Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Research Article

Utilizing Pharmacogenomic Data for a Safer Use of Statins among the Emirati Population

Author(s): Mais N. Alqasrawi, Zeina N. Al-Mahayri, Hiba Alblooshi, Habiba Alsafar and Bassam R. Ali*

Volume 22, Issue 3, 2024

Published on: 25 January, 2024

Page: [218 - 229] Pages: 12

DOI: 10.2174/0115701611283841231227064343

Price: $65

Abstract

Background: Statins are the most prescribed lipid-lowering drugs worldwide. The associated adverse events, especially muscle symptoms, have been frequently reported despite their perceived safety. Three pharmacogenes, the solute carrier organic anion transporter family member 1B1 (SLCO1B1), ATP-binding cassette subfamily G member 2 (ABCG2), and cytochrome P450 2C9 (CYP2C9) are suggested as safety biomarkers for statins. The Clinical Pharmacogenomic Implementation Consortium (CPIC) issued clinical guidelines for statin use based on these three genes.

Objectives: The present study aimed to examine variants in these pharmacogenes to predict the safety of statin use among the Emirati population.

Methods: Analyzing 242 whole exome sequencing data at the three genes enabled the determination of the frequencies of the single nucleotide polymorphisms (SNPs), annotating the haplotypes and the predicted functions of their proteins.

Results: In our cohort, 29.8% and 5.4% had SLCO1B1 decreased and poor function, respectively. The high frequency warns of the possibility of significant side effects of some statins and the importance of pharmacogenomic testing. We found a low frequency (6%) of the ABCG2:rs2231142 variant, which indicates the low probability of Emirati patients being recommended against higher rosuvastatin doses compared with other populations with higher frequencies of this variant. In contrast, we found high frequencies of the functionally impaired CYP2C9 alleles, which makes fluvastatin a less favorable choice.

Conclusion: Among the sparse studies available, the present one demonstrates all SLCO1B1 and CYP2C9 function-impairing alleles among Emiratis. We highlighted how population-specific pharmacogenomic data can predict safer choices of statins, especially in understudied populations.

« Previous
Graphical Abstract

[1]
Marcus ME, Manne-Goehler J, Theilmann M, et al. Use of statins for the prevention of cardiovascular disease in 41 low-income and middle-income countries: A cross-sectional study of nationally representative, individual-level data. Lancet Glob Health 2022; 10(3): e369-79.
[http://dx.doi.org/10.1016/S2214-109X(21)00551-9] [PMID: 35180420]
[2]
Blais JE, Wei Y, Yap KKW, et al. Trends in lipid-modifying agent use in 83 countries. Atherosclerosis 2021; 328: 44-51.
[http://dx.doi.org/10.1016/j.atherosclerosis.2021.05.016] [PMID: 34091069]
[3]
Ward NC, Watts GF, Eckel RH. Statin toxicity. Circ Res 2019; 124(2): 328-50.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.312782] [PMID: 30653440]
[4]
Stancu C, Sima A. Statins: Mechanism of action and effects. J Cell Mol Med 2001; 5(4): 378-87.
[http://dx.doi.org/10.1111/j.1582-4934.2001.tb00172.x] [PMID: 12067471]
[5]
Naci H, Brugts J, Ades T. Comparative tolerability and harms of individual statins: A study-level network meta-analysis of 246 955 participants from 135 randomized, controlled trials. Circ Cardiovasc Qual Outcomes 2013; 6(4): 390-9.
[http://dx.doi.org/10.1161/CIRCOUTCOMES.111.000071] [PMID: 23838105]
[6]
Chou R, Cantor A, Dana T. Statin use for the primary prevention of cardiovascular disease in adults: A systematic review for the US preventive services task force. Rockville (MD) Agency for Healthcare Research and Quality (US). 2022.
[7]
Birmingham BK, Bujac SR, Elsby R, et al. Impact of ABCG2 and SLCO1B1 polymorphisms on pharmacokinetics of rosuvastatin, atorvastatin and simvastatin acid in Caucasian and Asian subjects: A class effect? Eur J Clin Pharmacol 2015; 71(3): 341-55.
[http://dx.doi.org/10.1007/s00228-014-1801-z] [PMID: 25673568]
[8]
Lee E, Ryan S, Birmingham B, et al. Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian subjects residing in the same environment. Clin Pharmacol Ther 2005; 78(4): 330-41.
[http://dx.doi.org/10.1016/j.clpt.2005.06.013] [PMID: 16198652]
[9]
Wu HF, Hristeva N, Chang J, et al. Rosuvastatin pharmacokinetics in asian and white subjects wild type for both OATP1B1 and BCRP under control and inhibited conditions. J Pharm Sci 2017; 106(9): 2751-7.
[http://dx.doi.org/10.1016/j.xphs.2017.03.027] [PMID: 28385543]
[10]
Cai T, Abel L, Langford O, et al. Associations between statins and adverse events in primary prevention of cardiovascular disease: Systematic review with pairwise, network, and dose-response meta-analyses. BMJ 2021; 374(1537): n1537.
[http://dx.doi.org/10.1136/bmj.n1537] [PMID: 34261627]
[11]
Bytyçi I, Penson PE, Mikhailidis DP, et al. Prevalence of statin intolerance: A meta-analysis. Eur Heart J 2022; 43(34): 3213-23.
[http://dx.doi.org/10.1093/eurheartj/ehac015] [PMID: 35169843]
[12]
Martirossian AN, Goldberg AC. Management of patients with statin intolerance. Best Pract Res Clin Endocrinol Metab 2023; 37(3): 101714.
[http://dx.doi.org/10.1016/j.beem.2022.101714] [PMID: 36345572]
[13]
Turner RM, Pirmohamed M. Statin-related myotoxicity: A comprehensive review of pharmacokinetic, pharmacogenomic and muscle components. J Clin Med 2019; 9(1): 22.
[http://dx.doi.org/10.3390/jcm9010022] [PMID: 31861911]
[14]
Newman CB, Preiss D, Tobert JA, et al. Statin safety and associated adverse events: A scientific statement from the american heart association. Arterioscler Thromb Vasc Biol 2019; 39(2): e38-81.
[http://dx.doi.org/10.1161/ATV.0000000000000073] [PMID: 30580575]
[15]
Petry NJ, Baye JF, Frear S, et al. Progression of precision statin prescribing for reduction of statin-associated muscle symptoms. Pharmacogenomics 2022; 23(10): 585-96.
[http://dx.doi.org/10.2217/pgs-2022-0055] [PMID: 35775396]
[16]
Ramsey LB, Gong L, Lee S, et al. PharmVar GeneFocus:SLCO1B1. Clin Pharmacol Ther 2023; 113(4): 782-93.
[http://dx.doi.org/10.1002/cpt.2705] [PMID: 35797228]
[17]
Link E, Parish S, Armitage J, et al. SLCO1B1 variants and statin-induced myopathy-a genomewide study. N Engl J Med 2008; 359(8): 789-99.
[http://dx.doi.org/10.1056/NEJMoa0801936] [PMID: 18650507]
[18]
Wilke RA, Ramsey LB, Johnson SG, et al. The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin Pharmacol Ther 2012; 92(1): 112-7.
[http://dx.doi.org/10.1038/clpt.2012.57] [PMID: 22617227]
[19]
Cooper-DeHoff RM, Niemi M, Ramsey LB, et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1, ABCG2, and CYP2C9 genotypes and statin‐associated musculoskeletal symptoms. Clin Pharmacol Ther 2022; 111(5): 1007-21.
[http://dx.doi.org/10.1002/cpt.2557] [PMID: 35152405]
[20]
Kumar V, Yin M, Ishida K, et al. Prediction of transporter-mediated rosuvastatin hepatic uptake clearance and drug interaction in humans using proteomics-informed REF approach. Drug Metab Dispos 2021; 49(2): 159-68.
[http://dx.doi.org/10.1124/dmd.120.000204] [PMID: 33051248]
[21]
Lehtisalo M, Taskinen S, Tarkiainen EK, et al. A comprehensive pharmacogenomic study indicates roles for SLCO1B1, ABCG2 and SLCO2B1 in rosuvastatin pharmacokinetics. Br J Clin Pharmacol 2023; 89(1): 242-52.
[http://dx.doi.org/10.1111/bcp.15485] [PMID: 35942816]
[22]
Hirvensalo P, Tornio A, Neuvonen M, et al. Enantiospecific pharmacogenomics of fluvastatin. Clin Pharmacol Ther 2019; 106(3): 668-80.
[http://dx.doi.org/10.1002/cpt.1463] [PMID: 30989645]
[23]
Elessawy FM. The consequences of population growth on the demographic characteristics of Abu Dhabi City in the United Arab Emirates. Adv Econ Bus 2020; 8(5): 268-76.
[http://dx.doi.org/10.13189/aeb.2020.080502]
[24]
Al-Mahayri ZN, Al Jaibeji HS, Saab Y, et al. VKORC1 variants as significant predictors of warfarin dose in Emiratis. Pharm Genomics Pers Med 2019; 12: 47-57.
[http://dx.doi.org/10.2147/PGPM.S187350] [PMID: 31114289]
[25]
Qumsieh RY, Ali BR, Abdulrazzaq YM, Osman O, Akawi NA, Bastaki SMA. Identification of new alleles and the determination of alleles and genotypes frequencies at the CYP2D6 gene in Emiratis. PLoS One 2011; 6(12): e28943.
[http://dx.doi.org/10.1371/journal.pone.0028943] [PMID: 22216145]
[26]
Al-Ahmad MM, Amir N, Dhanasekaran S, et al. Genetic polymorphisms of cytochrome P450-1A2 (CYP1A2) among Emiratis. PLoS One 2017; 12(9): e0183424.
[http://dx.doi.org/10.1371/journal.pone.0183424] [PMID: 28934216]
[27]
Al-Ahmad MM, Amir N, Dhanasekaran S, et al. Studies on N‐acetyltransferase (NAT2) genotype relationships in emiratis: Confirmation of the existence of phenotype variation among slow acetylators. Ann Hum Genet 2017; 81(5): 190-6.
[http://dx.doi.org/10.1111/ahg.12198] [PMID: 28653770]
[28]
Ramaraj R, Al-Mahayri ZN, Saleous R, et al. The utility of CYP2D6 and CYP2C19 variants to guide pharmacological treatment in complex unipolar major depression: A pilot longitudinal study. Psychiatr Q 2023; 94(3): 435-47.
[http://dx.doi.org/10.1007/s11126-023-10044-9] [PMID: 37490261]
[29]
Al-Shamsi S. Performance of the framingham coronary heart disease risk score for predicting 10-year cardiac risk in adult united arab emirates nationals without diabetes: A retrospective cohort study. BMC Fam Pract 2020; 21(1): 175.
[http://dx.doi.org/10.1186/s12875-020-01246-2] [PMID: 32847496]
[30]
Gitt AK, Lautsch D, Ferrieres J, et al. Low-density lipoprotein cholesterol in a global cohort of 57,885 statin-treated patients. Atherosclerosis 2016; 255: 200-9.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.09.004] [PMID: 27667299]
[31]
Al Mahmeed W, Bakir S, Beshyah S, et al. Prevalence of lipid abnormalities and cholesterol target value attainment in patients with stable and acute coronary heart disease in the United Arab Emirates. Heart Views 2019; 20(2): 37-46.
[http://dx.doi.org/10.4103/HEARTVIEWS.HEARTVIEWS_32_18] [PMID: 31462957]
[32]
Shehab A, Bhagavathula A. Statin therapy and low-density lipoprotein cholesterol reduction after acute coronary syndrome: Insights from the United Arab Emirates. Heart Views 2020; 21(2): 80-7.
[http://dx.doi.org/10.4103/HEARTVIEWS.HEARTVIEWS_115_19] [PMID: 33014300]
[33]
AlAhmad MM. ZainAlAbdin S, AlAhmad K, AlAhmad I, AbuRuz S. Value of the clinical pharmacist interventions in the application of the American College of Cardiology (ACC/AHA) 2018 guideline for cholesterol management. PLoS One 2023; 18(3): e0283369.
[http://dx.doi.org/10.1371/journal.pone.0283369] [PMID: 36972252]
[34]
Al-Mahayri ZN, Patrinos GP, Wattanapokayakit S, et al. Variation in 100 relevant pharmacogenes among emiratis with insights from understudied populations. Sci Rep 2020; 10(1): 21310.
[http://dx.doi.org/10.1038/s41598-020-78231-3] [PMID: 33277594]
[35]
Daw Elbait G, Henschel A, Tay GK, Al Safar HS. A population-specific major allele reference genome from the United Arab Emirates population. Front Genet 2021; 12: 660428.
[http://dx.doi.org/10.3389/fgene.2021.660428] [PMID: 33968136]
[36]
Zhou Y, Mkrtchian S, Kumondai M, Hiratsuka M, Lauschke VM. An optimized prediction framework to assess the functional impact of pharmacogenetic variants. Pharmacogenomics J 2019; 19(2): 115-26.
[http://dx.doi.org/10.1038/s41397-018-0044-2] [PMID: 30206299]
[37]
PharmVar Publications. Available from: https://www.pharmvar.org/
[39]
Tamraz B, Fukushima H, Wolfe AR, et al. OATP1B1-related drug–drug and drug–gene interactions as potential risk factors for cerivastatin-induced rhabdomyolysis. Pharmacogenet Genomics 2013; 23(7): 355-64.
[http://dx.doi.org/10.1097/FPC.0b013e3283620c3b] [PMID: 23652407]
[40]
Homolya L. Medically important alterations in transport function and trafficking of ABCG2. Int J Mol Sci 2021; 22(6): 2786.
[http://dx.doi.org/10.3390/ijms22062786] [PMID: 33801813]
[41]
Runcharoen C, Fukunaga K, Sensorn I, et al. Prevalence of pharmacogenomic variants in 100 pharmacogenes among Southeast Asian populations under the collaboration of the Southeast Asian Pharmacogenomics Research Network (SEAPharm). Hum Genome Var 2021; 8(1): 7.
[http://dx.doi.org/10.1038/s41439-021-00135-z] [PMID: 33542200]
[42]
Al-Ali M, Osman W, Tay GK, AlSafar HSA. 1000 Arab genome project to study the Emirati population. J Hum Genet 2018; 63(4): 533-6.
[http://dx.doi.org/10.1038/s10038-017-0402-y] [PMID: 29410509]
[43]
Alsultan A, Alalwan AA, Alshehri B, et al. Interethnic differences in drug response: Projected impact of genetic variations in the Saudi population. Pharmacogenomics 2023; 24(12): 685-96.
[http://dx.doi.org/10.2217/pgs-2023-0105] [PMID: 37610881]
[44]
Razali RM, Rodriguez-Flores J, Ghorbani M, et al. Thousands of Qatari genomes inform human migration history and improve imputation of Arab haplotypes. Nat Commun 2021; 12(1): 5929.
[http://dx.doi.org/10.1038/s41467-021-25287-y] [PMID: 34642339]
[45]
Elliott KS, Haber M, Daggag H, et al. Fine-scale genetic structure in the United Arab Emirates reflects endogamous and consanguineous culture, population history, and geography. Mol Biol Evol 2022; 39(3): msac039.
[http://dx.doi.org/10.1093/molbev/msac039] [PMID: 35192718]
[46]
Lakiotaki K, Kanterakis A, Kartsaki E, Katsila T, Patrinos GP, Potamias G. Exploring public genomics data for population pharmacogenomics. PLoS One 2017; 12(8): e0182138.
[http://dx.doi.org/10.1371/journal.pone.0182138] [PMID: 28771511]
[47]
Canestaro WJ, Austin MA, Thummel KE. Genetic factors affecting statin concentrations and subsequent myopathy: A HuGENet systematic review. Genet Med 2014; 16(11): 810-9.
[http://dx.doi.org/10.1038/gim.2014.41] [PMID: 24810685]
[48]
Al-Mahayri ZN, Khasawneh LQ, Alqasrawi MN, et al. Pharmacogenomics implementation in cardiovascular disease in a highly diverse population: Initial findings and lessons learned from a pilot study in United Arab Emirates. Hum Genomics 2022; 16(1): 42.
[http://dx.doi.org/10.1186/s40246-022-00417-9] [PMID: 36154845]
[49]
Dashti M, Al-Matrouk A, Channanath A, Al-Mulla F, Thanaraj TA. Frequency of functional exonic single-nucleotide polymorphisms and haplotype distribution in the SLCO1B1 gene across genetic ancestry groups in the Qatari population. Sci Rep 2022; 12(1): 14858.
[http://dx.doi.org/10.1038/s41598-022-19318-x] [PMID: 36050458]
[50]
Saber-Ayad M, Manzoor S, El-Serafi A, Mahmoud I, Abusnana S, Sulaiman N. Statin-induced myopathy SLCO1B1 521T > C is associated with prediabetes, high body mass index and normal lipid profile in Emirati population. Diabetes Res Clin Pract 2018; 139: 272-7.
[http://dx.doi.org/10.1016/j.diabres.2018.03.014] [PMID: 29534995]
[51]
Abdelhedi R, Bouayed NA, Alfadhli S, Abid L, Rebai A, Kharrat N. Characterization of drug-metabolizing enzymes CYP2C9, CYP2C19 polymorphisms in Tunisian, Kuwaiti and Bahraini populations. J Genet 2015; 94(4): 765-70.
[http://dx.doi.org/10.1007/s12041-015-0581-2] [PMID: 26690534]
[52]
Carr DF, Francis B, Jorgensen AL, et al. Genomewide association study of statin‐induced myopathy in patients recruited using the UK clinical practice research datalink. Clin Pharmacol Ther 2019; 106(6): 1353-61.
[http://dx.doi.org/10.1002/cpt.1557] [PMID: 31220337]
[53]
Very Important Pharmacogene Available from: https://www. pharmgkb.org/vip/PA166171172
[54]
Hu M, To KKW, Mak VWL, Tomlinson B. The ABCG2 transporter and its relations with the pharmacokinetics, drug interaction and lipid-lowering effects of statins. Expert Opin Drug Metab Toxicol 2011; 7(1): 49-62.
[http://dx.doi.org/10.1517/17425255.2011.538383] [PMID: 21091277]
[55]
Alrajeh K, Roman YM. The frequency of rs2231142 in ABCG2 among Asian subgroups: implications for personalized rosuvastatin dosing. Pharmacogenomics 2023; 24(1): 15-26.
[http://dx.doi.org/10.2217/pgs-2022-0155] [PMID: 36651271]
[56]
Filppula AM, Hirvensalo P, Parviainen H, et al. Comparative hepatic and intestinal metabolism and pharmacodynamics of statins. Drug Metab Dispos 2021; 49(8): 658-67.
[http://dx.doi.org/10.1124/dmd.121.000406] [PMID: 34045219]
[57]
Kee PS, Chin PKL, Kennedy MA, Maggo SDS. Pharmacogenetics of statin-induced myotoxicity. Front Genet 2020; 11: 575678.
[http://dx.doi.org/10.3389/fgene.2020.575678] [PMID: 33193687]
[58]
Very Important Pharmacogene Available from: https://www. pharmgkb.org/vip/PA166169913
[59]
Alzahrani AM, Ragia G, Hanieh H, Manolopoulos VG. Genotyping of CYP2C9 and VKORC1 in the Arabic Population of Al-Ahsa, Saudi Arabia. BioMed Res Int 2013; 2013: 315980.
[60]
Gene-specific Information Tables for CYP2C9. Available from: https://www.pharmgkb.org/page/cyp2c9RefMaterials
[61]
Chang WC, Hung SI, Carleton BC, Chung WH. An update on CYP2C9 polymorphisms and phenytoin metabolism: implications for adverse effects. Expert Opin Drug Metab Toxicol 2020; 16(8): 723-34.
[http://dx.doi.org/10.1080/17425255.2020.1780209] [PMID: 32510242]
[62]
Magavern EF, Gurdasani D, Ng FL, Lee SSJ. Health equality, race and pharmacogenomics. Br J Clin Pharmacol 2022; 88(1): 27-33.
[http://dx.doi.org/10.1111/bcp.14983] [PMID: 34251046]
[63]
Ingelman-Sundberg M, Mkrtchian S, Zhou Y, Lauschke VM. Integrating rare genetic variants into pharmacogenetic drug response predictions. Hum Genomics 2018; 12(1): 26.
[http://dx.doi.org/10.1186/s40246-018-0157-3] [PMID: 29793534]
[64]
Zhou Y, Lauschke VM. Population pharmacogenomics: An update on ethnogeographic differences and opportunities for precision public health. Hum Genet 2022; 141(6): 1113-36.
[http://dx.doi.org/10.1007/s00439-021-02385-x] [PMID: 34652573]
[65]
Katsila T, Patrinos GP. Whole genome sequencing in pharmacogenomics. Front Pharmacol 2015; 6: 61.
[http://dx.doi.org/10.3389/fphar.2015.00061] [PMID: 25859217]
[66]
Abou Tayoun AN, Rehm HL. Genetic variation in the Middle East—an opportunity to advance the human genetics field. Genome Med 2020; 12(1): 116.
[http://dx.doi.org/10.1186/s13073-020-00821-7] [PMID: 33371902]
[67]
Alrajeh K, AlAzzeh O, Roman Y. The frequency of major ABCG2, SLCO1B1 and CYP2C9 variants in Asian, Native Hawaiian and Pacific Islander women subgroups: implications for personalized statins dosing. Pharmacogenomics 2023; 24(7): 381-98.
[http://dx.doi.org/10.2217/pgs-2023-0043] [PMID: 37222158]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy