Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Mini-Review Article

Cavity Disinfection with Natural Agents and their Efficacy: A Review on Recent Literature

Author(s): Sreejeeta Dey and Seema Deshmukh*

Volume 22, Issue 3, 2024

Published on: 25 January, 2024

Article ID: e250124226250 Pages: 9

DOI: 10.2174/0122113525285948231215115207

Price: $65

Abstract

The success of a dental restoration can be altered by the amount of residual bacteria present under the cavity which over time cause deterioration of adhesive cement by microleakage or secondary caries. Cavity disinfectant application on the cavity walls performs a cleansing action to decrease the bacterial load and improve the longevity of restorations. Although a wide variety of such chemical disinfectants have been in use, their cytotoxic effects have led to the increasing popularity of natural agents. These materials possess antimicrobial, antioxidant and anti-inflammatory properties, which effectively disinfect cavity walls while, at the same time, being cheaper, less toxic, and more patient-friendly.

Some of these agents have also been proven to improve the bond strength of resin to dentin by preventing collagen degradation and MMP inhibition. Propolis, aloe vera, chitosan, green tea, liquorice etc., are derived from parts of plants or animals and have been tested to be efficacious and, in some cases, superior to chemical alternatives without any erosive effect on dentin.

Although there is a lack of enough In vivo evidence to advocate the use of these products as an adjunct in dental therapy, recent studies have yielded promising results, which increases the scope for future clinical research. This review aims to highlight the properties and effectiveness of a few of such natural agents as potential cavity disinfectants.

Graphical Abstract

[1]
Pitts, N.B.; Twetman, S.; Fisher, J.; Marsh, P.D. Understanding dental caries as a non-communicable disease. Br. Dent. J., 2021, 231(12), 749-753.
[http://dx.doi.org/10.1038/s41415-021-3775-4] [PMID: 34921271]
[2]
Ritter, A.V.; Boushell, L.W.; Walter, R. Sturdevant’s art and science of operative dentistry, 7th ed; ELSEVIER: USA, 2019.
[3]
Coelho, A.; Vilhena, L.; Antunes, M.; Amaro, I.; Paula, A.; Marto, C.M.; Saraiva, J.; Ferreira, M.M.; Carrilho, E.; Ramalho, A. Effect of different cavity disinfectants on adhesion to dentin of permanent teeth. J. Funct. Biomater., 2022, 13(4), 209.
[http://dx.doi.org/10.3390/jfb13040209] [PMID: 36412850]
[4]
Bin-Shuwaish, M.S. Effects and effectiveness of cavity disinfectants in operative dentistry: A literature review. J. Contemp. Dent. Pract., 2016, 17(10), 867-879.
[http://dx.doi.org/10.5005/jp-journals-10024-1946] [PMID: 27794161]
[5]
Schwendicke, F.; Dörfer, C.E.; Paris, S. Incomplete caries removal: A systematic review and meta-analysis. J. Dent. Res., 2013, 92(4), 306-314.
[http://dx.doi.org/10.1177/0022034513477425] [PMID: 23396521]
[6]
Maltz, M.; Henz, S.L.; de Oliveira, E.F.; Jardim, J.J. Conventional caries removal and sealed caries in permanent teeth: A microbiological evaluation. J. Dent., 2012, 40(9), 776-782.
[http://dx.doi.org/10.1016/j.jdent.2012.05.011] [PMID: 22664566]
[7]
Rahman, M.M.; Padmanabhan, V.; Islam, M.S.; Riadh, Z.; Al-Ajeeli, D.T.A.; Hossain, A. Tracing of microbes in prepared cavity following different minimally invasive caries removal protocols. J. Contemp. Dent. Pract., 2023, 24(9), 674-678.
[http://dx.doi.org/10.5005/jp-journals-10024-3569]
[8]
Neves, A.A.; Coutinho, E.; De Munck, J.; Van Meerbeek, B. Caries-removal effectiveness and minimal-invasiveness potential of caries-excavation techniques: A micro-CT investigation. J. Dent., 2011, 39(2), 154-162.
[http://dx.doi.org/10.1016/j.jdent.2010.11.006] [PMID: 21111770]
[9]
Gurbuz, T.; Sengul, F.; Demirci, T.; Coruh, M. Scanning electron microscopic analyses of the effects of different disinfection methods on dentinal structure. J. Int. Med. Res., 2013, 6(2), 65-68.
[10]
Meiers, J.C.; Kresin, J.C. Cavity disinfectants and dentin bonding. Oper. Dent., 1996, 21(4), 153-159.
[PMID: 8957905]
[11]
Elkassas, D.W.; Fawzi, E.M.; El Zohairy, A. The effect of cavity disinfectants on the micro-shear bond strength of dentin adhesives. Eur. J. Dent., 2014, 8(2), 184-190.
[http://dx.doi.org/10.4103/1305-7456.130596] [PMID: 24966768]
[12]
Contaldo, M.; D’Ambrosio, F.; Ferraro, G.A.; Di Stasio, D.; Di Palo, M.P.; Serpico, R.; Simeone, M. Antibiotics in dentistry: A narrative review of the evidence beyond the myth. Int. J. Environ. Res. Public Health, 2023, 20(11), 6025.
[http://dx.doi.org/10.3390/ijerph20116025] [PMID: 37297629]
[13]
Neelakantan, P.; Jagannathan, N. Ethnopharmacological approach in endodontic treatment: A focused review. Int J Drug Dev Res, 2011, 3(4), 68-77.
[14]
Deshmukh, S. Smear Layer Removal Efficacy of Natural Root Canal Irrigants.A Literature Review. J. Clin. Diagnostic Res., 2022.
[15]
Wagh, V.D. Propolis: A wonder bees product and its pharmacological potentials. Adv. Pharmacol. Sci., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/308249] [PMID: 24382957]
[16]
Pobiega, K. Kraśniewska, K.; Derewiaka, D.; Gniewosz, M. Comparison of the antimicrobial activity of propolis extracts obtained by means of various extraction methods. J. Food Sci. Technol., 2019, 56(12), 5386-5395.
[http://dx.doi.org/10.1007/s13197-019-04009-9] [PMID: 31749486]
[17]
Saavedra, N.; Barrientos, L.; Herrera, C.L.; Alvear, M.; Montenegro, G.; Salazar, L.A. Effect of Chilean propolis on cariogenic bacteria Lactobacillus fermentum. Cienc. Investig. Agrar., 2011, 38(1), 117-125.
[18]
Akca, A.E. Akca, G.; Topçu, F.T.; Macit, E.; Pikdöken, L.; Özgen, I.Ş. The comparative evaluation of the antimicrobial effect of propolis with chlorhexidine against oral pathogens: An in vitro study. BioMed Res. Int., 2016, 2016, 1-8.
[http://dx.doi.org/10.1155/2016/3627463] [PMID: 26949701]
[19]
Perote, L.C.; Kamozaki, M.B.; Gutierrez, N.C.; Tay, F.R.; Pucci, C.R. Effect of matrix metalloproteinase-inhibiting solutions and aging methods on dentin bond strength. J. Adhes. Dent., 2015, 17(4), 347-352.
[PMID: 26295068]
[20]
Celerino de Moraes Porto, I.C.; Chaves Cardoso de Almeida, D.; Vasconcelos Calheiros de Oliveira, C. G.; Sampaio Donato, T.S.; Moreira Nunes, L.; Gomes do Nascimento, T.; dos Santos Oliveira, J.M.; Batista da Silva, C.; Barbosa dos Santos, N.; de Alencar e Silva Leite, M.L.; Diniz Basílio-Júnior, I.; Braga Dornelas, C.; Barnabé Escodro, P.; da Silva Fonseca, E.J.; Umeko Kamiya, R. Mechanical and aesthetics compatibility of Brazilian red propolis micellar nanocomposite as a cavity cleaning agent. BMC Complement. Altern. Med., 2018, 18(1), 219.
[http://dx.doi.org/10.1186/s12906-018-2281-y] [PMID: 30021632]
[21]
Uloopi, K.S.; Mohan, P.V.M.U.; Vinay, C.; Rao, R.C. In vivo comparison of cavity disinfection efficacy with APF gel, Propolis, Diode Laser, and 2% chlorhexidine in primary teeth. Contemp. Clin. Dent., 2016, 7(1), 45-50.
[http://dx.doi.org/10.4103/0976-237X.177110] [PMID: 27041900]
[22]
Prabhakar, A.R.; Karuna, Y.M.; Yavagal, C.; Deepak, B.M. Cavity disinfection in minimally invasive dentistry - comparative evaluation of Aloe vera and Propolis: A randomized clinical trial. Contemp. Clin. Dent., 2015, 6(5)(Suppl. 1), 24.
[http://dx.doi.org/10.4103/0976-237X.152933] [PMID: 25821369]
[23]
Mahabala; Karuna, Yarmunja Ethanolic extracts of Aloe vera and Propolis as cavity disinfectants: An in vitro study. Dent. Hypotheses, 2016, 7(2), 61.
[http://dx.doi.org/10.4103/2155-8213.183769]
[24]
Sánchez, M.; González-Burgos, E.; Iglesias, I.; Gómez-Serranillos, M.P. Pharmacological update properties of Aloe vera and its major active constituents. Molecules, 2020, 25(6), 1324.
[http://dx.doi.org/10.3390/molecules25061324] [PMID: 32183224]
[25]
Kudalkar, M.; Nayak, A.; Bhat, K.; Nayak, R. Effect of Azadirachta indica (Neem) and Aloe vera as compared to subantimicrobial dose doxycycline on matrix metalloproteinases (MMP)-2 and MMP-9: An In vitro study. Ayu, 2014, 35(1), 85-89.
[http://dx.doi.org/10.4103/0974-8520.141947] [PMID: 25364206]
[26]
Jandial, U.A.; Sinha, D.J.; Jaiswal, N.; Singh, U.; Goel, S.; Singh, O. Comparative evaluation of the effect of different disinfecting agents on bond strength of composite resin to dentin using two-step self-etch and etch and rinse bonding systems: An In vitro study. J. Conserv. Dent., 2018, 21(4), 424-427.
[http://dx.doi.org/10.4103/JCD.JCD_66_17] [PMID: 30122825]
[27]
Mondal, P. Role of aloe vera and its clinical efficiency on dental caries: A systematic review. IJMDES, 2022, 1(6), 85-89.
[28]
Patri, G.; Sahu, A. Role of herbal agents - Tea tree oil and aloe vera as cavity disinfectant adjuncts in minimally invasive dentistry- An in vivo comparative study. J. Clin. Diagn. Res., 2017, 11(7), DC05-DC09.
[http://dx.doi.org/10.7860/JCDR/2017/27598.10147] [PMID: 28892888]
[29]
Jaiswal, N.; Sinha, D.J.; Vasudeva, A.; Garg, P.; Tyagi, S.; Chandra, P. Comparative evaluation of the effect of chlorhexidine and Aloe barbadensis Miller (Aloe vera) on dentin stabilization using shear bond testing. J. Conserv. Dent., 2016, 19(5), 406-409.
[http://dx.doi.org/10.4103/0972-0707.190017] [PMID: 27656056]
[30]
Al-Abdullah, A.; Edris, S.; Abu Hasna, A.; de Carvalho, L.S.; Al-Nahlawi, T. The effect of Aloe vera and chlorhexidine as disinfectants on the success of selective caries removal technique: A randomized controlled trial. Int. J. Dent., 2022, 2022, 1-5.
[http://dx.doi.org/10.1155/2022/9474677] [PMID: 35572354]
[31]
Chen, C.Y.; Chung, Y.C. Antibacterial effect of water-soluble chitosan on representative dental pathogens Streptococcus mutans and Lactobacilli brevis. J. Appl. Oral Sci., 2012, 20(6), 620-627.
[http://dx.doi.org/10.1590/S1678-77572012000600006] [PMID: 23329243]
[32]
Prakash, V.; Shobhana, R.; Venkatesh, A.; Subbiya, A. Applications of chitosan in conservative dentistry and endodontics: A review. Int. J. Aquat. Sci., 2021, 12(3), 2062-2067.
[33]
Cicciù, M.; Fiorillo, L.; Cervino, G. Chitosan use in dentistry: A systematic review of recent clinical studies. Mar. Drugs, 2019, 17(7), 417.
[http://dx.doi.org/10.3390/md17070417] [PMID: 31319609]
[34]
Mohamed, Amr Mohsen Effect of chitosan nanoparticles on microtensile bond strength of resin composite to dentin: An in vitro study. Braz. Dent. Sci., 2020, 23(2), 10.
[http://dx.doi.org/10.14295/bds.2020.v23i2.1902]
[35]
Lata, S.; Pradhan, P.K.; Patri, G.; Bhol, S.; Sahoo, K.C.; Ghosh, K. Does cavity disinfectant affect sealing ability of universal self-etch adhesive? J. Contemp. Dent. Pract., 2021, 22(3), 273-278.
[http://dx.doi.org/10.5005/jp-journals-10024-3052] [PMID: 34210928]
[36]
Varshneya, Kanika Microleakage in class V cavities restored with composite resin using chitosan and consepsis as the cavity disinfectants. In: Advances in Tissue Engineering & Regenerative Medicine; Open Access, 2017; 2, . (3)
[http://dx.doi.org/10.15406/atroa.2017.02.00029]
[37]
Tarigan, M.T.; Abidin, T. Potential of chitosan oligosaccharide gel as a cavity cleanser against adhesive restoration adhesive on the cavity wall. J. Syiah Kuala Dentist. Society, 2023, 7(2), 107-112.
[http://dx.doi.org/10.24815/jds.v7i2.30234]
[38]
Gursel Surmelioglu, D.; Gungor Borsoken, A. Kervancıoglu, G.; Yeniceri Hilaloglu, N.E. Effect of the cavity disinfectant containing chitosan on dentin bonding strength after radiotherapy. J. Infect. Dev. Ctries., 2022, 16(10), 1602-1606.
[http://dx.doi.org/10.3855/jidc.17064] [PMID: 36332213]
[39]
Mohamed, Y.; Ashraf, R. Remineralization potential of phosphorylated chitosan and silver diamine fluoride in comparison to sodium fluoride varnish: In vitro study. Eur. Arch. Paediatr. Dent., 2023, 24(3), 327-334.
[http://dx.doi.org/10.1007/s40368-023-00794-2] [PMID: 37014591]
[40]
Yadav, E.; Kumar, S.; Mahant, S.; Khatkar, S.; Rao, R. Tea tree oil: A promising essential oil. J. Essent. Oil Res., 2017, 29(3), 201-213.
[http://dx.doi.org/10.1080/10412905.2016.1232665]
[41]
Salvatori, C.; Barchi, L.; Guzzo, F.; Gargari, M. A comparative study of antibacterial and anti-inflammatory effects of mouthrinse containing tea tree oil. Oral Implantol., 2017, 10(1), 59-70.
[http://dx.doi.org/10.11138/orl/2017.10.1.059] [PMID: 28757937]
[42]
Khamverdi, Z.; Azarsina, M. The beneficial effects of green tea in oral health and dentistry. Biomed. J. Sci. Tech. Res., 2019, 19(4), 14460-14463.
[http://dx.doi.org/10.26717/BJSTR.2019.19.003333]
[43]
Vyas, T.; Nagi, R.; Bhatia, A.; Bains, S. Therapeutic effects of green tea as an antioxidant on oral health- A review. J. Family Med. Prim. Care, 2021, 10(11), 3998-4001.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_943_21] [PMID: 35136758]
[44]
Kamalaksharappa, S.; Rai, R.; Babaji, P.; Pradeep, M.C. Efficacy of probiotic and green tea mouthrinse on salivary pH. J. Indian Soc. Pedod. Prev. Dent., 2018, 36(3), 279-282.
[http://dx.doi.org/10.4103/JISPPD.JISPPD_49_18] [PMID: 30246750]
[45]
Rolim de Moura, R.; França, F.M.G.; Turssi, C.P.; Basting, R.T.; Amaral, F.L.B. Effect of different concentrations of green tea extract solutions on bonding durability of etch-and-rinse adhesive system to caries affected dentin. Braz. J. Oral Sci., 2021, 20, e210328-e210328.
[http://dx.doi.org/10.20396/bjos.v20i00.8660328]
[46]
Albaqawi, A.H.; Shabib, S.; Vohra, F.; Abduljabbar, T. Efficacy of chlorhexidine, photosensitizers, green tea extract, and propolis on bond integrity and microleakage of caries-affected dentin: An In vitro study. Photodiagn. Photodyn. Ther., 2022, 39(Sept), 102998.
[http://dx.doi.org/10.1016/j.pdpdt.2022.102998] [PMID: 35798290]
[47]
Santiago, S.L.; Osorio, R.; Neri, J.R.; Carvalho, R.M.; Toledano, M. Effect of the flavonoid epigallocatechin-3-gallate on resin-dentin bond strength. J. Adhes. Dent., 2013, 15(6), 535-540.
[PMID: 23560257]
[48]
Gerhardt, K.M.F.; Oliveira, C.A.R.; França, F.M.G.; Basting, R.T.; Turssi, C.P.; Amaral, F.L.B. Effect of epigallocatechin gallate, green tea extract and chlorhexidine application on long-term bond strength of self-etch adhesive to dentin. Int. J. Adhes. Adhes., 2016, 71, 23-27.
[http://dx.doi.org/10.1016/j.ijadhadh.2016.08.005]
[49]
Sun, Q.; Gu, L.; Quan, J.; Yu, X.; Huang, Z.; Wang, R.; Mai, S. Epigallocatechin-3-gallate enhance dentin biomodification and bond stability of an etch-and-rinse adhesive system. Int. J. Adhes. Adhes., 2018, 80, 115-121.
[http://dx.doi.org/10.1016/j.ijadhadh.2017.11.001]
[50]
Pastorino, G.; Cornara, L.; Soares, S.; Rodrigues, F.; Oliveira, M.B.P.P. Liquorice (Glycyrrhiza Glabra): A phytochemical and pharmacological review. Phytother. Res., 2018, 32(12), 2323-2339.
[http://dx.doi.org/10.1002/ptr.6178] [PMID: 30117204]
[51]
Sidhu, P.; Shankargouda, S.; Rath, A.; Hesarghatta Ramamurthy, P.; Fernandes, B.; Kumar Singh, A. Therapeutic benefits of liquorice in dentistry. J. Ayurveda Integr. Med., 2020, 11(1), 82-88.
[http://dx.doi.org/10.1016/j.jaim.2017.12.004] [PMID: 30391123]
[52]
Messier, C.; Epifano, F.; Genovese, S.; Grenier, D. Licorice and its potential beneficial effects in common oro‐dental diseases. Oral Dis., 2012, 18(1), 32-39.
[http://dx.doi.org/10.1111/j.1601-0825.2011.01842.x] [PMID: 21851508]
[53]
Mali, S.; Tyagi, S.; Godbole, E.; Kulkarni, P.; Helge, S.; Helge, S. efficacy of liquorice and propolis extract used as cavity cleaning agents against Streptococcus mutans in deciduous molars using confocal microscopy: An in vitro study. Int. J. Clin. Pediatr. Dent., 2019, 12(3), 194-200.
[http://dx.doi.org/10.5005/jp-journals-10005-1620] [PMID: 31708614]
[54]
Kapil, D.; Mendiratta, P.; Saraf, B.G.; Sheoran, N.; Kalra, G.; Srivastava, P.; Kataria, S. Cavity disinfection with herbal disinfectants licorice (Mulethi) and munident tablets in children aged 5–9 years: A randomized controlled trial. J South Asian Assoc Pediatr Dent, 2022, 5(1), 38-43.
[55]
Nordin, A.; Bin Saim, A.; Ramli, R.; Abdul Hamid, A.; Mohd Nasri, N.W.; Bt Hj Idrus, R. Miswak and oral health: An evidence-based review. Saudi J. Biol. Sci., 2020, 27(7), 1801-1810.
[http://dx.doi.org/10.1016/j.sjbs.2020.05.020] [PMID: 32565699]
[56]
Mustafa, M.; AlJeaidi, Z.; AlAajam, W.H.; Mohammed, K.A.D. Study of caries prevalence among miswak and non-miswak users: A prospective study. J. Contemp. Dent. Pract., 2016, 17(11), 926-929.
[http://dx.doi.org/10.5005/jp-journals-10024-1955] [PMID: 27965502]
[57]
Halawany, H.S. A review on miswak (Salvadora persica) and its effect on various aspects of oral health. Saudi Dent. J., 2012, 24(2), 63-69.
[http://dx.doi.org/10.1016/j.sdentj.2011.12.004] [PMID: 23960531]
[58]
Abhary, M.; Al-Hazmi, A.A. Antibacterial activity of Miswak (Salvadora persica L.) extracts on oral hygiene. J. Taibah Univ. Sci., 2016, 10(4), 513-520.
[http://dx.doi.org/10.1016/j.jtusci.2015.09.007]
[59]
Wassel, M.O.; Sherief, D.I. Ion release and enamel remineralizing potential of miswak, propolis and chitosan nano-particles based dental varnishes. Pediatr. Dent. J., 2019, 29(1), 1-10.
[http://dx.doi.org/10.1016/j.pdj.2018.12.004]
[60]
Khoriba, H.A.; Niazy, M.; El Sharkawy, D. The anticariogenic effect of miswak (Silvadora Persica) and grape seed extract. Al-Azhar Dental Journal for Girls, 2022, 9(3), 383-390.
[http://dx.doi.org/10.21608/adjg.2022.69312.1349]
[61]
Khunkar, S.; Hariri, I.; Alsayed, E.; Linjawi, A.; Khunkar, S.; Islam, S.; Bakhsh, T.A.; Nakashima, S. Inhibitory effect of Salvadora persica extract (Miswak) on collagen degradation in demineralized dentin: In vitro study. J. Dent. Sci., 2021, 16(1), 208-213.
[http://dx.doi.org/10.1016/j.jds.2020.05.025] [PMID: 33384799]
[62]
Salama, F.; Balto, H.; Al-Yahya, F.; Al-Mofareh, S. The effect of cavity disinfectants on microleakage of composite restorations in primary teeth. Eur. J. Paediatr. Dent., 2015, 16(4), 295-300.
[PMID: 26637253]
[63]
Saravanan, D. Role of noni (Morinda Citrifolia) in dentistry. Nat Ayurvedic Med, 2023, 7(1), 000369.
[64]
Motshakeri, M.; Ghazali, H.M. Nutritional, phytochemical and commercial quality of Noni fruit: A multi-beneficial gift from nature. Trends Food Sci. Technol., 2015, 45(1), 118-129.
[http://dx.doi.org/10.1016/j.tifs.2015.06.004]
[65]
Kumarasamy, B.; Manipal, S.; Duraisamy, P.; Ahmed, A.; Mohanaganesh, S.; Jeevika, C. Role of aqueous extract of Morinda Citrifolia (Indian noni) ripe fruits in inhibiting dental caries-causing Streptococcus mutans and Streptococcus mitis. J. Dent., 2014, 11(6), 703-710.
[PMID: 25628701]
[66]
Kandaswamy, D.; Venkateshbabu, N.; Gogulnath, D.; Kindo, A.J. Dentinal tubule disinfection with 2% chlorhexidine gel, propolis, Morinda Citrifolia juice, 2% povidone iodine, and calcium hydroxide. Int. Endod. J., 2010, 43(5), 419-423.
[http://dx.doi.org/10.1111/j.1365-2591.2010.01696.x] [PMID: 20518935]
[67]
Sabu, B.; Chandrashekar, K.; Mishra, R.; Tripathi, V.; Khatri, H.; Deo, A. Evaluation of Morinda Citrifolia (noni) fruit extract as a bone regenerative material in the treatment of periodontal intrabony osseous defects: Clinical and cone-beam computed tomography assessment. J. Indian Soc. Periodontol., 2021, 25(2), 144-149.
[http://dx.doi.org/10.4103/jisp.jisp_58_20] [PMID: 33888947]
[68]
Dikmen, B.; Gurbuz, O.; Ozsoy, A.; Eren, M.M.; Cilingir, A.; Yucel, T. Effect of different antioxidants on the microtensile bond strength of an adhesive system to sodium hypochlorite treated dentin. J. Adhes. Dent., 2015, 17(6), 499-504.
[PMID: 26734673]
[69]
Delimont, N.M.; Carlson, B.N. Prevention of dental caries by grape seed extract supplementation: A systematic review. Nutr. Health, 2020, 26(1), 43-52.
[http://dx.doi.org/10.1177/0260106019887890] [PMID: 31760860]
[70]
Zhao, W.; Xie, Q.; Bedran-Russo, A.K.; Pan, S.; Ling, J.; Wu, C.D. The preventive effect of grape seed extract on artificial enamel caries progression in a microbial biofilm-induced caries model. J. Dent., 2014, 42(8), 1010-1018.
[http://dx.doi.org/10.1016/j.jdent.2014.05.006] [PMID: 24863939]
[71]
Shafiei, F.; Aghaei, T.; Jowkar, Z. Effect of proanthocyanidin mediated immediate and delayed dentin sealing on the strength of premolars restored with composite resin inlay. J. Clin. Exp. Dent., 2020, 12(3), e235-e241.
[http://dx.doi.org/10.4317/jced.55942] [PMID: 32190193]
[72]
Xie, Q.; Bedran-Russo, A.K.; Wu, C.D. In vitro remineralization effects of grape seed extract on artificial root caries. J. Dent., 2008, 36(11), 900-906.
[http://dx.doi.org/10.1016/j.jdent.2008.07.011] [PMID: 18819742]
[73]
Liu, Y.; Chen, M.; Yao, X.; Xu, C.; Zhang, Y.; Wang, Y. Enhancement in dentin collagen’s biological stability after proanthocyanidins treatment in clinically relevant time periods. Dent. Mater., 2013, 29(4), 485-492.
[http://dx.doi.org/10.1016/j.dental.2013.01.013] [PMID: 23434233]
[74]
Boteon, A.P.; Kato, M.T.; Buzalaf, M.A.R.; Prakki, A.; Wang, L.; Rios, D.; Honório, H.M. Effect of Proanthocyanidin-enriched extracts on the inhibition of wear and degradation of dentin demineralized organic matrix. Arch. Oral Biol., 2017, 84, 118-124.
[http://dx.doi.org/10.1016/j.archoralbio.2017.09.027] [PMID: 28987724]
[75]
Kewlani, M.; Saha, S.G.; Bhardwaj, A.; Saha, M.K.; Vijaywargiya, P.; Jain, S.; Sai Prasad, S.V. Comparative evaluation of the effect of decontamination protocol on the shear bond strength of eighth generation bonding agent to contaminated dentin: An in vitro study. Med. Pharm. Rep., 2020, 93(3), 287-291.
[http://dx.doi.org/10.15386/mpr-1488] [PMID: 32832894]
[76]
Singh, P.; Nagpal, R.; Singh, S.; Tyagi, S.P. Proanthocyanidin: A natural dentin biomodifier in adhesive dentistry. J. Restor. Dentist., 2016, 4(1), 1.
[http://dx.doi.org/10.4103/2321-4619.176013]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy