Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Review Article

Cytoplasmic Polyadenylation Element Binding Protein 1 and Atherosclerosis: Prospective Target and New Insights

Author(s): Jing Zhou and Chao-Ke Tang*

Volume 22, Issue 2, 2024

Published on: 25 January, 2024

Page: [95 - 105] Pages: 11

DOI: 10.2174/0115701611258090231221082502

Price: $65

Abstract

The ribonucleic acid (RNA)-binding protein Cytoplasmic Polyadenylation Element Binding Protein 1 (CPEB1), a key member of the CPEB family, is essential in controlling gene expression involved in both healthy physiological and pathological processes. CPEB1 can bind to the 3'- untranslated regions (UTR) of substrate messenger ribonucleic acid (mRNA) and regulate its translation. There is increasing evidence that CPEB1 is closely related to the pathological basis of atherosclerosis. According to recent investigations, many pathological processes, including inflammation, lipid metabolism, endothelial dysfunction, angiogenesis, oxidative stress, cellular senescence, apoptosis, and insulin resistance, are regulated by CPEB1. This review considers the prevention and treatment of atherosclerotic heart disease in relation to the evolution of the physiological function of CPEB1, recent research breakthroughs, and the potential participation of CPEB1 in atherosclerosis.

Graphical Abstract

[1]
Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics-2022 update: A report from the american heart association. Circulation 2022; 145(8): e153-639.
[http://dx.doi.org/10.1161/CIR.0000000000001052] [PMID: 35078371]
[2]
Murray CJL, Aravkin AY, Zheng P, et al. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396(10258): 1223-49.
[http://dx.doi.org/10.1016/S0140-6736(20)30752-2] [PMID: 33069327]
[3]
Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res 2014; 114(12): 1852-66.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302721] [PMID: 24902970]
[4]
Gimbrone MA Jr, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 2016; 118(4): 620-36.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306301] [PMID: 26892962]
[5]
Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct Target Ther 2022; 7(1): 131.
[http://dx.doi.org/10.1038/s41392-022-00955-7] [PMID: 35459215]
[6]
Grootaert MOJ, Moulis M, Roth L, et al. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc Res 2018; 114(4): 622-34.
[http://dx.doi.org/10.1093/cvr/cvy007] [PMID: 29360955]
[7]
Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN. The diabetes mellitus–atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. Int J Mol Sci 2020; 21(5): 1835.
[http://dx.doi.org/10.3390/ijms21051835] [PMID: 32155866]
[8]
Hake LE, Richter JD. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell 1994; 79(4): 617-27.
[http://dx.doi.org/10.1016/0092-8674(94)90547-9] [PMID: 7954828]
[9]
Gebauer F, Hentze MW. Fertility facts. Mol Cell 2001; 8(2): 247-9.
[http://dx.doi.org/10.1016/S1097-2765(01)00326-4] [PMID: 11545727]
[10]
Tay J, Richter JD. Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Dev Cell 2001; 1(2): 201-13.
[http://dx.doi.org/10.1016/S1534-5807(01)00025-9] [PMID: 11702780]
[11]
Nishimura Y, Kano K, Naito K. Porcine CPEB1 is involved in Cyclin B translation and meiotic resumption in porcine oocytes. Anim Sci J 2010; 81(4): 444-52.
[http://dx.doi.org/10.1111/j.1740-0929.2010.00755.x] [PMID: 20662813]
[12]
Xu K. Xiwen liu, Ren G, Yin D, Guo S, Zhao Y. Depletion of CPEB1 protects against oxidized LDL-induced endothelial apoptosis and inflammation though SIRT1/LOX–1 signalling pathway. Life Sci 2019; 239: 116874.
[http://dx.doi.org/10.1016/j.lfs.2019.116874] [PMID: 31521690]
[13]
Sovijit W, Sovijit W, Ishii Y, et al. Estrogen promotes increased breast cancer cell proliferation and migration through downregulation of CPEB1 expression. Biochem Biophys Res Commun 2021; 534: 871-6.
[http://dx.doi.org/10.1016/j.bbrc.2020.10.085] [PMID: 33162033]
[14]
Wei Z, Liu J, Xie H, Wang B, Wu J, Zhu Z. MiR-122-5p mitigates inflammation, reactive oxygen species and SH-SY5Y apoptosis by targeting CPEB1 after spinal cord injury via the PI3K/AKT signaling pathway. Neurochem Res 2021; 46(4): 992-1005.
[http://dx.doi.org/10.1007/s11064-021-03232-1] [PMID: 33528808]
[15]
Alexandrov IM, Ivshina M, Jung DY, et al. Cytoplasmic polyadenylation element binding protein deficiency stimulates PTEN and Stat3 mRNA translation and induces hepatic insulin resistance. PLoS Genet 2012; 8(1): e1002457.
[http://dx.doi.org/10.1371/journal.pgen.1002457] [PMID: 22253608]
[16]
Calderone V, Gallego J, Fernandez-Miranda G, et al. Sequential functions of CPEB1 and CPEB4 regulate pathologic expression of vascular endothelial growth factor and angiogenesis in chronic liver disease. Gastroenterology 2016; 150(4): 982-997.e30.
[http://dx.doi.org/10.1053/j.gastro.2015.11.038] [PMID: 26627607]
[17]
Grudzien-Nogalska E, Reed BC, Rhoads RE. CPEB1 promotes differentiation and suppresses EMT in mammary epithelial cells. J Cell Sci 2014; 127(Pt 10): jcs.144956..
[http://dx.doi.org/10.1242/jcs.144956] [PMID: 24634508]
[18]
Burns DM, Richter JD. CPEB regulation of human cellular senescence, energy metabolism, and p53 mRNA translation. Genes Dev 2008; 22(24): 3449-60.
[http://dx.doi.org/10.1101/gad.1697808] [PMID: 19141477]
[19]
Kim KC, Oh WJ, Ko KH, Shin CY, Wells DG. Cyclin B1 expression regulated by cytoplasmic polyadenylation element binding protein in astrocytes. J Neurosci 2011; 31(34): 12118-28.
[http://dx.doi.org/10.1523/JNEUROSCI.1621-11.2011] [PMID: 21865454]
[20]
Welk JF, Charlesworth A, Smith GD, MacNicol AM. Identification and characterization of the gene encoding human cytoplasmic polyadenylation element binding protein. Gene 2001; 263(1-2): 113-20.
[http://dx.doi.org/10.1016/S0378-1119(00)00588-6] [PMID: 11223249]
[21]
Hake LE, Mendez R, Richter JD. Specificity of RNA binding by CPEB: Requirement for RNA recognition motifs and a novel zinc finger. Mol Cell Biol 1998; 18(2): 685-93.
[http://dx.doi.org/10.1128/MCB.18.2.685] [PMID: 9447964]
[22]
Afroz T, Skrisovska L, Belloc E, Guillén-Boixet J, Méndez R, Allain FHT. A fly trap mechanism provides sequence-specific RNA recognition by CPEB proteins. Genes Dev 2014; 28(13): 1498-514.
[http://dx.doi.org/10.1101/gad.241133.114] [PMID: 24990967]
[23]
Schelhorn C, Gordon JMB, Ruiz L, Alguacil J, Pedroso E, Macias MJ. RNA recognition and self-association of CPEB4 is mediated by its tandem RRM domains. Nucleic Acids Res 2014; 42(15): 10185-95.
[http://dx.doi.org/10.1093/nar/gku700] [PMID: 25081215]
[24]
Merkel DJ, Wells SB, Hilburn BC, Elazzouzi F, Pérez-Alvarado GC, Lee BM. The C-terminal region of cytoplasmic polyadenylation element binding protein is a ZZ domain with potential for protein-protein interactions. J Mol Biol 2013; 425(11): 2015-26.
[http://dx.doi.org/10.1016/j.jmb.2013.03.009] [PMID: 23500490]
[25]
Reverte CG, Ahearn MD, Hake LE. CPEB degradation during Xenopus oocyte maturation requires a PEST domain and the 26S proteasome. Dev Biol 2001; 231(2): 447-58.
[http://dx.doi.org/10.1006/dbio.2001.0153] [PMID: 11237472]
[26]
Sarkissian M, Mendez R, Richter JD. Progesterone and insulin stimulation of CPEB-dependent polyadenylation is regulated by Aurora A and glycogen synthase kinase-3. Genes Dev 2004; 18(1): 48-61.
[http://dx.doi.org/10.1101/gad.1136004] [PMID: 14724178]
[27]
Mendez R, Murthy KGK, Ryan K, Manley JL, Richter JD. Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol Cell 2000; 6(5): 1253-9.
[http://dx.doi.org/10.1016/S1097-2765(00)00121-0] [PMID: 11106762]
[28]
Sha QQ, Dai XX, Dang Y, et al. A MAPK cascade couples maternal mRNA translation and degradation to meiotic cell cycle progression in mouse oocytes. Development 2017; 144(3): 452-63.
[PMID: 27993988]
[29]
Atkins CM, Nozaki N, Shigeri Y, Soderling TR. Cytoplasmic polyadenylation element binding protein-dependent protein synthesis is regulated by calcium/calmodulin-dependent protein kinase II. J Neurosci 2004; 24(22): 5193-201.
[http://dx.doi.org/10.1523/JNEUROSCI.0854-04.2004] [PMID: 15175389]
[30]
Kamranvar SA, Rani B, Johansson S. Cell cycle regulation by integrin-mediated adhesion. Cells 2022; 11(16): 2521.
[http://dx.doi.org/10.3390/cells11162521] [PMID: 36010598]
[31]
Deota S, Rathnachalam S, Namrata K, et al. Allosteric regulation of cyclin-b binding by the charge state of catalytic lysine in CDK1 is essential for cell-cycle progression. J Mol Biol 2019; 431(11): 2127-42.
[http://dx.doi.org/10.1016/j.jmb.2019.04.005] [PMID: 30974121]
[32]
Sasayama T, Marumoto T, Kunitoku N, et al. Over-expression of Aurora-A targets cytoplasmic polyadenylation element binding protein and promotes mRNA polyadenylation of Cdk1 and cyclin B1. Genes Cells 2005; 10(7): 627-38.
[http://dx.doi.org/10.1111/j.1365-2443.2005.00870.x] [PMID: 15966895]
[33]
de Moor CH, Richter JD. Cytoplasmic polyadenylation elements mediate masking and unmasking of cyclin B1 mRNA. EMBO J 1999; 18(8): 2294-303.
[http://dx.doi.org/10.1093/emboj/18.8.2294] [PMID: 10205182]
[34]
Kuo P, Runge E, Lu X, Hake LE. XGef influences XRINGO/CDK1 signaling and CPEB activation during Xenopus oocyte maturation. Differentiation 2011; 81(2): 133-40.
[http://dx.doi.org/10.1016/j.diff.2010.11.001] [PMID: 21145160]
[35]
Kim JH, Richter JD. RINGO/cdk1 and CPEB mediate poly(A) tail stabilization and translational regulation by ePAB. Genes Dev 2007; 21(20): 2571-9.
[http://dx.doi.org/10.1101/gad.1593007] [PMID: 17938241]
[36]
Ernoult-Lange M, Wilczynska A, Harper M, et al. Nucleocytoplasmic traffic of CPEB1 and accumulation in Crm1 nucleolar bodies. Mol Biol Cell 2009; 20(1): 176-87.
[http://dx.doi.org/10.1091/mbc.e08-09-0904] [PMID: 18923137]
[37]
Barnard DC, Ryan K, Manley JL, Richter JD. Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell 2004; 119(5): 641-51.
[http://dx.doi.org/10.1016/j.cell.2004.10.029] [PMID: 15550246]
[38]
Stebbins-Boaz B, Cao Q, de Moor CH, Mendez R, Richter JD. Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol Cell 1999; 4(6): 1017-27.
[http://dx.doi.org/10.1016/S1097-2765(00)80230-0] [PMID: 10635326]
[39]
Kim JH, Richter JD. Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation. Mol Cell 2006; 24(2): 173-83.
[http://dx.doi.org/10.1016/j.molcel.2006.08.016] [PMID: 17052452]
[40]
McEvoy M, Cao G, Llopis PM, et al. Cytoplasmic polyadenylation element binding protein 1-mediated mRNA translation in Purkinje neurons is required for cerebellar long-term depression and motor coordination. J Neurosci 2007; 27(24): 6400-11.
[http://dx.doi.org/10.1523/JNEUROSCI.5211-06.2007] [PMID: 17567800]
[41]
Lin CL, Evans V, Shen S, Xing Y, Richter JD. The nuclear experience of CPEB: Implications for RNA processing and translational control. RNA 2010; 16(2): 338-48.
[http://dx.doi.org/10.1261/rna.1779810] [PMID: 20040591]
[42]
Mansur F, Alarcon JM, Stackpole EE, Wang R, Richter JD. Noncanonical cytoplasmic poly(A) polymerases regulate RNA levels, alternative RNA processing, and synaptic plasticity but not hippocampal-dependent behaviours. RNA Biol 2021; 18(7): 962-71.
[http://dx.doi.org/10.1080/15476286.2020.1824061] [PMID: 32954964]
[43]
Udagawa T, Swanger SA, Takeuchi K, et al. Bidirectional control of mRNA translation and synaptic plasticity by the cytoplasmic polyadenylation complex. Mol Cell 2012; 47(2): 253-66.
[http://dx.doi.org/10.1016/j.molcel.2012.05.016] [PMID: 22727665]
[44]
Geovanini GR, Libby P. Atherosclerosis and inflammation: Overview and updates. Clin Sci 2018; 132(12): 1243-52.
[http://dx.doi.org/10.1042/CS20180306] [PMID: 29930142]
[45]
Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K. The kinase TAK1 can activate the NIK-IκB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 1999; 398(6724): 252-6.
[http://dx.doi.org/10.1038/18465] [PMID: 10094049]
[46]
Yang CY, Chuang HC, Tsai CY, et al. DUSP11 attenuates lipopolysaccharide-induced macrophage activation by targeting TAK1. J Immunol 2020; 205(6): 1644-52.
[http://dx.doi.org/10.4049/jimmunol.2000334] [PMID: 32796023]
[47]
Xu YR, Lei CQ. TAK1-TABs complex: A central signalosome in inflammatory responses. Front Immunol 2021; 11: 608976.
[http://dx.doi.org/10.3389/fimmu.2020.608976] [PMID: 33469458]
[48]
Wang H, Che J, Cui K, et al. Schisantherin A ameliorates liver fibrosis through TGF-β1mediated activation of TAK1/MAPK and NF-κB pathways in vitro and in vivo. Phytomedicine 2021; 88: 153609.
[http://dx.doi.org/10.1016/j.phymed.2021.153609] [PMID: 34126414]
[49]
Xu Y, Wang H, Zhang X, et al. Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) induces IL-6 production through TAK-1/JNK/AP-1 and TAK-1/NF-κB signaling pathways. Vet Microbiol 2021; 256: 109061.
[http://dx.doi.org/10.1016/j.vetmic.2021.109061] [PMID: 33836390]
[50]
Cui HS, Joo SY, Cho YS, Kim JB, Seo CH. CPEB1 or CPEB4 knockdown suppresses the TAK1 and Smad signalings in THP-1 macrophage-like cells and dermal fibroblasts. Arch Biochem Biophys 2020; 683: 108322.
[http://dx.doi.org/10.1016/j.abb.2020.108322] [PMID: 32113875]
[51]
Yang Y, Jia Y, Ning Y, et al. TAK1-AMPK pathway in macrophages regulates hypothyroid atherosclerosis. Cardiovasc Drugs Ther 2021; 35(3): 599-612.
[http://dx.doi.org/10.1007/s10557-020-06996-w] [PMID: 32495070]
[52]
Groppo R, Richter JD. CPEB control of NF-kappaB nuclear localization and interleukin-6 production mediates cellular senescence. Mol Cell Biol 2011; 31(13): 2707-14.
[http://dx.doi.org/10.1128/MCB.05133-11] [PMID: 21536657]
[53]
Li L, Lan J, Ye Y, Yang B, Yang X, Cai Z. CPEB1 expression correlates with severity of posttraumatic ankle osteoarthritis and aggravates catabolic effect of IL-1β on chondrocytes. Inflammation 2019; 42(2): 628-36.
[http://dx.doi.org/10.1007/s10753-018-0920-6] [PMID: 30411210]
[54]
Cui HS, Lee YR, Ro YM, et al. Knockdown of CPEB1 and CPEB4 inhibits scar formation via modulation of TAK1 and SMAD signaling. Ann Dermatol 2023; 35(4): 293-302.
[http://dx.doi.org/10.5021/ad.22.210] [PMID: 37550230]
[55]
Kim KC, Hyun Joo S, Shin CY. CPEB1 modulates lipopolysaccharide-mediated iNOS induction in rat primary astrocytes. Biochem Biophys Res Commun 2011; 409(4): 687-92.
[http://dx.doi.org/10.1016/j.bbrc.2011.05.065] [PMID: 21620800]
[56]
Li D, Chen J, Yun C, Li X, Huang Z. MiR-122–5p regulates the pathogenesis of childhood obesity by targeting CPEB1. Obes Res Clin Pract 2022; 16(3): 206-13.
[http://dx.doi.org/10.1016/j.orcp.2022.05.006] [PMID: 35680520]
[57]
Yu XH, Fu YC, Zhang DW, Yin K, Tang CK. Foam cells in atherosclerosis. Clin Chim Acta 2013; 424: 245-52.
[http://dx.doi.org/10.1016/j.cca.2013.06.006] [PMID: 23782937]
[58]
Ali AH, Younis N, Abdallah R, et al. Lipid-lowering therapies for atherosclerosis: Statins, fibrates, ezetimibe and PCSK9 monoclonal antibodies. Curr Med Chem 2021; 28(36): 7427-45.
[http://dx.doi.org/10.2174/1875533XMTE03NDEo0] [PMID: 33655822]
[59]
Jin X, Gao J, Zheng R, et al. Antagonizing circRNA_002581–miR-122–CPEB1 axis alleviates NASH through restoring PTEN–AMPK–mTOR pathway regulated autophagy. Cell Death Dis 2020; 11(2): 123.
[http://dx.doi.org/10.1038/s41419-020-2293-7] [PMID: 32054840]
[60]
Yu XH, Tang CK. ABCA1, ABCG1, and cholesterol homeostasis. Adv Exp Med Biol 2022; 1377: 95-107.
[http://dx.doi.org/10.1007/978-981-19-1592-5_7] [PMID: 35575923]
[61]
Li H, Yu XH, Ou X, Ouyang XP, Tang CK. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog Lipid Res 2021; 83: 101109.
[http://dx.doi.org/10.1016/j.plipres.2021.101109] [PMID: 34097928]
[62]
Wang Y, Guo M, Tang CK. History and development of ABCA1. Curr Probl Cardiol 2024; 49(1): 102036.
[http://dx.doi.org/10.1016/j.cpcardiol.2023.102036] [PMID: 37595859]
[63]
Prestwich TC, MacDougald OA. Wnt/β-catenin signaling in adipogenesis and metabolism. Curr Opin Cell Biol 2007; 19(6): 612-7.
[http://dx.doi.org/10.1016/j.ceb.2007.09.014] [PMID: 17997088]
[64]
Pirillo A, Norata GD, Catapano AL. LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm 2013; 2013: 1-12.
[http://dx.doi.org/10.1155/2013/152786] [PMID: 23935243]
[65]
Dabravolski SA, Khotina VA, Omelchenko AV, Kalmykov VA, Orekhov AN. The role of the VEGF family in atherosclerosis development and its potential as treatment targets. Int J Mol Sci 2022; 23(2): 931.
[http://dx.doi.org/10.3390/ijms23020931] [PMID: 35055117]
[66]
Jaipersad AS, Lip GYH, Silverman S, Shantsila E. The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol 2014; 63(1): 1-11.
[http://dx.doi.org/10.1016/j.jacc.2013.09.019] [PMID: 24140662]
[67]
Hägele S, Kühn U, Böning M, Katschinski DM. Cytoplasmic polyadenylation-element-binding protein (CPEB)1 and 2 bind to the HIF-1 α mRNA 3'-UTR and modulate HIF-1α protein expression. Biochem J 2009; 417(1): 235-46.
[http://dx.doi.org/10.1042/BJ20081353] [PMID: 18752464]
[68]
Caldeira J, Simões-Correia J, Paredes J, et al. CPEB1, a novel gene silenced in gastric cancer: A Drosophila approach. Gut 2012; 61(8): 1115-23.
[http://dx.doi.org/10.1136/gutjnl-2011-300427] [PMID: 22052064]
[69]
Vallée A, Guillevin R, Vallée JN. Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas. Rev Neurosci 2017; 29(1): 71-91.
[http://dx.doi.org/10.1515/revneuro-2017-0032] [PMID: 28822229]
[70]
Zhou Z, Liu T, Li Z, Wang L. Circ_0003732 promotes osteosarcoma progression through regulating miR-377-3p/CPEB1 axis and Wnt/β-catenin signaling pathway. Anticancer Drugs 2022; 33(1): e299-310.
[http://dx.doi.org/10.1097/CAD.0000000000001206] [PMID: 34407049]
[71]
Jones KJ, Korb E, Kundel MA, et al. CPEB1 regulates β-catenin mRNA translation and cell migration in astrocytes. Glia 2008; 56(13): 1401-13.
[http://dx.doi.org/10.1002/glia.20707] [PMID: 18618654]
[72]
Kundel M, Jones KJ, Shin CY, Wells DG. Cytoplasmic polyadenylation element-binding protein regulates neurotrophin-3-dependent beta-catenin mRNA translation in developing hippocampal neurons. J Neurosci 2009; 29(43): 13630-9.
[http://dx.doi.org/10.1523/JNEUROSCI.2910-08.2009] [PMID: 19864575]
[73]
Wang J, Wang T, Zhang Y, et al. CPEB1 enhances erastin-induced ferroptosis in gastric cancer cells by suppressing twist1 expression. IUBMB Life 2021; 73(9): 1180-90.
[http://dx.doi.org/10.1002/iub.2525] [PMID: 34184391]
[74]
Nairismägi M-L, Vislovukh A, Meng Q, et al. Translational control of TWIST1 expression in MCF-10A cell lines recapitulating breast cancer progression. Oncogene 2012; 31(47): 4960-6.
[http://dx.doi.org/10.1038/onc.2011.650] [PMID: 22266852]
[75]
Zhu K, Jiao H, Li S, et al. ATF4 promotes bone angiogenesis by increasing vegf expression and release in the bone environment. J Bone Miner Res 2013; 28(9): 1870-84.
[http://dx.doi.org/10.1002/jbmr.1958] [PMID: 23649506]
[76]
Pereira ER, Frudd K, Awad W, Hendershot LM. Endoplasmic reticulum (ER) stress and hypoxia response pathways interact to potentiate hypoxia-inducible factor 1 (HIF-1) transcriptional activity on targets like vascular endothelial growth factor (VEGF). J Biol Chem 2014; 289(6): 3352-64.
[http://dx.doi.org/10.1074/jbc.M113.507194] [PMID: 24347168]
[77]
Cui Z, Zhao X, Amevor FK, et al. Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism. Front Immunol 2022; 13: 943321.
[http://dx.doi.org/10.3389/fimmu.2022.943321] [PMID: 35935939]
[78]
Yin J, Park G, Lee JE, et al. CPEB1 modulates differentiation of glioma stem cells via downregulation of HES1 and SIRT1 expression. Oncotarget 2014; 5(16): 6756-69.
[http://dx.doi.org/10.18632/oncotarget.2250] [PMID: 25216517]
[79]
Xu M, Fang S, Song J, et al. CPEB1 mediates hepatocellular carcinoma cancer stemness and chemoresistance. Cell Death Dis 2018; 9(10): 957.
[http://dx.doi.org/10.1038/s41419-018-0974-2] [PMID: 30237545]
[80]
Höhn A, Weber D, Jung T, et al. Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol 2017; 11: 482-501.
[http://dx.doi.org/10.1016/j.redox.2016.12.001] [PMID: 28086196]
[81]
Wang JC, Bennett M. Aging and atherosclerosis. Circ Res 2012; 111(2): 245-59.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.261388] [PMID: 22773427]
[82]
Tyrrell DJ, Goldstein DR. Ageing and atherosclerosis: Vascular intrinsic and extrinsic factors and potential role of IL-6. Nat Rev Cardiol 2021; 18(1): 58-68.
[http://dx.doi.org/10.1038/s41569-020-0431-7] [PMID: 32918047]
[83]
Zhu Y, Liu X, Ding X, Wang F, Geng X. Telomere and its role in the aging pathways: Telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology 2019; 20(1): 1-16.
[http://dx.doi.org/10.1007/s10522-018-9769-1] [PMID: 30229407]
[84]
Matthews C, Gorenne I, Scott S, et al. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: Effects of telomerase and oxidative stress. Circ Res 2006; 99(2): 156-64.
[http://dx.doi.org/10.1161/01.RES.0000233315.38086.bc] [PMID: 16794190]
[85]
Wang J, Uryga AK, Reinhold J, et al. Vascular smooth muscle cell senescence promotes atherosclerosis and features of plaque vulnerability. Circulation 2015; 132(20): 1909-19.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.016457] [PMID: 26416809]
[86]
Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, van Deursen JM. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 2016; 354(6311): 472-7.
[http://dx.doi.org/10.1126/science.aaf6659] [PMID: 27789842]
[87]
Kim KS, Kang KW, Seu YB, Baek SH, Kim JR. Interferon-γ induces cellular senescence through p53-dependent DNA damage signaling in human endothelial cells. Mech Ageing Dev 2009; 130(3): 179-88.
[http://dx.doi.org/10.1016/j.mad.2008.11.004] [PMID: 19071156]
[88]
Warboys CM, de Luca A, Amini N, et al. Disturbed flow promotes endothelial senescence via a p53-dependent pathway. Arterioscler Thromb Vasc Biol 2014; 34(5): 985-95.
[http://dx.doi.org/10.1161/ATVBAHA.114.303415] [PMID: 24651677]
[89]
Xiang Q, Tian F, Du X, et al. Postprandial triglyceride-rich lipoproteins-induced premature senescence of adipose-derived mesenchymal stem cells via the SIRT1/p53/Ac-p53/p21 axis through oxidative mechanism. Aging 2020; 12(24): 26080-94.
[http://dx.doi.org/10.18632/aging.202298] [PMID: 33316776]
[90]
Burns DM, D’Ambrogio A, Nottrott S, Richter JD. CPEB and two poly(A) polymerases control miR-122 stability and p53 mRNA translation. Nature 2011; 473(7345): 105-8.
[http://dx.doi.org/10.1038/nature09908] [PMID: 21478871]
[91]
Xiaoping L, Zhibin Y, Wenjuan L, et al. CPEB1, a histone-modified hypomethylated gene, is regulated by miR-101 and involved in cell senescence in glioma. Cell Death Dis 2013; 4(6): e675.
[http://dx.doi.org/10.1038/cddis.2013.197] [PMID: 23788032]
[92]
Yan P, Li Z, Xiong J, et al. LARP7 ameliorates cellular senescence and aging by allosterically enhancing SIRT1 deacetylase activity. Cell Rep 2021; 37(8): 110038.
[http://dx.doi.org/10.1016/j.celrep.2021.110038] [PMID: 34818543]
[93]
Cole MD, Cowling VH. Transcription-independent functions of MYC: regulation of translation and DNA replication. Nat Rev Mol Cell Biol 2008; 9(10): 810-5.
[http://dx.doi.org/10.1038/nrm2467] [PMID: 18698328]
[94]
Hydbring P, Bahram F, Su Y, et al. Phosphorylation by Cdk2 is required for Myc to repress Ras-induced senescence in cotransformation. Proc Natl Acad Sci 2010; 107(1): 58-63.
[http://dx.doi.org/10.1073/pnas.0900121106] [PMID: 19966300]
[95]
Gerlach BD, Ampomah PB, Yurdagul A Jr, et al. Efferocytosis induces macrophage proliferation to help resolve tissue injury. Cell Metab 2021; 33(12): 2445-2463.e8.
[http://dx.doi.org/10.1016/j.cmet.2021.10.015] [PMID: 34784501]
[96]
Groisman I, Ivshina M, Marin V, Kennedy NJ, Davis RJ, Richter JD. Control of cellular senescence by CPEB. Genes Dev 2006; 20(19): 2701-12.
[http://dx.doi.org/10.1101/gad.1438906] [PMID: 17015432]
[97]
Tabas I, Seimon T, Timmins J, Li G, Lim W. Macrophage apoptosis in advanced atherosclerosis. Ann N Y Acad Sci 2009; 1173(S1): E40-5.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04957.x]
[98]
Terrano DT, Upreti M, Chambers TC. Cyclin-dependent kinase 1-mediated Bcl-xL/Bcl-2 phosphorylation acts as a functional link coupling mitotic arrest and apoptosis. Mol Cell Biol 2010; 30(3): 640-56.
[http://dx.doi.org/10.1128/MCB.00882-09] [PMID: 19917720]
[99]
Choi HJ, Zhu BT. Upregulated cyclin B1/CDK1 mediates apoptosis following 2-methoxyestradiol-induced mitotic catastrophe: Role of Bcl-XL phosphorylation. Steroids 2019; 150: 108381.
[http://dx.doi.org/10.1016/j.steroids.2019.02.014] [PMID: 30797877]
[100]
Wang T, Li F, Geng W, Ruan Q, Shi W. MicroRNA-122 ameliorates corneal allograft rejection through the downregulation of its target CPEB1. Cell Death Discov 2017; 3(1): 17021.
[http://dx.doi.org/10.1038/cddiscovery.2017.21] [PMID: 28540063]
[101]
Chen R, Ye B, Xie H, et al. miR-129-3p alleviates chondrocyte apoptosis in knee joint fracture-induced osteoarthritis through CPEB1. J Orthop Surg Res 2020; 15(1): 552.
[http://dx.doi.org/10.1186/s13018-020-02070-1] [PMID: 33228708]
[102]
Zou Y, Kong M. Tetrahydroxy stilbene glucoside alleviates palmitic acid-induced inflammation and apoptosis in cardiomyocytes by regulating miR-129-3p/Smad3 signaling. Cell Mol Biol Lett 2019; 24(1): 5.
[http://dx.doi.org/10.1186/s11658-018-0125-x] [PMID: 30820195]
[103]
Jia Y, Zhao J, Yang J, Shao J, Cai Z. miR-301 regulates the SIRT1/SOX2 pathway via CPEB1 in the breast cancer progression. Mol Ther Oncolytics 2021; 22: 13-26.
[http://dx.doi.org/10.1016/j.omto.2021.03.007] [PMID: 34377766]
[104]
Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol 2018; 17(1): 121.
[http://dx.doi.org/10.1186/s12933-018-0763-3] [PMID: 30170601]
[105]
Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical update: Cardiovascular disease in diabetes mellitus. Circulation 2016; 133(24): 2459-502.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.022194] [PMID: 27297342]
[106]
Hu Q, Mu J, Liu Y, et al. Obesity-induced miR-455 upregulation promotes adaptive pancreatic β-cell proliferation through the CPEB1/CDKN1B pathway. Diabetes 2022; 71(3): 394-411.
[http://dx.doi.org/10.2337/db21-0134] [PMID: 35029277]
[107]
Feinberg MW, Moore KJ. MicroRNA regulation of atherosclerosis. Circ Res 2016; 118(4): 703-20.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306300] [PMID: 26892968]
[108]
Reustle A, Torzewski M. Role of p38 MAPK in atherosclerosis and aortic valve sclerosis. Int J Mol Sci 2018; 19(12): 3761.
[http://dx.doi.org/10.3390/ijms19123761] [PMID: 30486366]
[109]
Wang W, Liu W, Fidler T, et al. Macrophage inflammation, erythrophagocytosis, and accelerated atherosclerosis in Jak2V617F mice. Circ Res 2018; 123(11): e35-47.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313283] [PMID: 30571460]
[110]
Oe S, Hayashi S, Tanaka S, et al. Cytoplasmic polyadenylation element-binding protein 1 post-transcriptionally regulates fragile X mental retardation 1 expression through 3' untranslated region in central nervous system neurons. Front Cell Neurosci 2022; 16: 869398.
[http://dx.doi.org/10.3389/fncel.2022.869398] [PMID: 35496917]
[111]
Oruganty-Das A, Ng T, Udagawa T, Goh ELK, Richter JD. Translational control of mitochondrial energy production mediates neuron morphogenesis. Cell Metab 2012; 16(6): 789-800.
[http://dx.doi.org/10.1016/j.cmet.2012.11.002] [PMID: 23217258]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy