev 2023; 19(4): 358-62.
[http://dx.doi.org/10.2174/1573394719666230321153528]
[7]
Behboodi N, Farazestanian M, Rastgar-Moghadam A, et al. Association of a variant in the tumor necrosis factor alpha gene with risk of cervical cancer. Mol Biol Rep 2021; 48(2): 1433-7.
[http://dx.doi.org/10.1007/s11033-021-06185-4] [PMID: 33555528]
[8]
Rahmani F, Avan A, Hashemy SI, Hassanian SM. Role of Wnt/β- catenin signaling regulatory microRNAs in the pathogenesis of colorectal cancer. J Cell Physiol 2018; 233(2): 811-7.
[http://dx.doi.org/10.1002/jcp.25897] [PMID: 28266708]
[9]
Rahmani F, Hashemzehi M, Avan A, et al. Rigosertib elicits potent anti-tumor responses in colorectal cancer by inhibiting Ras signaling pathway. Cell Signal 2021; 85: 110069.
[http://dx.doi.org/10.1016/j.cellsig.2021.110069] [PMID: 34214591]
[10]
Rahmani F, Ziaeemehr A, Shahidsales S, et al. Role of regulatory miRNAs of the PI3K/AKT/mTOR signaling in the pathogenesis of hepatocellular carcinoma. J Cell Physiol 2020; 235(5): 4146-52.
[http://dx.doi.org/10.1002/jcp.29333] [PMID: 31663122]
[11]
Rahmani F, Asgharzadeh F, Avan A, et al. Rigosertib potently protects against colitis-associated intestinal fibrosis and inflammation by regulating PI3K/AKT and NF-κB signaling pathways. Life Sci 2020; 249: 117470.
[http://dx.doi.org/10.1016/j.lfs.2020.117470] [PMID: 32135184]
[12]
Payazdan M, Khatami S, Galehdari H, Delfan N, Shafiei M, Heydaran S. The anti-inflammatory effects of sialic acid on the human glia cells by the upregulation of IL-4 and IL-10 genes’ expressions. Gene Rep 2021; 24: 101218.
[http://dx.doi.org/10.1016/j.genrep.2021.101218]
[13]
Kumari A, Shonibare Z, Monavarian M, et al. TGFβ signaling networks in ovarian cancer progression and plasticity. Clin Exp Metastasis 2021; 38(2): 139-61.
[http://dx.doi.org/10.1007/s10585-021-10077-z] [PMID: 33590419]
[14]
Zhong G, Zhao Q, Chen Z, Yao T. TGF-β signaling promotes cervical cancer metastasis via CDR1as. Mol Cancer 2023; 22(1): 66.
[http://dx.doi.org/10.1186/s12943-023-01743-9] [PMID: 37004067]
[15]
Zakrzewski PK. Canonical TGFβ signaling and its contribution to endometrial cancer development and progression-underestimated target of anticancer strategies. J Clin Med 2021; 10(17): 3900.
[http://dx.doi.org/10.3390/jcm10173900] [PMID: 34501347]
[16]
Hao Y, Baker D, ten Dijke P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci 2019; 20(11): 2767.
[http://dx.doi.org/10.3390/ijms20112767] [PMID: 31195692]
[17]
Zhao H, Wei J, Sun J. Roles of TGF-β signaling pathway in tumor microenvirionment and cancer therapy. Int Immunopharmacol 2020; 89(Pt B): 107101.
[http://dx.doi.org/10.1016/j.intimp.2020.107101] [PMID: 33099067]
[18]
Soleimani A, Khazaei M, Ferns GA, Ryzhikov M, Avan A, Hassanian SM. Role of TGF-β signaling regulatory microRNAs in the pathogenesis of colorectal cancer. J Cell Physiol 2019; 234(9): 14574-80.
[http://dx.doi.org/10.1002/jcp.28169] [PMID: 30684274]
[19]
Jamialahmadi H, Nazari SE, TanzadehPanah H, et al. Targeting transforming growth factor beta (TGF-β) using Pirfenidone, a potential repurposing therapeutic strategy in colorectal cancer. Sci Rep 2023; 13(1): 14357.
[http://dx.doi.org/10.1038/s41598-023-41550-2] [PMID: 37658230]
[20]
Binabaj MM, Asgharzadeh F, Rahmani F, et al. Vactosertib potently improves anti-tumor properties of 5-FU for colon cancer. Daru 2023; 31(2): 193-203.
[http://dx.doi.org/10.1007/s40199-023-00474-y] [PMID: 37740873]
[21]
Yu Y, Feng XH. TGF-β signaling in cell fate control and cancer. Curr Opin Cell Biol 2019; 61: 56-63.
[http://dx.doi.org/10.1016/j.ceb.2019.07.007] [PMID: 31382143]
[22]
Binabaj MM, Asgharzadeh F, Avan A, et al. EW-7197 prevents ulcerative colitis-associated fibrosis and inflammation. J Cell Physiol 2019; 234(7): 11654-61.
[http://dx.doi.org/10.1002/jcp.27823] [PMID: 30478959]
[23]
Xue VW, Chung JYF, Córdoba CAG, et al. Transforming growth factor-β: A multifunctional regulator of cancer immunity. Cancers 2020; 12(11): 3099.
[http://dx.doi.org/10.3390/cancers12113099] [PMID: 33114183]
[24]
Turati M, Mousset A, Issa N, Turtoi A, Ronca R. TGF-β mediated drug resistance in solid cancer. Cytokine Growth Factor Rev 2023; 71-72: 54-65.
[http://dx.doi.org/10.1016/j.cytogfr.2023.04.001] [PMID: 37100675]
[25]
Zeng X, Xiao J, Bai X, et al. Research progress on the circRNA/lncRNA-miRNA-mRNA axis in gastric cancer. Pathol Res Pract 2022; 238: 154030.
[http://dx.doi.org/10.1016/j.prp.2022.154030] [PMID: 36116329]
[26]
Khanbabaei H, Ebrahimi S, García-Rodríguez JL, et al. Non-coding RNAs and epithelial mesenchymal transition in cancer: Molecular mechanisms and clinical implications. J Exp Clin Cancer Res 2022; 41(1): 278.
[http://dx.doi.org/10.1186/s13046-022-02488-x] [PMID: 36114510]
[27]
Rahmani F, Ferns GA, Talebian S, Nourbakhsh M, Avan A, Shahidsales S. Role of regulatory miRNAs of the PI3K/AKT signaling pathway in the pathogenesis of breast cancer. Gene 2020; 737: 144459.
[http://dx.doi.org/10.1016/j.gene.2020.144459] [PMID: 32045660]
[28]
Soleimani A, Rahmani F, Saeedi N, et al. The potential role of regulatory microRNAs of RAS/MAPK signaling pathway in the pathogenesis of colorectal cancer. J Cell Biochem 2019; 120(12): 19245-53.
[http://dx.doi.org/10.1002/jcb.29268] [PMID: 31512778]
[29]
Rahmani F, Tadayyon Tabrizi A, Hashemian P, et al. Role of regulatory miRNAs of the Wnt/β-catenin signaling pathway in tumorigenesis of breast cancer. Gene 2020; 754: 144892.
[http://dx.doi.org/10.1016/j.gene.2020.144892] [PMID: 32534060]
[30]
Rahmani F, Zandigohar M, Safavi P, et al. The interplay between noncoding RNAs and p21 signaling in gastrointestinal cancer: From tumorigenesis to metastasis. Curr Pharm Des 2023; 29(10): 766-76.
[http://dx.doi.org/10.2174/1381612829666230306123455] [PMID: 36876835]
[31]
Rahmani F, Safavi P, Fathollahpour A, et al. The interplay between non-coding RNAs and Wnt/β-catenin signaling pathway in urinary tract cancers: From tumorigenesis to metastasis. EXCLI J 2022; 21: 1273-84.
[PMID: 36483915]
[32]
Chen M, Lei N, Tian W, Li Y, Chang L. Recent advances of non- coding RNAs in ovarian cancer prognosis and therapeutics. Ther Adv Med Oncol 2022; 14
[http://dx.doi.org/10.1177/17588359221118010] [PMID: 35983027]
[33]
Ahn JH, Lee HS, Lee JS, et al. nc886 is induced by TGF-β and suppresses the microRNA pathway in ovarian cancer. Nat Commun 2018; 9(1): 1166.
[http://dx.doi.org/10.1038/s41467-018-03556-7] [PMID: 29563500]
[34]
Lin H, Xu X, Chen K, et al. LncRNA Casc15, Mir-23b cluster and smad3 form a novel positive feedback loop to promote epithelial-mesenchymal transition and metastasis in ovarian cancer. Int J Biol Sci 2022; 18(5): 1989-2002.
[http://dx.doi.org/10.7150/ijbs.67486] [PMID: 35342355]
[35]
Mu Y, Li N, Cui Y-L. The lncRNA CCAT1 upregulates TGFβR1 via sponging miR-490-3p to promote TGFβ1-induced EMT of ovarian cancer cells. Cancer Cell Int 2018; 18: 1-12.
[http://dx.doi.org/10.1186/s12935-017-0498-3] [PMID: 29308050]
[36]
Wang L, Zhou S, Guo B. Vitamin D suppresses ovarian cancer growth and invasion by targeting long non-coding RNA CCAT2. Int J Mol Sci 2020; 21(7): 2334.
[http://dx.doi.org/10.3390/ijms21072334] [PMID: 32230936]
[37]
Li J, Huang Y, Deng X, et al. Long noncoding RNA H19 promotes transforming growth factor-β-induced epithelial–mesenchymal transition by acting as a competing endogenous RNA of miR-370-3p in ovarian cancer cells. OncoTargets Ther 2018; 11: 427-40.
[http://dx.doi.org/10.2147/OTT.S149908] [PMID: 29403287]
[38]
Wu Y, Gu W, Han X, Jin Z. LncRNA PVT1 promotes the progression of ovarian cancer by activating TGF-β pathway via miR-148a-3p/AGO1 axis. J Cell Mol Med 2021; 25(17): 8229-43.
[http://dx.doi.org/10.1111/jcmm.16700] [PMID: 34288373]
[39]
Liu E, Liu Z, Zhou Y, Mi R, Wang D. Overexpression of long non-coding RNA PVT1 in ovarian cancer cells promotes cisplatin resistance by regulating apoptotic pathways. Int J Clin Exp Med 2015; 8(11): 20565-72.
[PMID: 26884974]
[40]
Ma J, Xue M. LINK-A lncRNA promotes migration and invasion of ovarian carcinoma cells by activating TGF-β pathway. Biosci Rep 2018; 38(5): BSR20180936.
[http://dx.doi.org/10.1042/BSR20180936] [PMID: 30061183]
[41]
Guo L, Zhang Y, Zhang L, Huang F, Li J, Wang S. MicroRNAs, TGF-β signaling, and the inflammatory microenvironment in cancer. Tumour Biol 2016; 37(1): 115-25.
[http://dx.doi.org/10.1007/s13277-015-4374-2] [PMID: 26563372]
[42]
Zhou J, Zhang C, Zhou B, Jiang D. miR-183 modulated cell proliferation and apoptosis in ovarian cancer through the TGF-β/Smad4 signaling pathway. Int J Mol Med 2019; 43(4): 1734-46.
[http://dx.doi.org/10.3892/ijmm.2019.4082] [PMID: 30720057]
[43]
Li J, Hu K, Gong G, et al. Upregulation of MiR-205 transcriptionally suppresses SMAD4 and PTEN and contributes to human ovarian cancer progression. Sci Rep 2017; 7(1): 41330.
[http://dx.doi.org/10.1038/srep41330] [PMID: 28145479]
[44]
Parikh A, Lee C, Joseph P, et al. microRNA-181a has a critical role in ovarian cancer progression through the regulation of the epithelial–mesenchymal transition. Nat Commun 2014; 5(1): 2977.
[http://dx.doi.org/10.1038/ncomms3977] [PMID: 24394555]
[45]
Zhang J, Liu W, Shen F, et al. The activation of microRNA-520h–associated TGF-β1/c-Myb/Smad7 axis promotes epithelial ovarian cancer progression. Cell Death Dis 2018; 9(9): 884.
[http://dx.doi.org/10.1038/s41419-018-0946-6] [PMID: 30158641]
[46]
Kim JS, Choi DW, Kim CS, et al. MicroRNA-203 induces apoptosis by targeting Bmi-1 in YD-38 oral cancer cells. Anticancer Res 2018; 38(6): 3477-85.
[http://dx.doi.org/10.21873/anticanres.12618] [PMID: 29848700]
[47]
Zhou Y, Liang H, Liao Z, et al. miR-203 enhances let-7 biogenesis by targeting LIN28B to suppress tumor growth in lung cancer. Sci Rep 2017; 7(1): 42680.
[http://dx.doi.org/10.1038/srep42680] [PMID: 28218277]
[48]
Xiaohong Z, Lichun F, Na X, Kejian Z, Xiaolan X, Shaosheng W. MiR-203 promotes the growth and migration of ovarian cancer cells by enhancing glycolytic pathway. Tumour Biol 2016; 37(11): 14989-97.
[http://dx.doi.org/10.1007/s13277-016-5415-1] [PMID: 27655286]
[49]
Wang B, Li X, Zhao G, et al. miR-203 inhibits ovarian tumor metastasis by targeting BIRC5 and attenuating the TGFβ pathway. J Exp Clin Cancer Res 2018; 37(1): 235.
[http://dx.doi.org/10.1186/s13046-018-0906-0] [PMID: 29301578]
[50]
Rahmani F, Hasanzadeh M, Hassanian SM, et al. Association of a genetic variant in the angiopoietin-like protein 4 gene with cervical cancer. Pathol Res Pract 2020; 216(7): 153011.
[http://dx.doi.org/10.1016/j.prp.2020.153011] [PMID: 32534714]
[51]
Chen S, Yang X, Yu C, et al. The potential of circRNA as a novel diagnostic biomarker in cervical cancer. J Oncol 2021; 2021: 1-6.
[http://dx.doi.org/10.1155/2021/5529486] [PMID: 33880120]
[52]
Wang J, Chen L. The role of miRNAs in the invasion and metastasis of cervical cancer. Biosci Rep 2019; 39(3): BSR20181377.
[http://dx.doi.org/10.1042/BSR20181377] [PMID: 30833362]
[53]
Zhu L, Zhang Q, Li S, Jiang S, Cui J, Dang G. Retracted: Interference of the long noncoding RNA CDKN2B-AS1 upregulates miR-181a-5p/TGFβI axis to restrain the metastasis and promote apoptosis and senescence of cervical cancer cells. Cancer Med 2019; 8(4): 1721-30.
[http://dx.doi.org/10.1002/cam4.2040] [PMID: 30884187]
[54]
Chang QQ, Chen CY, Chen Z, Chang S. LncRNA PVT1 promotes proliferation and invasion through enhancing Smad3 expression by sponging miR-140-5p in cervical cancer. Radiol Oncol 2019; 53(4): 443-52.
[http://dx.doi.org/10.2478/raon-2019-0048] [PMID: 31626590]
[55]
Zhang Y, Yang G, Luo Y. Long non-coding RNA PVT1 promotes glioma cell proliferation and invasion by targeting miR-200a. Exp Ther Med 2019; 17(2): 1337-45.
[PMID: 30680011]
[56]
Guan MM, Rao QX, Huang ML, et al. Long noncoding RNA TP73-AS1 targets microRNA-329-3p to regulate expression of the SMAD2 gene in human cervical cancer tissue and cell lines. Med Sci Monit 2019; 25: 8131-41.
[http://dx.doi.org/10.12659/MSM.916292] [PMID: 31663517]
[57]
Cao L, Jin H, Zheng Y, et al. DANCR-mediated microRNA-665 regulates proliferation and metastasis of cervical cancer through the ERK/SMAD pathway. Cancer Sci 2019; 110(3): 913-25.
[http://dx.doi.org/10.1111/cas.13921] [PMID: 30582654]
[58]
Thin KZ, Liu X, Feng X, Raveendran S, Tu JC. LncRNA-DANCR: A valuable cancer related long non-coding RNA for human cancers. Pathol Res Pract 2018; 214(6): 801-5.
[http://dx.doi.org/10.1016/j.prp.2018.04.003] [PMID: 29728310]
[59]
Mody HR, Hung SW, Pathak RK, Griffin J, Cruz-Monserrate Z, Govindarajan R. miR-202 diminishes TGFβ receptors and attenuates TGFβ1-induced EMT in pancreatic cancer. Mol Cancer Res 2017; 15(8): 1029-39.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0327] [PMID: 28373289]
[60]
Ju W, Luo X, Zhang N. LncRNA NEF inhibits migration and invasion of HPV-negative cervical squamous cell carcinoma by inhibiting TGF-β pathway. Biosci Rep 2019; 39(4): BSR20180878.
[http://dx.doi.org/10.1042/BSR20180878] [PMID: 30910843]
[61]
Fan Y, Sheng W, Meng Y, Cao Y, Li R. LncRNA PTENP1 inhibits cervical cancer progression by suppressing miR-106b. Artif Cells Nanomed Biotechnol 2020; 48(1): 393-407.
[http://dx.doi.org/10.1080/21691401.2019.1709852] [PMID: 31913710]
[62]
Zhao Y, Wang X, Wang Q, et al. USP2a supports metastasis by tuning TGF-β signaling. Cell Rep 2018; 22(9): 2442-54.
[http://dx.doi.org/10.1016/j.celrep.2018.02.007] [PMID: 29490279]
[63]
Yang Z, He J, Gao P, et al. miR-769-5p suppressed cell proliferation, migration and invasion by targeting TGFBR1 in non-small cell lung carcinoma. Oncotarget 2017; 8(69): 113558-70.
[http://dx.doi.org/10.18632/oncotarget.23060] [PMID: 29371929]
[64]
Sakaguchi J, Kyo S, Kanaya T, et al. Aberrant expression and mutations of TGF-β receptor type II gene in endometrial cancer. Gynecol Oncol 2005; 98(3): 427-33.
[http://dx.doi.org/10.1016/j.ygyno.2005.04.031] [PMID: 15993480]
[65]
Qu Y, Zhang H, Duan J, et al. MiR-17-5p regulates cell proliferation and migration by targeting transforming growth factor-β receptor 2 in gastric cancer. Oncotarget 2016; 7(22): 33286-96.
[http://dx.doi.org/10.18632/oncotarget.8946] [PMID: 27120811]
[66]
Cai N, Hu L, Xie Y, et al. MiR-17-5p promotes cervical cancer cell proliferation and metastasis by targeting transforming growth factor-β receptor 2. Eur Rev Med Pharmacol Sci 2018; 22(7): 1899-906.
[PMID: 29687841]
[67]
Yang TS, Yang XH, Chen X, et al. MicroRNA-106b in cancer-associated fibroblasts from gastric cancer promotes cell migration and invasion by targeting PTEN. FEBS Lett 2014; 588(13): 2162-9.
[http://dx.doi.org/10.1016/j.febslet.2014.04.050] [PMID: 24842611]
[68]
Gong C, Qu S, Liu B, et al. MiR-106b expression determines the proliferation paradox of TGF-β in breast cancer cells. Oncogene 2015; 34(1): 84-93.
[http://dx.doi.org/10.1038/onc.2013.525] [PMID: 24292682]
[69]
Cheng Y, Guo Y, Zhang Y, You K, Li Z, Geng L. MicroRNA-106b is involved in transforming growth factor β1–induced cell migration by targeting disabled homolog 2 in cervical carcinoma. J Exp Clin Cancer Res 2016; 35(1): 11.
[http://dx.doi.org/10.1186/s13046-016-0290-6] [PMID: 26769181]
[70]
Zhu X, Li Y, Shen H, et al. miR-137 inhibits the proliferation of lung cancer cells by targeting Cdc42 and Cdk6. FEBS Lett 2013; 587(1): 73-81.
[http://dx.doi.org/10.1016/j.febslet.2012.11.004] [PMID: 23178712]
[71]
Liang L, Li X, Zhang X, Lv Z, He G, Zhao W. MicroRNA-137, an HMGA1 target, suppresses colorectal cancer cell invasion and metastasis in mice by directly targeting FMNL2. Gastroenterology 2013; 144(3): 624-635. e4.
[http://dx.doi.org/10.1053/j.gastro.2012.11.033]
[72]
Miao H, Wang N, Shi LX, Wang Z, Song WB. Overexpression of mircoRNA-137 inhibits cervical cancer cell invasion, migration and epithelial–mesenchymal transition by suppressing the TGF-β/smad pathway via binding to GREM1. Cancer Cell Int 2019; 19(1): 147.
[http://dx.doi.org/10.1186/s12935-019-0852-8] [PMID: 31143092]
[73]
Bao Y, Chen Z, Guo Y, et al. Tumor suppressor microRNA-27a in colorectal carcinogenesis and progression by targeting SGPP1 and Smad2. PLoS One 2014; 9(8): e105991.
[http://dx.doi.org/10.1371/journal.pone.0105991] [PMID: 25166914]
[74]
Zhu L, Wang Z, Fan Q, Wang R, Sun Y. microRNA-27a functions as a tumor suppressor in esophageal squamous cell carcinoma by targeting KRAS. Oncol Rep 2014; 31(1): 280-6.
[http://dx.doi.org/10.3892/or.2013.2807] [PMID: 24154848]
[75]
Fang F, Huang B, Sun S, et al. miR-27a inhibits cervical adenocarcinoma progression by downregulating the TGF-βRI signaling pathway. Cell Death Dis 2018; 9(3): 395.
[http://dx.doi.org/10.1038/s41419-018-0431-2] [PMID: 29531222]
[76]
Oropeza-de Lara SA, Garza-Veloz I, Berthaud-González B, Martinez-Fierro ML. Circulating and endometrial tissue microRNA markers associated with endometrial cancer diagnosis, prognosis, and response to treatment. Cancers 2023; 15(10): 2686.
[http://dx.doi.org/10.3390/cancers15102686] [PMID: 37345024]
[77]
Donkers H, Bekkers R, Galaal K. Diagnostic value of microRNA panel in endometrial cancer: A systematic review. Oncotarget 2020; 11(21): 2010-23.
[http://dx.doi.org/10.18632/oncotarget.27601] [PMID: 32523655]
[78]
Ma J, Kong FF, Yang D, et al. lncRNA MIR210HG promotes the progression of endometrial cancer by sponging miR-337-3p/137 via the HMGA2-TGF-β/Wnt pathway. Mol Ther Nucleic Acids 2021; 24: 905-22.
[http://dx.doi.org/10.1016/j.omtn.2021.04.011] [PMID: 34094710]
[79]
Ruan Z, Xu Z, Li Z, Lv Y. Integral analyses of survival-related long non-coding RNA MIR210HG and its prognostic role in colon cancer. Oncol Lett 2019; 18(2): 1107-16.
[http://dx.doi.org/10.3892/ol.2019.10435] [PMID: 31423171]
[80]
Li X, Zhou L, Luo H, et al. The long noncoding RNA MIR210HG promotes tumor metastasis by acting as a ceRNA of miR-1226-3p to regulate mucin-1c expression in invasive breast cancer. Aging 2019; 11(15): 5646-65.
[http://dx.doi.org/10.18632/aging.102149] [PMID: 31399552]
[81]
Zheng X, Liu M, Song Y, Feng C. Long noncoding RNA-ATB impairs the function of tumor suppressor miR-126-mediated signals in endometrial cancer for tumor growth and metastasis. Cancer Biother Radiopharm 2019; 34(1): 47-55.
[http://dx.doi.org/10.1089/cbr.2018.2565] [PMID: 30601064]
[82]
Zhang X, Yang J, Zhou W, et al. Identification of LncRNA CASC7/miR-26/ASPN/TGF-β/Smad axis in endometrial cancer. Pak J Zool 2022; 55(1): 1-9.
[http://dx.doi.org/10.17582/journal.pjz/20211201051249]
[83]
Gao Q, Huang Q, Li F, Luo F. LncRNA MCTP1-AS1 regulates EMT process in endometrial cancer by targeting the miR-650/SMAD7 axis. OncoTargets Ther 2021; 14: 751-61.
[http://dx.doi.org/10.2147/OTT.S240010] [PMID: 33568915]
[84]
Zhang HH, Li R, Li YJ, et al. eIF4E-related miR-320a and miR-340-5p inhibit endometrial carcinoma cell metastatic capability by preventing TGF-β1-induced epithelial-mesenchymal transition. Oncol Rep 2020; 43(2): 447-60.
[PMID: 31894279]
[85]
Zhang C, Wang B, Wu L. MicroRNA-409 may function as a tumor suppressor in endometrial carcinoma cells by targeting Smad2. Mol Med Rep 2019; 19(1): 622-8.
[PMID: 30431090]
[86]
Liu P, Wang C, Ma C, Wu Q, Zhang W, Lao G. MicroRNA-23a regulates epithelial-to-mesenchymal transition in endometrial endometrioid adenocarcinoma by targeting SMAD3. Cancer Cell Int 2016; 16(1): 67.
[http://dx.doi.org/10.1186/s12935-016-0342-1] [PMID: 27601936]
[87]
Zheng B, Liang L, Huang S, et al. MicroRNA-409 suppresses tumour cell invasion and metastasis by directly targeting radixin in gastric cancers. Oncogene 2012; 31(42): 4509-16.
[http://dx.doi.org/10.1038/onc.2011.581] [PMID: 22179828]
[88]
Cáceres-Durán MÁ, Ribeiro-dos-Santos Â, Vidal AF. Roles and mechanisms of the long noncoding RNAs in cervical cancer. Int J Mol Sci 2020; 21(24): 9742.
[http://dx.doi.org/10.3390/ijms21249742] [PMID: 33371204]
[89]
Naz F, Tariq I, Ali S, Somaida A, Preis E, Bakowsky U. The role of long non-coding RNAs (lncRNAs) in female oriented cancers. Cancers 2021; 13(23): 6102.
[http://dx.doi.org/10.3390/cancers13236102] [PMID: 34885213]
[90]
Li J, Wang Y, Yu J, Dong R, Qiu H. A high level of circulating HOTAIR is associated with progression and poor prognosis of cervical cancer. Tumour Biol 2015; 36(3): 1661-5.
[http://dx.doi.org/10.1007/s13277-014-2765-4] [PMID: 25366139]
[91]
Fan Y, Nan Y, Huang J, Zhong H, Zhou W. Up-regulation of inflammation-related LncRNA-IL7R predicts poor clinical outcome in patients with cervical cancer. Biosci Rep 2018; 38(3): BSR20180483.
[http://dx.doi.org/10.1042/BSR20180483] [PMID: 29720427]
[92]
Mao Y, Zhang L, Li Y. Application of CircEIF4G2 in screening of cervical lesions. Clin Lab 2020; 1(6)
[93]
Zheng M, Hu Y, Gou R, et al. Identification three LncRNA prognostic signature of ovarian cancer based on genome-wide copy number variation. Biomed Pharmacother 2020; 124: 109810.
[http://dx.doi.org/10.1016/j.biopha.2019.109810] [PMID: 32000042]
[94]
Sheng R, Li X, Wang Z, Wang X. Circular RNAs and their emerging roles as diagnostic and prognostic biomarkers in ovarian cancer. Cancer Lett 2020; 473: 139-47.
[http://dx.doi.org/10.1016/j.canlet.2019.12.043] [PMID: 31904484]
[95]
Liu N, Zhang J, Zhang LY, Wang L. CircHIPK3 is upregulated and predicts a poor prognosis in epithelial ovarian cancer. Eur Rev Med Pharmacol Sci 2018; 22(12): 3713-8.
[PMID: 29949144]
[96]
Tung CH, Kuo LW, Huang MF, et al. MicroRNA-150-5p promotes cell motility by inhibiting c-Myb-mediated Slug suppression and is a prognostic biomarker for recurrent ovarian cancer. Oncogene 2020; 39(4): 862-76.
[http://dx.doi.org/10.1038/s41388-019-1025-x] [PMID: 31570789]
[97]
Panoutsopoulou K, Avgeris M, Scorilas A. miRNA and long non- coding RNA: Molecular function and clinical value in breast and ovarian cancers. Expert Rev Mol Diagn 2018; 18(11): 963-79.
[http://dx.doi.org/10.1080/14737159.2018.1538794] [PMID: 30338716]
[98]
Ding H, Jiang F, Deng L, et al. Prediction of clinical outcome in endometrial carcinoma based on a 3-lncRNA signature. Front Cell Dev Biol 2022; 9: 814456.
[http://dx.doi.org/10.3389/fcell.2021.814456] [PMID: 35178403]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy