Generic placeholder image

Current Applied Polymer Science

Editor-in-Chief

ISSN (Print): 2452-2716
ISSN (Online): 2452-2724

Review Article

Ethylcellulose- An Amazing Polymer For Anticancer Formulations

Author(s): Vishnu Mittal, Priyanka Kriplani* and Kumar Guarve

Volume 6, Issue 2, 2023

Published on: 28 December, 2023

Page: [61 - 75] Pages: 15

DOI: 10.2174/0124522716273253231129104511

Price: $65

Abstract

Background: A cellulose derivative known as ethyl cellulose has gained a lot of interest because of its special qualities and prospective uses in systems for the controlled administration of medications. This study concentrates on patents that examine the use of ethyl cellulose for anticancer preparations. Polymeric drug delivery methods are gaining significant research due to their potential to enhance therapeutic effectiveness, improve bioavailability, and reduce toxicity.

Objective: The primary objective of incorporating ethyl cellulose into anticancer preparations is to develop safe, effective, and targeted therapies for the treatment of cancer. This study aims to provide a comprehensive overview of recent patents that specifically explore the use of ethyl cellulose in the prevention and treatment of different cancers.

Methods: The patent review methodology employed an extensive search across multiple patent databases to identify relevant patents on the utilization of ethyl cellulose in anticancer preparations.

Results: The formulations described in these patents demonstrated sustained and controlled drug release profiles, which resulted in improved therapeutic efficacy while minimizing potential adverse effects. Our comprehensive review revealed multiple patents that utilized ethyl cellulose as a polymer in the creation of anticancer preparations. The studies conducted in these patents showcased enhanced drug release kinetics, improved cellular uptake, and increased anticancer activity compared to conventional formulations.

Conclusion: The analysis of these patents strongly indicates that ethyl cellulose exhibits substantial potential as a versatile polymer for anticancer preparations. The findings strongly suggest that incorporating ethyl cellulose into drug delivery systems can significantly enhance the effectiveness of anticancer drugs, thus benefiting patients.

Graphical Abstract

[1]
Dar LS. Cellulose-based nanopparticles for drug delivery. WO Patent 2012103634A1 2012.
[2]
Shah HS, Nasrullah U, Zaib S, et al. Preparation, characterization, and pharmacological investigation of withaferin-A loaded nanosponges for cancer therapy; in vitro, in vivo and molecular docking studies. Molecules 2021; 26(22): 6990.
[http://dx.doi.org/10.3390/molecules26226990] [PMID: 34834081]
[3]
Hall JN, Coppens AK. Biologically active composition comprising ethylcellulose. WO Patent 2007084212A3 2007.
[4]
Abdellatif AAH, Alsharidah M, Al Rugaie O, Tawfeek HM, Tolba NS. Silver nanoparticle-coated ethyl cellulose inhibits tumor necrosis factor-α of breast cancer cells. Drug Des Devel Ther 2021; 15(13): 2035-46.
[http://dx.doi.org/10.2147/DDDT.S310760] [PMID: 34012256]
[5]
Ahmed MM, Fatima F, Anwer MK, Ansari MJ, Das SS, Alshahrani SM. Development and characterization of ethyl cellulose nanosponges for sustained release of brigatinib for the treatment of non-small cell lung cancer. J Polym Eng 2020; 40(10): 823-32.
[http://dx.doi.org/10.1515/polyeng-2019-0365]
[6]
Morhard R, Nief C, Barrero Castedo C, et al. Development of enhanced ethanol ablation as an alternative to surgery in treatment of superficial solid tumors. Sci Rep 2017; 7(1): 8750.
[http://dx.doi.org/10.1038/s41598-017-09371-2] [PMID: 28821832]
[7]
Yang HS, Ma H. Ethylcellulose formulations and methods of making same. US Patent 20190038540A1 2019.
[8]
Reddy MR, Reddy MH. Preparation and development of capecitabine microspheres for colorectal cancer. J Pharm Sci Res 2017; 9(1): 37.
[9]
Macdonald LP, Rossetto P. Imatinib base, and imatinib mesylate and processes for preparation thereof. EP Patent 2009008A1 2009.
[10]
Kunjiappan S, Theivendren P, Sankaranarayanan M, et al. Design, graph theoretical analysis and bioinformatic studies of proanthocyanidins encapsulated ethyl cellulose nanoparticles for effective anticancer activity. Biomed Phys Eng Express 2019; 5(2): 025004.
[http://dx.doi.org/10.1088/2057-1976/aaf2a4]
[11]
Mazumder R, Allamneni Y, Firdous SM, Parya H, Chowdhury AD. Formulation, development and in-vitro release effects of ethyl cellulose coated pectin microspheres for colon targeting. Asian J Pharm Clin Res 2013; 1(11): 138-44.
[12]
Pan-In P, Wanichwecharungruang S, Hanes J, Kim AJ. Cellular trafficking and anticancer activity of Garcinia mangostana extract-encapsulated polymeric nanoparticles. Int J Nanomedicine 2014; 9: 3677-86.
[PMID: 25125977]
[13]
Ravikumar R, Peng MM, Abidov A, et al. Nanofibrous polymers blend of fluorouracil loaded chitosan-hydroxy ethyl cellulose/poly vinyl alcohol: Synthesis and characterization. Int. J Biosci Biotechnol 2016; 8(2): 295-306.
[14]
Sahu S, Saraf S, Kaur CD, Saraf S. Biocompatible nanoparticles for sustained topical delivery of anticancer phytoconstituent quercetin. Pak J Biol Sci 2013; 16(13): 601-9.
[http://dx.doi.org/10.3923/pjbs.2013.601.609] [PMID: 24505982]
[15]
Anwer MK, Fatima F, Ahmed MM, et al. Abemaciclib-loaded ethylcellulose based nanosponges for sustained cytotoxicity against MCF-7 and MDA-MB-231 human breast cancer cells lines. Saudi Pharm J 2022; 30(6): 726-34.
[http://dx.doi.org/10.1016/j.jsps.2022.03.019] [PMID: 35812154]
[16]
Ahmed MM, Fatima F, Alali A, et al. Ribociclib-loaded ethylcellulose-based nanosponges: Formulation, physicochemical characterization, and cytotoxic potential against breast cancer. Adsorpt Sci Technol 2022; 2022(14): 1-11.
[http://dx.doi.org/10.1155/2022/1922263]
[17]
Nawaz A, Latif MS, Shah MKA, Elsayed TM, Ahmad S, Khan HA. Formulation and characterization of ethyl cellulose-based patches containing curcumin-chitosan nanoparticles for the possible management of inflammation via skin delivery. Gels 2023; 9(3): 201.
[http://dx.doi.org/10.3390/gels9030201] [PMID: 36975650]
[18]
Dang T, Cui Y, Chen Y, Meng X, Tang B, Wu J. Preparation and characterization of colon-specific microspheres of diclofenac for colorectal cancer. Trop J Pharm Res 2015; 14(9): 1541-7.
[http://dx.doi.org/10.4314/tjpr.v14i9.1]
[19]
Shi M, Sun P, Zhao Y. Formulation hvaluronan dissolving microneedles for suppressing metastasis of cutaneous melanoma 2023; 29.
[20]
Muench J, Jarvis K, Gray M, et al. Implementing a team-based SBIRT model in primary care clinics. J Subst Use 2015; 20(2): 106-12.
[http://dx.doi.org/10.3109/14659891.2013.866176]
[21]
Oliveira MB, da Silva JB, Montanha MC, Kimura E, Diniz A, Bruschi ML. Design and characterization of mucoadhesive gelatin-ethylcellulose microparticles for the delivery of curcumin to the bladder. Curr Drug Deliv 2018; 15(8): 1112-22.
[http://dx.doi.org/10.2174/1567201815666180503121043] [PMID: 29732969]
[22]
Li C, Wallace S. Polymer-drug conjugates: Recent development in clinical oncology. Adv Drug Deliv Rev 2008; 60(8): 886-98.
[http://dx.doi.org/10.1016/j.addr.2007.11.009] [PMID: 18374448]
[23]
Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003; 2(5): 347-60.
[http://dx.doi.org/10.1038/nrd1088] [PMID: 12750738]
[24]
Ringsdorf H. Structure and properties of pharmacologically active polymers. J Polym Sci Polym Symp 1975; 51(1): 135-53.
[http://dx.doi.org/10.1002/polc.5070510111]
[25]
Yamaoka T, Tabata Y, Ikada Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci 1994; 83(4): 601-6.
[http://dx.doi.org/10.1002/jps.2600830432] [PMID: 8046623]
[26]
Seymour LW, Duncan R, Strohalm J. Kopeček J. Effect of molecular weight (Mw) of N-(2-hydroxypropyl)methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats. J Biomed Mater Res 1987; 21(11): 1341-58.
[http://dx.doi.org/10.1002/jbm.820211106] [PMID: 3680316]
[27]
Duncan R. Development of HPMA copolymer–anticancer conjugates: Clinical experience and lessons learnt. Adv Drug Deliv Rev 2009; 61(13): 1131-48.
[http://dx.doi.org/10.1016/j.addr.2009.05.007] [PMID: 19699249]
[28]
Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46(12 Pt 1): 6387-92.
[PMID: 2946403]
[29]
Hashizume H, Baluk P, Morikawa S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 2000; 156(4): 1363-80.
[http://dx.doi.org/10.1016/S0002-9440(10)65006-7] [PMID: 10751361]
[30]
Hobbs SK, Monsky WL, Yuan F, et al. Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proc Natl Acad Sci 1998; 95(8): 4607-12.
[http://dx.doi.org/10.1073/pnas.95.8.4607] [PMID: 9539785]
[31]
Greish K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Cancer nanotechnology. Methods Protoc 2010; 25-37.
[32]
Greish K. Enhanced permeability and retention of macromolecular drugs in solid tumors: A royal gate for targeted anticancer nanomedicines. J Drug Target 2007; 15(7-8): 457-64.
[http://dx.doi.org/10.1080/10611860701539584] [PMID: 17671892]
[33]
Yuan F, Dellian M, Fukumura D, et al. Vascular permeability in a human tumor xenograft: Molecular size dependence and cutoff size. Cancer Res 1995; 55(17): 3752-6.
[PMID: 7641188]
[34]
Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clin Pharmacokinet 2003; 42(5): 419-36.
[http://dx.doi.org/10.2165/00003088-200342050-00002] [PMID: 12739982]
[35]
Drummond DC, Noble CO, Hayes ME, Park JW, Kirpotin DB. Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development. J Pharm Sci 2008; 97(11): 4696-740.
[http://dx.doi.org/10.1002/jps.21358] [PMID: 18351638]
[36]
Lindner LH, Hossann M. Factors affecting drug release from liposomes. Curr Opin Drug Discov Devel 2010; 13(1): 111-23.
[PMID: 20047152]
[37]
Hamaguchi T, Kato K, Yasui H, et al. A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br J Cancer 2007; 97(2): 170-6.
[http://dx.doi.org/10.1038/sj.bjc.6603855] [PMID: 17595665]
[38]
Hamaguchi T, Matsumura Y, Suzuki M, et al. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer 2005; 92(7): 1240-6.
[http://dx.doi.org/10.1038/sj.bjc.6602479] [PMID: 15785749]
[39]
Lavasanifar A, Samuel J, Kwon GS. Poly(ethylene oxide)-block-poly(l-amino acid) micelles for drug delivery. Adv Drug Deliv Rev 2002; 54(2): 169-90.
[http://dx.doi.org/10.1016/S0169-409X(02)00015-7] [PMID: 11897144]
[40]
Ahmed F, Pakunlu RI, Brannan A, Bates F, Minko T, Discher DE. Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J Control Release 2006; 116(2): 150-8.
[http://dx.doi.org/10.1016/j.jconrel.2006.07.012] [PMID: 16942814]
[41]
Katz JS, Levine DH, Davis KP, Bates FS, Hammer DA, Burdick JA. Membrane stabilization of biodegradable polymersomes. Langmuir 2009; 25(8): 4429-34.
[http://dx.doi.org/10.1021/la803769q] [PMID: 19239232]
[42]
Svenson S, Tomalia DA. Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev 2012; 64: 102-15.
[http://dx.doi.org/10.1016/j.addr.2012.09.030] [PMID: 16305813]
[43]
Farahan M, Hamby MJ, Flethcer LT. Treatment of cancer, inflammatory diseases and autoimmune diseases. US Patent 20230149399A1, 2023.
[44]
Wu H. Method for researching regulation and control mechanism of primary breast cancer range on distant metastasis. CN Patent 116042835A 2023.
[45]
Latif MS, Azad AK, Nawaz A, et al. Ethyl cellulose and hydroxypropyl methyl cellulose blended methotrexate-loaded transdermal patches: in vitro and ex vivo. Polymers 2021; 13(20): 3455.
[http://dx.doi.org/10.3390/polym13203455] [PMID: 34685214]
[46]
Tekade RK, Kumar PV, Jain NK. Dendrimers in oncology: An expanding horizon. Chem Rev 2009; 109(1): 49-87.
[http://dx.doi.org/10.1021/cr068212n] [PMID: 19099452]
[47]
Tomalia DA, Reyna LA, Svenson S. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 2007; 35(Pt 1): 61-7.
[http://dx.doi.org/10.1042/BST0350061]
[48]
Misra R, Acharya S, Sahoo SK. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov Today 2010; 15(19-20): 842-50.
[http://dx.doi.org/10.1016/j.drudis.2010.08.006] [PMID: 20727417]
[49]
Abdellatif AAH, Alturki HNH, Tawfeek HM. Different cellulosic polymers for synthesizing silver nanoparticles with antioxidant and antibacterial activities. Sci Rep 2021; 11(1): 84.
[http://dx.doi.org/10.1038/s41598-020-79834-6] [PMID: 33420131]
[50]
Kolarova K, Samec D, Kvitek O, Reznickova A, Rimpelova S, Svorcik V. Preparation and characterization of silver nanoparticles in methyl cellulose matrix and their antibacterial activity. Jpn J Appl Phys 2017; 56(6S1): 06GG09.
[http://dx.doi.org/10.7567/JJAP.56.06GG09]
[51]
Elbakry A, Zaky A, Liebl R, Rachel R, Goepferich A, Breunig M. Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano Lett 2009; 9(5): 2059-64.
[http://dx.doi.org/10.1021/nl9003865] [PMID: 19331425]
[52]
Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, Hassan YA, Fathalla D. Transfersomal gel nanocarriers for enhancement the permeation of lornoxicam. J Drug Deliv Sci Technol 2020; 56: 101540.
[http://dx.doi.org/10.1016/j.jddst.2020.101540]
[53]
Ong HX, Traini D, Cipolla D, et al. Liposomal nanoparticles control the uptake of ciprofloxacin across respiratory epithelia. Pharm Res 2012; 29(12): 3335-46.
[http://dx.doi.org/10.1007/s11095-012-0827-0] [PMID: 22833052]
[54]
Said-Elbahr R, Nasr M, Alhnan MA, Taha I, Sammour O. Nebulizable colloidal nanoparticles co-encapsulating a COX-2 inhibitor and a herbal compound for treatment of lung cancer. Eur J Pharm Biopharm 2016; 103: 1-12.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.025] [PMID: 27020529]
[55]
Hebeish AA, El-Rafie MH, Abdel-Mohdy FA, Abdel-Halim ES, Emam HE. Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydr Polym 2010; 82(3): 933-41.
[http://dx.doi.org/10.1016/j.carbpol.2010.06.020]
[56]
Goia DV. Preparation and formation mechanisms of uniform metallic particles in homogeneous solutions. J Mater Chem 2004; 14(4): 451-8.
[http://dx.doi.org/10.1039/b311076a]
[57]
Almutairy BK, Alshetaili A, Alali AS, Ahmed MM, Anwer MK, Aboudzadeh MA. Design of olmesartan medoxomil-loaded nanosponges for hypertension and lung cancer treatments. Polymers 2021; 13(14): 2272.
[http://dx.doi.org/10.3390/polym13142272] [PMID: 34301030]
[58]
El-Habashy SE, Allam AN, El-Kamel AH. Ethyl cellulose nanoparticles as a platform to decrease ulcerogenic potential of piroxicam: formulation and in vitro/in vivo evaluation. Int J Nanomedicine 2016; 11: 2369-80.
[PMID: 27307735]
[59]
Wasilewska K, Winnicka K. Ethylcellulose–a pharmaceutical excipient with multidirectional application in drug dosage forms development. Materials 2019; 12(20): 3386.
[http://dx.doi.org/10.3390/ma12203386] [PMID: 31627271]
[60]
Volmajer V, Simona V, Lidija S. Effects of ultrasound irradiation on the preparation of ethyl cellulose nanocapsules containing spirooxazine dye. J Nanomater 2017 2017.
[61]
Afonso BS, Azevedo AG, Gonçalves C, et al. Bio-based nanoparticles as a carrier of β-carotene: Production, characterisation and in vitro gastrointestinal digestion. Molecules 2020; 25(19): 4497.
[http://dx.doi.org/10.3390/molecules25194497] [PMID: 33008004]
[62]
Božič M, Elschner T, Tkaučič D. Effect of different surface active polysaccharide derivatives on the formation of ethyl cellulose particles by the emulsion-solvent evaporation method. Cellulose 2018; 25(12): 6901-22.
[http://dx.doi.org/10.1007/s10570-018-2062-2]
[63]
Srikar G, Rani AP. Study on influence of polymer and surfactant on in vitro performance of biodegradable aqueous-core nanocapsules of tenofovirdisoproxil fumarate by response surface methodology. Braz J Pharm Sci 2019; 55: e18736.
[http://dx.doi.org/10.1590/s2175-97902019000118736]
[64]
Dorati R, DeTrizio A, Spalla M, et al. Gentamicin Sulfate PEG-PLGA/PLGA-H nanoparticles: Screening design and antimicrobial effect evaluation toward clinic bacterial isolates. Nanomaterials 2018; 8(1): 37.
[http://dx.doi.org/10.3390/nano8010037] [PMID: 29329209]
[65]
Ahmed M, Anwer MK, Fatima F, et al. Development of ethylcellulose based nanosponges of apremilast: in vitro and in vivo pharmacokinetic evaluation. Lat Am J Pharm 2020; 39(7): 1292-9.
[66]
Jongkhumkrong J, Thaveesangsakulthai I, Sukbangnop W, et al. Helicene-hydrazide encapsulated ethyl cellulose as a potential fluorescence sensor for highly specific detection of nonanal in aqueous solutions and a proof-of-concept clinical study in lung fluid. ACS Appl Mater Interfaces 2022; 14(44): 49495-507.
[http://dx.doi.org/10.1021/acsami.2c11064] [PMID: 36301188]
[67]
Kingham TP, Alatise OI, Vanderpuye V, et al. Treatment of cancer in sub-Saharan Africa. Lancet Oncol 2013; 14(4): e158-67.
[http://dx.doi.org/10.1016/S1470-2045(12)70472-2] [PMID: 23561747]
[68]
Goldberg SN, Gazelle GS, Mueller PR. Thermal ablation therapy for focal malignancy: A unified approach to underlying principles, techniques, and diagnostic imaging guidance. AJR Am J Roentgenol 2000; 174(2): 323-31.
[http://dx.doi.org/10.2214/ajr.174.2.1740323] [PMID: 10658699]
[69]
Burns RA, Klaunig JE, Shulok JR, Davis WJ, Goldblatt PJ. Tumor-localizing and photosensitizing properties of hematoporphyrin derivative in hamster buccal pouch carcinoma. Oral Surg Oral Med Oral Pathol 1986; 61(4): 368-72.
[http://dx.doi.org/10.1016/0030-4220(86)90421-4] [PMID: 2939386]
[70]
Liu Y, Yin T, Feng Y, et al. Mammalian models of chemically induced primary malignancies exploitable for imaging-based preclinical theragnostic research. Quant Imaging Med Surg 2015; 5(5): 708-29.
[PMID: 26682141]
[71]
Kuang M, Lu MD, Xie XY, et al. Ethanol ablation of hepatocellular carcinoma Up to 5.0 cm by using a multipronged injection needle with high-dose strategy. Radiology 2009; 253(2): 552-61.
[http://dx.doi.org/10.1148/radiol.2532082021] [PMID: 19709992]
[72]
Ebara M, Okabe S, Kita K, et al. Percutaneous ethanol injection for small hepatocellular carcinoma: Therapeutic efficacy based on 20-year observation. J Hepatol 2005; 43(3): 458-64.
[http://dx.doi.org/10.1016/j.jhep.2005.03.033] [PMID: 16005538]
[73]
Sannier K, Dompmartin A, Théron J, et al. A new sclerosing agent in the treatment of venous malformations. Study on 23 cases. Interv Neuroradiol 2004; 10(2): 113-27.
[http://dx.doi.org/10.1177/159101990401000203] [PMID: 20587223]
[74]
Dompmartin A, Vikkula M, Boon LM. Venous malformation: update on aetiopathogenesis, diagnosis and management. Phlebology 2010; 25(5): 224-35.
[http://dx.doi.org/10.1258/phleb.2009.009041] [PMID: 20870869]
[75]
Rao M, Harika K, Sunitha K, Kumar P, Maheshwar K. Basic concepts of cellulose polymers- A comprehensive review. Arch Pharm Pract 2012; 3(3): 202.
[http://dx.doi.org/10.4103/2045-080X.116598]
[76]
Ethocel premium polymers for pharmaceutical applications: Proven organosoluble polymers for controlled release coatings, microencapsulation, granulation and flavor markings Form No: 198-02002 1998; 1098.
[77]
Kent DJ, Rowe RC. Solubility studies on ethyl cellulose used in film coating. J Pharm Pharmacol 1978; 30(12): 808-10.
[PMID: 32255]
[78]
Rowe RC. The prediction of compatibility/incompatibility in blends of ethyl cellulose with hydroxypropyl methylcellulose or hydroxypropyl cellulose using 2-dimensional solubility parameter maps. J Pharm Pharmacol 2011; 38(3): 214-5.
[http://dx.doi.org/10.1111/j.2042-7158.1986.tb04546.x] [PMID: 2871157]
[79]
Sakellariou P, Rowe RC, White EFT. The solubility parameters of some cellulose derivatives and polyethylene glycols used in tablet film coating. Int J Pharm 1986; 31(1-2): 175-7.
[http://dx.doi.org/10.1016/0378-5173(86)90229-2]
[80]
Arwidsson H, Nicklasson M. Application of intrinsic viscosity and interaction constant as a formulation tool for film coating. I. Studies on ethyl cellulose 10 cps in organic solvents. Int J Pharm 1989; 56(2): 187-93.
[http://dx.doi.org/10.1016/0378-5173(89)90013-6]
[81]
Singam A, Killi N, Patel PR, Gundloori RVN. PEGylated ethyl cellulose micelles as a nanocarrier for drug delivery. RSC Advances 2021; 11(49): 30532-43.
[http://dx.doi.org/10.1039/D1RA04242D] [PMID: 35479870]
[82]
Zhao Q, Han B, Wang Z, Gao C, Peng C, Shen J. Hollow chitosan-alginate multilayer microcapsules as drug delivery vehicle: doxorubicin loading and in vitro and in vivo studies. Nanomedicine 2007; 3(1): 63-74.
[http://dx.doi.org/10.1016/j.nano.2006.11.007] [PMID: 17379170]
[83]
Wu W-JLT-L, Wu TL. Modification of the initial release of a highly water-soluble drug from ethyl cellulose microspheres. J Microencapsul 1999; 16(5): 639-46.
[http://dx.doi.org/10.1080/026520499288825] [PMID: 10499843]
[84]
Li XW, Yang TF. Fabrication of ethyl cellulose microspheres: Chitosan solution as a stabilizer. Korean J Chem Eng 2008; 25(5): 1201-4.
[http://dx.doi.org/10.1007/s11814-008-0198-8]
[85]
Buckanovich JR, Coukos G, Facciabene A. Methods and compositions for treating solid tumors and enhancing tumor vaccines. US Patent 20190375845A1, 2019.
[86]
Hamdy A, Rothbaum W, Lzumii R, et al. BTK inhibitors to treat solid tumors through modulation of the tumor microenvironment. US Patent 20190381044A1 2021.
[87]
Chopra SK, Martino V, Martino GD, et al. Combination therapy to treat malignant tumors. JP Patent 6895956B2 2021.
[88]
Hu Lifu. Combined marker for colorectal cancer detection and application thereof. CN Patent 116121387A 2023.
[89]
Nath B, Kanta Nath L, Mazumder B, Kumar P, Sharma N, Pratap Sahu B. Preparation and characterization of salbutamol sulphate loaded ethyl cellulose microspheres using water-in-oil-oil emulsion technique. Iran J Pharm Res 2010; 9(2): 97-105.
[PMID: 24363714]
[90]
Wu H, Ding Z, Hu D, et al. Central role of lactic acidosis in cancer cell resistance to glucose deprivation-induced cell death. J Pathol 2012; 227(2): 189-99.
[http://dx.doi.org/10.1002/path.3978] [PMID: 22190257]
[91]
Chao M, Wu H, Jin K, et al. A nonrandomized cohort and a randomized study of local control of large hepatocarcinoma by targeting intratumoral lactic acidosis. eLife 2016; 5: e15691.
[http://dx.doi.org/10.7554/eLife.15691] [PMID: 27481188]
[92]
Wu JH, Wang XJ, Li SJ, et al. Preparation of ethyl cellulose microspheres for sustained release of sodium bicarbonate. Iran J Pharm Res 2019; 18(2): 556-68.
[PMID: 31531041]
[93]
Chourasia MK, Jain SK. Pharmaceutical approaches to colon targeted drug delivery systems. J Pharm Pharm Sci 2003; 6(1): 33-66.
[PMID: 12753729]
[94]
Guruprasad S. Formulation and invitro evaluation of sustained release tablets of vildagliptin using natural polymers. Doctoral dissertation, JKK Nattraja College of Pharmacy, Kumarapalayam 2022.
[95]
Omwancha WS, Mallipeddi R, Valle BL, Neau SH. Chitosan as a pore former in coated beads for colon specific drug delivery of 5-ASA. Int J Pharm 2013; 441(1-2): 343-51.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.022] [PMID: 23200955]
[96]
Vishal Gupta N, Gowda D, Balamuralidhara V, Mohammed Khan S. Formulation and evaluation of olanzapine matrix pellets for controlled release. Daru 2011; 19(4): 249-56.
[PMID: 22615665]
[97]
Steckel H, Mindermann-Nogly F. Production of chitosan pellets by extrusion/spheronization. Eur J Pharm Biopharm 2004; 57(1): 107-14.
[http://dx.doi.org/10.1016/S0939-6411(03)00156-5] [PMID: 14729086]
[98]
He W, Du Q, Cao D, Xiang B, Fan L. Study on colon-specific pectin/ethylcellulose film-coated 5-fluorouracil pellets in rats. Int J Pharm 2008; 348(1-2): 35-45.
[http://dx.doi.org/10.1016/j.ijpharm.2007.07.005] [PMID: 17697758]
[99]
Paradkar M, Amin J. Formulation development and evaluation of colon targeted delayed release methotrexate pellets for the treatment of colonic carcinoma. Braz J Pharm Sci 2019; 54.
[100]
Kosaraju SL. Colon targeted delivery systems: Review of polysaccharides for encapsulation and delivery. Crit Rev Food Sci Nutr 2005; 45(4): 251-8.
[http://dx.doi.org/10.1080/10408690490478091] [PMID: 16047493]
[101]
Chaurasia M, Chourasia MK, Jain NK, et al. Cross-linked guar gum microspheres: A viable approach for improved delivery of anticancer drugs for the treatment of colorectal cancer. AAPS PharmSciTech 2006; 7(3): E143-51.
[http://dx.doi.org/10.1208/pt070374] [PMID: 17025254]
[102]
Shabaraya AR, Narayanacharyulu R. Design and evaluation of chitosan microspheres of metoprolol tartrate for sustained release. Indian J Pharm Sci 2003; 65(3): 250.
[103]
Grey JK, Aslak S, Erik GJ, Clem BB. Use of 5-aminolevulinic acid and derivatives in a solid form for photodynamic treatment and diagnosis. CN Patent 104306968A, 2015.
[104]
Jingcai C, Longgui W, Renwei Q, Haiya J, Chengjuan W. Study on colon-specific pectin/ethylcellulose film-coated 5-fluorouracil pellets in rats. Int J Pharm 2010; 348(1-2): 35-45.
[105]
Zhang CD, Dong LD, Chen L. Aimin Liao Dandan Reagent for diagnosing or assisting in diagnosing bladder cancer and detection kit. CN Patent 116004831A 2023.
[106]
Xuanling X, Minggen Y, Jian Z, Mengyu L, Sihan Y. Method, device, medium and equipment for classifying skin cancer with interpretability. CN Patent 116129199A 2022.
[107]
Semalty A, Semalty M, Singh D, Rawat M. Development and physicochemical evaluation of pharmacosomes of diclofenac. Acta Pharm 2009; 59(3): 335-44.
[http://dx.doi.org/10.2478/v10007-009-0023-x] [PMID: 19819829]
[108]
Gupta BK. Kinetics of release of pentazocine hydrochloride from mictropellets of ethylcellulose and eudragit RL-100. Indian J Pharm Sci 1997; 59(4): 181.
[109]
Nath B, Nath LK, Mazumdar B, Sharma N, Sarkar M. Design and development of metformin hcl floating microcapsules using two polymers of different permeability characteristics. Int J Pharm Sci Nanotechnol 2009; 2(3): 627-37. [IJPSN
[http://dx.doi.org/10.37285/ijpsn.2009.2.3.6]
[110]
Kozono S, Nobumasa H, Kondou S. Stomach cancer detection kit or device, and detection. US Patent 11486009B2 2022.
[111]
Too HP, Zhou L, Zou R, et al. Micro rna biomarker for diagnosing stomach cancer. JP Patent 2022188053A, 2022.
[112]
Basit HM, Mohd Amin MCI, Ng SF, Katas H, Shah SU, Khan NR. Formulation and evaluation of microwave-modified chitosan-curcumin nanoparticles—A promising nanomaterials platform for skin tissue regeneration applications following burn wounds. Polymers 2020; 12(11): 2608.
[http://dx.doi.org/10.3390/polym12112608] [PMID: 33171959]
[113]
Duarte ARC, Gordillo MD, Cardoso MM, Simplício AL, Duarte CMM. Preparation of ethyl cellulose/methyl cellulose blends by supercritical antisolvent precipitation. Int J Pharm 2006; 311(1-2): 50-4.
[http://dx.doi.org/10.1016/j.ijpharm.2005.12.010] [PMID: 16423476]
[114]
Cruceriu D, Baldasici O, Balacescu O, Berindan-Neagoe I. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: Molecular insights and therapeutic approaches. Cell Oncol (Dordr) 2020; 43(1): 1-18.
[http://dx.doi.org/10.1007/s13402-019-00489-1] [PMID: 31900901]
[115]
Singh D, Soni GC, Prajapati SK. Recent advances in nanosponges as drug delivery system: a review. Eur J Pharm Res 2016; 3(10): 364-71.
[116]
Crans DC, Henry L, Cardiff G, Posner BI. Developing vanadium as an antidiabetic or anticancer drug: A clinical and historical perspective. Met Ions Life Sci 2019; 19: 203-30.
[http://dx.doi.org/10.1515/9783110527872-008] [PMID: 30855109]
[117]
ClinicalTrials.gov, US National Library of Medicine Available from: https://www.clinicaltrials.gov
[118]
Douglas AL, Sanjay K, Randy ZD, et al. Formulations of enzalutamide. JP Patent 2021178871A 2021.
[119]
Sharp ZD, Strong ZR, Galvan V, Oddo S, Wheeler ZD. Inhibition of mammalian target of rapamycin. US Patent 20220023230A1, 2022.
[120]
Mannick J, Glass D, Murphy L. Low, immune enhancing, dose mtor inhibitors and uses thereof. TWI Patent 679976B, 2019.
[121]
Jeffrey B. The oral formulations of cytidine analog and its using method. CN Patent 102099018B 2016.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy