Generic placeholder image

Current Applied Polymer Science

Editor-in-Chief

ISSN (Print): 2452-2716
ISSN (Online): 2452-2724

Review Article

Revolutionizing Drug Delivery: The Potential of PLGA Nanoparticles in Nanomedicine

Author(s): Akanksha R. Singh and Rajani B. Athawale*

Volume 6, Issue 2, 2023

Published on: 31 January, 2024

Page: [87 - 100] Pages: 14

DOI: 10.2174/0124522716282353240118114732

Price: $65

Abstract

Nanomedicine is an emerging field that utilizes nanoparticles to deliver drugs and other therapeutic agents to specific cells and tissues in the body. One of the most promising materials for creating these nanoparticles is Poly(Lactic-co-glycolic Acid) (PLGA), which has several unique properties that make it well-suited for biomedical applications. These nanomedicines, made from a combination of lactic acid and glycolic acid, can deliver drugs and other therapeutic agents directly to specific cells or tissues in the body. This allows for more precise and targeted treatment, reducing the potential for side effects and improving the effectiveness of the treatment. Additionally, PLGA nanomedicines are biocompatible and biodegradable, making them an attractive option for use in a wide range of biomedical applications to deliver a wide range of drugs, including proteins, peptides, nucleic acids, and small molecules for various biomedical applications such as neurodegenerative, cardiovascular diseases, inflammatory disorders, and cancer. In summary, research on PLGA nanoparticles for biomedical applications is ongoing and has the potential to lead a new and improved treatments for a wide range of diseases and conditions. Looking ahead, PLGA nanoparticles have the potential to revolutionize the way we treat diseases and improve human health. As research continues to advance, we can expect to see new and innovative uses for PLGA nanoparticles in the biomedical field, leading to the development of more effective and targeted therapeutics. The current review focuses on the synthesis, physicochemical properties, biodegradation properties of PLGA, method to prepare PLGA nanoparticles and biomedical application of PLGA. It examines the current progress and future directions for research on PLGA in drug delivery.

Graphical Abstract

[1]
Murcia Valderrama MA, van Putten RJ, Gruter GJM. PLGA barrier materials from CO2. The influence of lactide co-monomer on glycolic acid polyesters. ACS Appl Polym Mater 2020; 2(7): 2706-18.
[http://dx.doi.org/10.1021/acsapm.0c00315] [PMID: 32954354]
[2]
Bagheri AR, Laforsch C, Greiner A, Agarwal S. Fate of so-called biodegradable polymers in seawater and freshwater. Glob Chall 2017; 1(4): 1700048.
[http://dx.doi.org/10.1002/gch2.201700048] [PMID: 31565274]
[3]
Schäfer PM, Herres-Pawlis S. Robust guanidine metal catalysts for the ring-opening polymerization of lactide under industrially relevant conditions. ChemPlusChem 2020; 85(5): 1044-52.
[http://dx.doi.org/10.1002/cplu.202000252] [PMID: 32449840]
[4]
Ren J, Ed. Biodegradable poly (lactic acid): Synthesis, modification, processing and applications. Springer 2011.
[5]
Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 2004; 104(12): 6147-76.
[http://dx.doi.org/10.1021/cr040002s] [PMID: 15584698]
[6]
Little A, Wemyss AM, Haddleton DM, et al. Synthesis of poly (lactic acid-co-glycolic acid) copolymers with high glycolide ratio by ring-opening polymerisation. Polymers 2021; 13(15): 2458.
[http://dx.doi.org/10.3390/polym13152458] [PMID: 34372058]
[7]
Martins C, Sousa F, Araújo F, Sarmento B. Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications. Adv Healthc Mater 2018; 7(1): 1701035.
[http://dx.doi.org/10.1002/adhm.201701035] [PMID: 29171928]
[8]
Lamprecht A, Ubrich N, Hombreiro Pérez M, Lehr CM, Hoffman M, Maincent P. Influences of process parameters on nanoparticle preparation performed by a double emulsion pressure homogenization technique. Int J Pharm 2000; 196(2): 177-82.
[http://dx.doi.org/10.1016/S0378-5173(99)00422-6] [PMID: 10699713]
[9]
Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S. PLGA: A unique polymer for drug delivery. Ther Deliv 2015; 6(1): 41-58.
[http://dx.doi.org/10.4155/tde.14.91] [PMID: 25565440]
[10]
Mchugh AJ, Graham PD, Brodbeck KJ. Phase inversion dynamics of PLGA solutions related to drug delivery. Proc MRS 1998; 550: 41.
[http://dx.doi.org/10.1557/PROC-550-41]
[11]
Villemin E, Ong YC, Thomas CM, Gasser G. Polymer encapsulation of ruthenium complexes for biological and medicinal applications. Nat Rev Chem 2019; 3(4): 261-82.
[http://dx.doi.org/10.1038/s41570-019-0088-0]
[12]
Pandita D, Kumar S, Lather V. Hybrid poly(lactic-co-glycolic acid) nanoparticles: Design and delivery prospectives. Drug Discov Today 2015; 20(1): 95-104.
[http://dx.doi.org/10.1016/j.drudis.2014.09.018] [PMID: 25277320]
[13]
Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: An overview of biomedical applications. J Control Release 2012; 161(2): 505-22.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.043] [PMID: 22353619]
[14]
Yan H, Hou YF, Niu PF, et al. Biodegradable PLGA nanoparticles loaded with hydrophobic drugs: Confocal Raman microspectroscopic characterization. J Mater Chem B Mater Biol Med 2015; 3(18): 3677-80.
[http://dx.doi.org/10.1039/C5TB00434A] [PMID: 32262841]
[15]
Ungaro F, d’Angelo I, Miro A, La Rotonda MI, Quaglia F. Engineered PLGA nano- and micro-carriers for pulmonary delivery: Challenges and promises. J Pharm Pharmacol 2012; 64(9): 1217-35.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01486.x] [PMID: 22881435]
[16]
Sgorla D, Bunhak ÉJ, Cavalcanti OA, Fonte P, Sarmento B. Exploitation of lipid-polymeric matrices at nanoscale for drug delivery applications. Expert Opin Drug Deliv 2016; 13(9): 1301-9.
[http://dx.doi.org/10.1080/17425247.2016.1182492] [PMID: 27110648]
[17]
Maghrebi S, Prestidge CA, Joyce P. An update on polymer-lipid hybrid systems for improving oral drug delivery. Expert Opin Drug Deliv 2019; 16(5): 507-24.
[http://dx.doi.org/10.1080/17425247.2019.1605353] [PMID: 30957577]
[18]
Taniselass S, Arshad MKM, Gopinath SCB. Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers. Biosens Bioelectron 2019; 130: 276-92.
[http://dx.doi.org/10.1016/j.bios.2019.01.047] [PMID: 30771717]
[19]
Hussien NA. Işıklan N, Türk M. Aptamer-functionalized magnetic graphene oxide nanocarrier for targeted drug delivery of paclitaxel. Mater Chem Phys 2018; 211: 479-88.
[http://dx.doi.org/10.1016/j.matchemphys.2018.03.015]
[20]
Lin J, Huang Y, Huang P. Graphene-based nanomaterials in bioimaging.Biomedical applications of functionalized nanomaterials. Elsevier 2018.
[21]
Astete CE, Sabliov CM. Synthesis and characterization of PLGA nanoparticles. J Biomater Sci Polym Ed 2006; 17(3): 247-89.
[http://dx.doi.org/10.1163/156856206775997322] [PMID: 16689015]
[22]
Ratner BD, Horbett T, Hoffman AS, Hauschka SD. Cell adhesion to polymeric materials: Implications with respect to biocompatibility. J Biomed Mater Res 1975; 9(5): 407-22.
[http://dx.doi.org/10.1002/jbm.820090505] [PMID: 51850]
[23]
Ballestrero A, Boy D, Moran E, Cirmena G, Brossart P, Nencioni A. Immunotherapy with dendritic cells for cancer. Adv Drug Deliv Rev 2008; 60(2): 173-83.
[http://dx.doi.org/10.1016/j.addr.2007.08.026] [PMID: 17977615]
[24]
Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011; 3(3): 1377-97.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[25]
Schliecker G, Schmidt C, Fuchs S, Kissel T. Characterization of a homologous series of d, l -lactic acid oligomers; a mechanistic study on the degradation kinetics in vitro. Biomaterials 2003; 24(21): 3835-44.
[http://dx.doi.org/10.1016/S0142-9612(03)00243-6] [PMID: 12818556]
[26]
Acharya S, Sahoo SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 2011; 63(3): 170-83.
[http://dx.doi.org/10.1016/j.addr.2010.10.008] [PMID: 20965219]
[27]
Panagi Z, Beletsi A, Evangelatos G, Livaniou E, Ithakissios DS, Avgoustakis K. Effect of dose on the biodistribution and pharmacokinetics of PLGA and PLGA–mPEG nanoparticles. Int J Pharm 2001; 221(1-2): 143-52.
[http://dx.doi.org/10.1016/S0378-5173(01)00676-7] [PMID: 11397575]
[28]
Pillai CKS. Recent advances in biodegradable polymeric materials. Mater Sci Technol 2014; 30(5): 558-66.
[http://dx.doi.org/10.1179/1743284713Y.0000000472]
[29]
Berkland C, Pollauf E, Pack DW, Kim KK. Uniform double-walled polymer microspheres of controllable shell thickness. J Control Release 2004; 96(1): 101-11.
[http://dx.doi.org/10.1016/j.jconrel.2004.01.018] [PMID: 15063033]
[30]
Park TG. Degradation of poly(lactic-co-glycolic acid) microspheres: Effect of copolymer composition. Biomaterials 1995; 16(15): 1123-30.
[http://dx.doi.org/10.1016/0142-9612(95)93575-X] [PMID: 8562787]
[31]
Lü JM, Wang X, Marin-Muller C, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 2009; 9(4): 325-41.
[http://dx.doi.org/10.1586/erm.09.15] [PMID: 19435455]
[32]
Wu HF, Gopal J, Abdelhamid HN, Hasan N. Quantum dot applications endowing novelty to analytical proteomics. Proteomics 2012; 12(19-20): 2949-61.
[http://dx.doi.org/10.1002/pmic.201200295] [PMID: 22930415]
[33]
Ranade VV. Drug delivery systems: 3A. Role of polymers in drug delivery. J Clin Pharmacol 1990; 30(1): 10-23.
[http://dx.doi.org/10.1002/j.1552-4604.1990.tb03432.x] [PMID: 2406297]
[34]
Borchardt RT, Creveling CR, Ueland PM. Biological methylation and drug design: Experimental and clinical role of S-adenosylmethionine. Springer 1986; Vol. 12.
[http://dx.doi.org/10.1007/978-1-4612-5012-8]
[35]
Luan X, Bodmeier R. Influence of the poly(lactide-co-glycolide) type on the leuprolide release from in situ forming microparticle systems. J Control Release 2006; 110(2): 266-72.
[http://dx.doi.org/10.1016/j.jconrel.2005.10.005] [PMID: 16300851]
[36]
Schliecker G, Schmidt C, Fuchs S, Wombacher R, Kissel T. Hydrolytic degradation of poly(lactide-co-glycolide) films: Effect of oligomers on degradation rate and crystallinity. Int J Pharm 2003; 266(1-2): 39-49.
[http://dx.doi.org/10.1016/S0378-5173(03)00379-X] [PMID: 14559392]
[37]
Graham PD, Brodbeck KJ, McHugh AJ. Phase inversion dynamics of PLGA solutions related to drug delivery. J Control Release 1999; 58(2): 233-45.
[http://dx.doi.org/10.1016/S0168-3659(98)00158-8] [PMID: 10053196]
[38]
Park TG. Degradation of poly(d,l-lactic acid) microspheres: Effect of molecular weight. J Control Release 1994; 30(2): 161-73.
[http://dx.doi.org/10.1016/0168-3659(94)90263-1]
[39]
Liggins RT, Burt HM. Paclitaxel loaded poly(L-lactic acid) microspheres: Properties of microspheres made with low molecular weight polymers. Int J Pharm 2001; 222(1): 19-33.
[http://dx.doi.org/10.1016/S0378-5173(01)00690-1] [PMID: 11404029]
[40]
Frank A, Rath SK, Venkatraman SS. Controlled release from bioerodible polymers: Effect of drug type and polymer composition. J Control Release 2005; 102(2): 333-44.
[http://dx.doi.org/10.1016/j.jconrel.2004.10.019] [PMID: 15653155]
[41]
Eniola AO, Hammer DA. Characterization of biodegradable drug delivery vehicles with the adhesive properties of leukocytes II: Effect of degradation on targeting activity. Biomaterials 2005; 26(6): 661-70.
[http://dx.doi.org/10.1016/j.biomaterials.2004.03.003] [PMID: 15282144]
[42]
Jain A, Jain A, Gulbake A, Shilpi S, Hurkat P, Jain SK. Peptide and protein delivery using new drug delivery systems. Crit Rev Ther Drug Carrier Syst 2013; 30(4): 293-329.
[43]
Houchin ML, Topp EM. Chemical degradation of peptides and proteins in PLGA: A review of reactions and mechanisms. J Pharm Sci 2008; 97(7): 2395-404.
[http://dx.doi.org/10.1002/jps.21176] [PMID: 17828756]
[44]
Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnology 2011; 9(1): 55.
[http://dx.doi.org/10.1186/1477-3155-9-55] [PMID: 22123084]
[45]
Moghimi SM, Hunter AC, Murray JC. Nanomedicine: Current status and future prospects. FASEB J 2005; 19(3): 311-30.
[http://dx.doi.org/10.1096/fj.04-2747rev] [PMID: 15746175]
[46]
Zambaux M, Bonneaux F, Gref R, et al. Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J Control Release 1998; 50(1-3): 31-40.
[http://dx.doi.org/10.1016/S0168-3659(97)00106-5] [PMID: 9685870]
[47]
Mao S, Xu J, Cai C, Germershaus O, Schaper A, Kissel T. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. Int J Pharm 2007; 334(1-2): 137-48.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.036] [PMID: 17196348]
[48]
Thomasin C. Nam-Trȃ;n H, Merkle HP, Gander B. Drug microencapsulation by PLA/PLGA coacervation in the light of thermodynamics. 1. Overview and theoretical considerations. J Pharm Sci 1998; 87(3): 259-68.
[http://dx.doi.org/10.1021/js970047r] [PMID: 9523976]
[49]
Mu L, Feng SS. Fabrication, characterization and in vitro release of paclitaxel (Taxol®) loaded poly (lactic-co-glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers. J Control Release 2001; 76(3): 239-54.
[http://dx.doi.org/10.1016/S0168-3659(01)00440-0] [PMID: 11578739]
[50]
Peter Christoper GV, Vijaya Raghavan C, Siddharth K, Siva Selva Kumar M, Hari Prasad R. Formulation and optimization of coated PLGA - Zidovudine nanoparticles using factorial design and in vitro in vivo evaluations to determine brain targeting efficiency. Saudi Pharm J 2014; 22(2): 133-40.
[http://dx.doi.org/10.1016/j.jsps.2013.04.002] [PMID: 24648825]
[51]
Tom JW, Debenedetti PG. Particle formation with supercritical fluids-a review. J Aerosol Sci 1991; 22(5): 555-84.
[http://dx.doi.org/10.1016/0021-8502(91)90013-8]
[52]
Davies OR, Lewis AL, Whitaker MJ, Tai H, Shakesheff KM, Howdle SM. Applications of supercritical CO2 in the fabrication of polymer systems for drug delivery and tissue engineering. Adv Drug Deliv Rev 2008; 60(3): 373-87.
[http://dx.doi.org/10.1016/j.addr.2006.12.001] [PMID: 18069079]
[53]
Jeong YI, Cho CS, Kim SH, et al. Preparation of poly(DL-lactide- co-glycolide) nanoparticles without surfactant. J Appl Polym Sci 2001; 80(12): 2228-36.
[http://dx.doi.org/10.1002/app.1326]
[54]
Mittal G, Sahana DK, Bhardwaj V, Ravi Kumar MNV. Estradiol loaded PLGA nanoparticles for oral administration: Effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Release 2007; 119(1): 77-85.
[http://dx.doi.org/10.1016/j.jconrel.2007.01.016] [PMID: 17349712]
[55]
Esmaeili F, Ghahremani MH, Esmaeili B, Khoshayand MR, Atyabi F, Dinarvand R. PLGA nanoparticles of different surface properties: Preparation and evaluation of their body distribution. Int J Pharm 2008; 349(1-2): 249-55.
[http://dx.doi.org/10.1016/j.ijpharm.2007.07.038] [PMID: 17875373]
[56]
Zhang Z, Feng SS. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials 2006; 27(21): 4025-33.
[http://dx.doi.org/10.1016/j.biomaterials.2006.03.006] [PMID: 16564085]
[57]
Sah H. Protein behavior at the water/methylene chloride interface. J Pharm Sci 1999; 88(12): 1320-5.
[http://dx.doi.org/10.1021/js9900654] [PMID: 10585229]
[58]
Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro technologies for delivering macromolecular therapeutics using poly(d,l-lactide-co-glycolide) and its derivatives. J Control Release 2008; 125(3): 193-209.
[http://dx.doi.org/10.1016/j.jconrel.2007.09.013] [PMID: 18083265]
[59]
Lai PL, Hong DW, Lin CTY, Chen LH, Chen WJ, Chu IM. Effect of mixing ceramics with a thermosensitive biodegradable hydrogel as composite graft. Compos, Part B Eng 2012; 43(8): 3088-95.
[http://dx.doi.org/10.1016/j.compositesb.2012.04.057]
[60]
Félix Lanao RP, Leeuwenburgh SCG, Wolke JGC, Jansen JA. In vitro degradation rate of apatitic calcium phosphate cement with incorporated PLGA microspheres. Acta Biomater 2011; 7(9): 3459-68.
[http://dx.doi.org/10.1016/j.actbio.2011.05.036] [PMID: 21689794]
[61]
Schleich N, Sibret P, Danhier P, et al. Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. Int J Pharm 2013; 447(1-2): 94-101.
[http://dx.doi.org/10.1016/j.ijpharm.2013.02.042] [PMID: 23485340]
[62]
Sun B, Ranganathan B, Feng SS. Multifunctional poly(d,l-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by Trastuzumab for targeted chemotherapy of breast cancer. Biomaterials 2008; 29(4): 475-86.
[http://dx.doi.org/10.1016/j.biomaterials.2007.09.038] [PMID: 17953985]
[63]
Perugini P, Genta I, Conti B, Modena T, Pavanetto F. Periodontal delivery of ipriflavone: New chitosan/PLGA film delivery system for a lipophilic drug. Int J Pharm 2003; 252(1-2): 1-9.
[http://dx.doi.org/10.1016/S0378-5173(02)00602-6] [PMID: 12550776]
[64]
Nafea EH, El-Massik MA, El-Khordagui LK, Marei M, Khalafallah NM. Alendronate PLGA microspheres with high loading efficiency for dental applications. J Microencapsul 2007; 24(6): 525-38.
[http://dx.doi.org/10.1080/02652040701439807] [PMID: 17654173]
[65]
Tran TNT. Cutaneous drug delivery: An update. J Investig Dermatol Symp Proc 2013; 16(1): S67-9.
[http://dx.doi.org/10.1038/jidsymp.2013.28] [PMID: 24326566]
[66]
Klugherz BD, Jones PL, Cui X, et al. Gene delivery from a DNA controlled-release stent in porcine coronary arteries. Nat Biotechnol 2000; 18(11): 1181-4.
[http://dx.doi.org/10.1038/81176] [PMID: 11062438]
[67]
Tomoda K, Terashima H, Suzuki K, Inagi T, Terada H, Makino K. Enhanced transdermal delivery of indomethacin using combination of PLGA nanoparticles and iontophoresis in vivo. Colloids Surf B Biointerfaces 2012; 92: 50-4.
[http://dx.doi.org/10.1016/j.colsurfb.2011.11.016] [PMID: 22154100]
[68]
Luengo J, Weiss B, Schneider M, et al. Influence of nanoencapsulation on human skin transport of flufenamic acid. Skin Pharmacol Physiol 2006; 19(4): 190-7.
[http://dx.doi.org/10.1159/000093114] [PMID: 16679821]
[69]
Hanlon DJ, Aldo PB, Devine L, et al. Enhanced stimulation of anti-ovarian cancer CD8(+) T cells by dendritic cells loaded with nanoparticle encapsulated tumor antigen. Am J Reprod Immunol 2011; 65(6): 597-609.
[http://dx.doi.org/10.1111/j.1600-0897.2010.00968.x] [PMID: 21241402]
[70]
Roy A, Singh MS, Upadhyay P, Bhaskar S. Combined chemo-immunotherapy as a prospective strategy to combat cancer: A nanoparticle based approach. Mol Pharm 2010; 7(5): 1778-88.
[http://dx.doi.org/10.1021/mp100153r] [PMID: 20822093]
[71]
Derakhshandeh K, Erfan M, Dadashzadeh S. Encapsulation of 9-nitrocamptothecin, a novel anticancer drug, in biodegradable nanoparticles: Factorial design, characterization and release kinetics. Eur J Pharm Biopharm 2007; 66(1): 34-41.
[http://dx.doi.org/10.1016/j.ejpb.2006.09.004] [PMID: 17070678]
[72]
Chittasupho C, Xie SX, Baoum A, Yakovleva T, Siahaan TJ, Berkland CJ. ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells. Eur J Pharm Sci 2009; 37(2): 141-50.
[http://dx.doi.org/10.1016/j.ejps.2009.02.008] [PMID: 19429421]
[73]
Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Karydas AG, Ithakissios DS. PLGA–mPEG nanoparticles of cisplatin: In vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J Control Release 2002; 79(1-3): 123-35.
[http://dx.doi.org/10.1016/S0168-3659(01)00530-2] [PMID: 11853924]
[74]
Danhier F, Lecouturier N, Vroman B, et al. Paclitaxel-loaded PEGylated PLGA-based nanoparticles. in vitro and in vivo evaluation. J Control Release 2009; 133(1): 11-7.
[75]
Agnihotri SM, Vavia PR. Diclofenac-loaded biopolymeric nanosuspensions for ophthalmic application. Nanomed 2009; 5(1): 90-5.
[http://dx.doi.org/10.1016/j.nano.2008.07.003] [PMID: 18823824]
[76]
Araújo J, Vega E, Lopes C, Egea MA, Garcia ML, Souto EB. Effect of polymer viscosity on physicochemical properties and ocular tolerance of FB-loaded PLGA nanospheres. Colloids Surf B Biointerfaces 2009; 72(1): 48-56.
[http://dx.doi.org/10.1016/j.colsurfb.2009.03.028] [PMID: 19403277]
[77]
Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine 2010; 6(2): 324-33.
[http://dx.doi.org/10.1016/j.nano.2009.10.004] [PMID: 19857606]
[78]
Kashi TSJ, Eskandarion S, Esfandyari-Manesh M, et al. Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method. Int J Nanomedicine 2012; 7: 221-34.
[PMID: 22275837]
[79]
Kim SE, Jeon O, Lee JB, et al. Enhancement of ectopic bone formation by bone morphogenetic protein-2 delivery using heparin-conjugated PLGA nanoparticles with transplantation of bone marrow-derived mesenchymal stem cells. J Biomed Sci 2008; 15(6): 771-7.
[http://dx.doi.org/10.1007/s11373-008-9277-4] [PMID: 18773307]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy