Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

nnUNet for Automatic Kidney and Cyst Segmentation in Autosomal Dominant Polycystic Kidney Disease

Author(s): Chetana Krishnan, Emma Schmidt, Ezinwanne Onuoha, Michal Mrug, Carlos E. Cardenas and Harrison Kim*

Volume 20, 2024

Published on: 30 January, 2024

Article ID: e15734056272767 Pages: 9

DOI: 10.2174/0115734056272767231130110017

Price: $65

Abstract

Background: Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a genetic disorder that causes uncontrolled kidney cyst growth, leading to kidney volume enlargement and renal function loss over time. Total kidney volume (TKV) and cyst burdens have been used as prognostic imaging biomarkers for ADPKD.

Objective: This study aimed to evaluate nnUNet for automatic kidney and cyst segmentation in T2-weighted (T2W) MRI images of ADPKD patients.

Methods: 756 kidney images were retrieved from 95 patients in the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) cohort (95 patients × 2 kidneys × 4 follow-up scans). The nnUNet model was trained, validated, and tested on 604, 76, and 76 images, respectively. In contrast, all images of each patient were exclusively assigned to either the training, validation, or test sets to minimize evaluation bias. The kidney and cyst regions defined using a semi-automatic method were employed as ground truth. The model performance was assessed using the Dice Similarity Coefficient (DSC), the intersection over union (IoU) score, and the Hausdorff distance (HD).

Results: The test DSC values were 0.96±0.01 (mean±SD) and 0.90±0.05 for kidney and cysts, respectively. Similarly, the IoU scores were 0.91± 0.09 and 0.81±0.06, and the HD values were 12.49±8.71 mm and 12.04±10.41 mm, respectively, for kidney and cyst segmentation.

Conclusion: The nnUNet model is a reliable tool to automatically determine kidney and cyst volumes in T2W MRI images for ADPKD prognosis and therapy monitoring.


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy