Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

An Updated Review on the Role of Phytoconstituents in Modulating Signalling Pathways to Combat Skin Ageing: Nature’s Own Weapons and Approaches

Author(s): Mayur Porwal, Vaibhav Rastogi, Phool Chandra and Swati Shukla*

Volume 14, Issue 8, 2024

Published on: 24 January, 2024

Article ID: e250124226110 Pages: 17

DOI: 10.2174/0122103155273789231122104742

Price: $65

Abstract

Various geographical areas exhibit varying degrees of prevalence and severity of dermatological issues. The most commonly observed skin issues among adolescents during their growth period on a global scale encompass dry skin, dyspigmentation, wrinkles, fungal infections, as well as benign and malignant tumors. These conditions arise as a consequence of diminished functional capacity and heightened skin susceptibility. The primary manifestation of the whole process of skin ageing is its visual presentation, which encompasses changes in both the structure and function of the skin. The look and function of human skin exhibit particular variations as individuals age, representing a time-dependent phenomenon. This review article primarily examines the discussion surrounding the diverse phytoconstituents and their impact on signalling pathways in cellular metabolism, as well as their interaction with environmental factors and xenobiotic agents that contribute to skin aging. Ultraviolet (UV) light induces the rapid formation and subsequent accumulation of reactive oxygen species (ROS) within skin cells, hence accelerating oxidative stress and the ageing process of the skin. One effective approach to addressing age-related skin disorders entails the utilization of exogenous supplementation through the consumption of dietary antioxidants, as well as the application of antioxidant-based lotions to the skin prior to sun exposure. Several plant species include phenolic components, including ascorbic acid, ellagitannins, and carotenoids, which have the ability to protect the skin from harmful UV radiation, reduce inflammation and oxidative stress, and influence several survival signalling pathways. This comprehensive study elucidated multiple processes by which phytoconstituents exert their effects for intervention purposes. Additionally, it highlighted the ability of these phytoconstituents to modulate the NF-κB signalling pathway, MAPK signalling, Nrf2 signalling, and other pathways, hence demonstrating their potential anti-aging properties.

Graphical Abstract

[1]
Kolakul, P.; Sripanidkulchai, B. Phytochemicals and anti-aging potentials of the extracts from Lagerstroemia speciosa and Lagerstroemia floribunda. Ind. Crops Prod., 2017, 109, 707-716.
[http://dx.doi.org/10.1016/j.indcrop.2017.09.026]
[2]
Patil Kose, A.H.; Potdar, S.N.; Mishra, R.A. Investigation of phytochemicals as anti-ageing agents aganist matrix metalloproteinases using molecular docking approach. International Journal of Creative Research Thoughts, 2020, 8, 2320-2882.
[3]
Mostafa, E.; Fayed, M.A.A.; Radwan, R.A.; Bakr, R.O. Centaurea pumilio L. extract and nanoparticles: A candidate for healthy skin. Colloids Surf. B Biointerfaces, 2019, 182, 110350.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110350] [PMID: 31326622]
[4]
Kageyama, H.; Waditee-Sirisattha, R. Antioxidative, Anti-Inflammatory, and Anti-Aging Properties of Mycosporine-Like Amino Acids: Molecular and Cellular Mechanisms in the Protection of Skin-Aging. Marine. Drugs, 2019, 17, 222.
[5]
de Araújo, R.; Lôbo, M.; Trindade, K.; Silva, D.F.; Pereira, N. Fibroblast growth factors: A controlling mechanism of skin aging. Skin Pharmacol. Physiol., 2019, 32(5), 275-282.
[http://dx.doi.org/10.1159/000501145] [PMID: 31352445]
[6]
Umbayev, B; Askarova, S ; Almabayeva, A Galactose-induced skin aging: The role of oxidative stress. Oxid Med Cell Longev, 2020. Epub ahead of print 2020.
[http://dx.doi.org/10.1155/2020/7145656]
[7]
Gendrisch, F.; Esser, P.R.; Schempp, C.M.; Wölfle, U. Luteolin as a modulator of skin aging and inflammation. Biofactors, 2021, 47(2), 170-180.
[http://dx.doi.org/10.1002/biof.1699] [PMID: 33368702]
[8]
Xiao, T.; Chen, Y.; Song, C.; Xu, S.; Lin, S.; Li, M.; Chen, X.; Gu, H. Possible treatment for UVB-induced skin injury: Anti-inflammatory and cytoprotective role of metformin in UVB-irradiated keratinocytes. J. Dermatol. Sci., 2021, 102(1), 25-35.
[http://dx.doi.org/10.1016/j.jdermsci.2021.02.002] [PMID: 33642112]
[9]
Choi, S.Y.; Bin, B.H.; Kim, W.; Lee, E.; Lee, T.R.; Cho, E.G. Exposure of human melanocytes to UVB twice and subsequent incubation leads to cellular senescence and senescence-associated pigmentation through the prolonged p53 expression. J. Dermatol. Sci., 2018, 90(3), 303-312.
[http://dx.doi.org/10.1016/j.jdermsci.2018.02.016] [PMID: 29525471]
[10]
Ho, C.Y.; Dreesen, O. Faces of cellular senescence in skin aging. Mech. Ageing Dev., 2021, 198, 111525. Epub ahead of print
[http://dx.doi.org/10.1016/j.mad.2021.111525] [PMID: 34166688]
[11]
Poomanee, W.; Yaowiwat, N.; Pattarachaidaecharuch, T. Optimized multiherbal combination and in vivo anti-skin aging potential: A randomized double blind placebo controlled study. Sci. Rep., 2023, 13, 1-11.
[12]
Pintus, F.; Floris, S.; Fais, A. Euphorbia characias extract: Inhibition of skin aging-related enzymes and nanoformulation. In: Plants, 2022, 11, 1849.
[13]
Costa, E.F.; Magalhães, W.V.; Di Stasi, L.C. Recent advances in herbal-derived products with skin anti-aging properties and cosmetic applications. Molecules, 2022, 27(21), 7518. Epub ahead of print
[http://dx.doi.org/10.3390/molecules27217518] [PMID: 36364354]
[14]
Naughton, G.K.; Jiang, L.I.; Makino, E.T.; Chung, R.; Nguyen, A.; Cheng, T.; Kadoya, K.; Mehta, R.C. Targeting multiple hallmarks of skin aging: Preclinical and clinical efficacy of a novel growth factor-based skin care serum. Dermatol. Ther., 2023, 13(1), 169-186.
[http://dx.doi.org/10.1007/s13555-022-00839-2] [PMID: 36374431]
[15]
Rattanawiwatpong, P.; Wanitphakdeedecha, R.; Bumrungpert, A.; Maiprasert, M. Anti-aging and brightening effects of a topical treatment containing vitamin C, vitamin E, and raspberry leaf cell culture extract: A split-face, randomized controlled trial. J. Cosmet. Dermatol., 2020, 19(3), 671-676.
[http://dx.doi.org/10.1111/jocd.13305] [PMID: 31975502]
[16]
Farage, M.A.; Miller, K.W.; Elsner, P.; Maibach, H.I. Intrinsic and extrinsic factors in skin ageing: A review. Int. J. Cosmet. Sci., 2008, 30(2), 87-95.
[http://dx.doi.org/10.1111/j.1468-2494.2007.00415.x] [PMID: 18377617]
[17]
Csekes, E. Račková, L. Skin aging, cellular senescence and natural polyphenols. Int. J. Mol. Sci., 2021, 22(23), 12641. Epub ahead of print
[http://dx.doi.org/10.3390/ijms222312641] [PMID: 34884444]
[18]
Landau, M. Exogenous factors in skin aging. Curr. Probl. Dermatol., 2007, 35, 1-13.
[http://dx.doi.org/10.1159/000106405] [PMID: 17641486]
[19]
Kohl, E.; Steinbauer, J.; Landthaler, M.; Szeimies, R.M. Skin ageing. J. Eur. Acad. Dermatol. Venereol., 2011, 25(8), 873-884.
[http://dx.doi.org/10.1111/j.1468-3083.2010.03963.x] [PMID: 21261751]
[20]
Chaudhary, M.; Khan, A.; Gupta, M. Skin ageing: Pathophysiology and current market treatment approaches. Curr. Aging Sci., 2020, 13(1), 22-30.
[http://dx.doi.org/10.2174/1567205016666190809161115] [PMID: 31530270]
[21]
Ganceviciene, R.; Liakou, A.I.; Theodoridis, A.; Makrantonaki, E.; Zouboulis, C.C. Skin anti-aging strategies. Dermatoendocrinol, 2012, 4(3), 308-319.
[http://dx.doi.org/10.4161/derm.22804] [PMID: 23467476]
[22]
Maddodi, N.; Jayanthy, A.; Setaluri, V. Shining light on skin pigmentation: The darker and the brighter side of effects of UV radiation. Photochem. Photobiol., 2012, 88(5), 1075-1082.
[http://dx.doi.org/10.1111/j.1751-1097.2012.01138.x] [PMID: 22404235]
[23]
Imokawa, G.; Ishida, K. Biological mechanisms underlying the ultraviolet radiation-induced formation of skin wrinkling and sagging I: reduced skin elasticity, highly associated with enhanced dermal elastase activity, triggers wrinkling and sagging. Int. J. Mol. Sci., 2015, 16(12), 7753-7775.
[http://dx.doi.org/10.3390/ijms16047753] [PMID: 25856675]
[24]
D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci., 2013, 14(6), 12222-12248.
[http://dx.doi.org/10.3390/ijms140612222] [PMID: 23749111]
[25]
Amaro-Ortiz, A.; Yan, B.; D’Orazio, J. Ultraviolet radiation, aging and the skin: Prevention of damage by topical cAMP manipulation. Molecules, 2014, 19(5), 6202-6219.
[http://dx.doi.org/10.3390/molecules19056202] [PMID: 24838074]
[26]
Chaiprasongsuk, A.; Panich, U. Role of phytochemicals in skin photoprotection via regulation of Nrf2. Front. Pharmacol., 2022, 13, 823881. Epub ahead of print
[http://dx.doi.org/10.3389/fphar.2022.823881] [PMID: 35645796]
[27]
Mukherjee, P.K.; Maity, N.; Nema, N.K.; Sarkar, B.K. Bioactive compounds from natural resources against skin aging. Phytomedicine, 2011, 19(1), 64-73.
[http://dx.doi.org/10.1016/j.phymed.2011.10.003] [PMID: 22115797]
[28]
Lee, JH.; Park, J.; Shin, DW. The molecular mechanism of polyphenols with anti-aging activity in aged human dermal fibroblasts. Molecules, 2022, 27, 4351.
[29]
Liu, T.; Li, N.; Yan, Y.; Liu, Y.; Xiong, K.; Liu, Y.; Xia, Q.; Zhang, H.; Liu, Z. Recent advances in the anti-aging effects of phytoestrogens on collagen, water content, and oxidative stress. Phytother. Res., 2020, 34(3), 435-447.
[http://dx.doi.org/10.1002/ptr.6538] [PMID: 31747092]
[30]
Ahmed, I.A.; Mikail, M.A.; Zamakshshari, N.; Abdullah, A.S.H. Natural anti-aging skincare: Role and potential. Biogerontology, 2020, 21(3), 293-310.
[http://dx.doi.org/10.1007/s10522-020-09865-z] [PMID: 32162126]
[31]
Jaradat, N.A.; Zaid, A.N.; Hussen, F.; Issa, L.; Altamimi, M.; Fuqaha, B.; Nawahda, A.; Assadi, M. Phytoconstituents, antioxidant, sun protection and skin anti-wrinkle effects using four solvents fractions of the root bark of the traditional plant Alkanna tinctoria (L.). Eur. J. Integr. Med., 2018, 21, 88-93.
[http://dx.doi.org/10.1016/j.eujim.2018.07.003]
[32]
Wang, X.; Gong, X.; Zhang, H.; Zhu, W.; Jiang, Z.; Shi, Y.; Li, L. In vitro anti-aging activities of ginkgo biloba leaf extract and its chemical constituents. Food Sci. Technol., 2020, 40(2), 476-482.
[http://dx.doi.org/10.1590/fst.02219]
[33]
Panich, U; Sittithumcharee, G; Rathviboon, N Ultraviolet radiationinduced skin aging: The role of DNA damage and oxidative stress in epidermal stem cell damage mediated skin aging. Stem Cells Int,. Epub ahead of print 2016.
[http://dx.doi.org/10.1155/2016/7370642]
[34]
Zhang, S.; Duan, E. Fighting against skin aging. Cell Transplant., 2018, 27(5), 729-738.
[http://dx.doi.org/10.1177/0963689717725755] [PMID: 29692196]
[35]
Gruber, F.; Kremslehner, C.; Eckhart, L.; Tschachler, E. Cell aging and cellular senescence in skin aging — Recent advances in fibroblast and keratinocyte biology. Exp. Gerontol., 2020, 130, 110780.
[http://dx.doi.org/10.1016/j.exger.2019.110780] [PMID: 31794850]
[36]
Gerasymchuk, M.; Cherkasova, V.; Kovalchuk, O. The role of microRNAs in organismal and skin aging. Int. J. Mol. Sci., 2020, 21, 5281.
[37]
Kennedy, K.; Cal, R.; Casey, R.; Lopez, C.; Adelfio, A.; Molloy, B.; Wall, A.M.; Holton, T.A.; Khaldi, N. The anti-ageing effects of a natural peptide discovered by artificial intelligence. Int. J. Cosmet. Sci., 2020, 42(4), 388-398.
[http://dx.doi.org/10.1111/ics.12635] [PMID: 32453870]
[38]
Slominski, R. Protective role of melatonin and its metabolites in skin aging. Int. J. Mol. Sci., 2022, 23, 1238.
[39]
Papaccio, F.; D’arino, A.; Caputo, S. Focus on the contribution of oxidative stress in skin aging. Antioxidants, 2022, 11, 1121.
[40]
Bocheva, G.; Slominski, R.M.; Slominski, A.T. The Impact of Vitamin D on Skin Aging. Int. J. Mol. Sci., 2021, 12, 9097.
[41]
Kathuria, S.; Puri, P.; Nandar, S.K.; Ramesh, V. Effects of air pollution on the skin: A review. Indian J. Dermatol. Venereol. Leprol., 2017, 83(4), 415-423.
[http://dx.doi.org/10.4103/0378-6323.199579] [PMID: 28195077]
[42]
Markiewicz, E.; Jerome, J.; Mammone, T.; Idowu, O.C. Anti-glycation and anti-aging properties of resveratrol derivatives in the in-vitro 3d models of human skin. Clin. Cosmet. Investig. Dermatol., 2022, 15, 911-927.
[http://dx.doi.org/10.2147/CCID.S364538] [PMID: 35615726]
[43]
Karagecili, H İzol, E; Kirecci, E Determination of antioxidant, anti-alzheimer, antidiabetic, antiglaucoma and antimicrobial effects of zivzik pomegranate (Punica granatum)& A Chemical Profiling by LC-MS/MS. Life, 2023, 13, 735.
[44]
Si, H.; Liu, D. Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. J. Nutr. Biochem., 2014, 25(6), 581-591.
[http://dx.doi.org/10.1016/j.jnutbio.2014.02.001] [PMID: 24742470]
[45]
Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The potential of plant phenolics in prevention and therapy of skin disorders. Int. J. Mol. Sci., 2016, 17(2), 160. Epub ahead of print
[http://dx.doi.org/10.3390/ijms17020160] [PMID: 26901191]
[46]
Saraf, S.; Kaur, C.D. Phytoconstituents as photoprotective novel cosmetic formulations. Pharmacogn. Rev., 2010, 4(7), 1-11.
[http://dx.doi.org/10.4103/0973-7847.65319] [PMID: 22228936]
[47]
Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H.B. Resources and biological activities of natural polyphenols. Nutrients, 2014, 6(12), 6020-6047.
[http://dx.doi.org/10.3390/nu6126020] [PMID: 25533011]
[48]
Lohakul, J.; Chaiprasongsuk, A.; Jeayeng, S.; Saelim, M.; Muanjumpon, P.; Thanachaiphiwat, S.; Tripatara, P.; Soontrapa, K.; Lumlerdkij, N.; Akarasereenont, P.; Panich, U. The protective effect of polyherbal formulation, harak formula, on uva-induced photoaging of human dermal fibroblasts and mouse skin via promoting Nrf2-regulated antioxidant defense. Front. Pharmacol., 2021, 12, 649820. Epub ahead of print
[http://dx.doi.org/10.3389/fphar.2021.649820] [PMID: 33912060]
[49]
Domaszewska-Szostek, A. Puzianowska-Kuźnicka, M.; Kuryłowicz, A. Flavonoids in skin senescence prevention and treatment. Int. J. Mol. Sci., 2021, 22(13), 6814.
[http://dx.doi.org/10.3390/ijms22136814] [PMID: 34201952]
[50]
Yang, H.L.; Lin, C.P.; Vudhya Gowrisankar, Y.; Huang, P.J.; Chang, W.L.; Shrestha, S.; Hseu, Y.C. The anti-melanogenic effects of ellagic acid through induction of autophagy in melanocytes and suppression of UVA-activated α-MSH pathways via Nrf2 activation in keratinocytes. Biochem. Pharmacol., 2021, 185, 114454. Epub ahead of print
[http://dx.doi.org/10.1016/j.bcp.2021.114454] [PMID: 33545118]
[51]
Calniquer, G.; Khanin, M.; Ovadia, H.; Linnewiel-Hermoni, K.; Stepensky, D.; Trachtenberg, A.; Sedlov, T.; Braverman, O.; Levy, J.; Sharoni, Y. Combined effects of carotenoids and polyphenols in balancing the response of skin cells to uv irradiation. Molecules, 2021, 26(7), 1931. Epub ahead of print
[http://dx.doi.org/10.3390/molecules26071931] [PMID: 33808148]
[52]
Anbualakan, K.; Tajul Urus, N.Q.; Makpol, S.; Jamil, A.; Mohd Ramli, E.S.; Md Pauzi, S.H.; Muhammad, N. A scoping review on the effects of carotenoids and flavonoids on skin damage due to ultraviolet radiation. Nutrients, 2022, 15(1), 92. Epub ahead of print
[http://dx.doi.org/10.3390/nu15010092] [PMID: 36615749]
[53]
Ha, B.G.; Park, M.A.; Lee, C.M.; Kim, Y.C. Antioxidant activity and anti-wrinkle effects of aceriphyllum rossii leaf ethanol extract. Toxicol. Res., 2015, 31(4), 363-369.
[http://dx.doi.org/10.5487/TR.2015.31.4.363] [PMID: 26877839]
[54]
Kim, J.; Oh, J.; Averilla, J.N.; Kim, H.J.; Kim, J.S.; Kim, J.S. Grape peel extract and resveratrol inhibit wrinkle formation in mice model through activation of Nrf2/HO-1 signaling pathway. J. Food Sci., 2019, 84(6), 1600-1608.
[http://dx.doi.org/10.1111/1750-3841.14643] [PMID: 31132143]
[55]
Martinson, K.; Stueven, N.; Monte, A. A novel stilbene-like compound that reduces melanin through inhibiting melanocyte differentiation and proliferation without inhibiting tyrosinase. Cosmetics, 2018, 5, 45.
[56]
Gao, W.; Wang, Y.; Hwang, E.; Lin, P.; Bae, J.; Seo, S.A.; Yan, Z.; Yi, T.H. Rubus idaeus L. (red raspberry) blocks UVB-induced MMP production and promotes type I procollagen synthesis via inhibition of MAPK/AP-1, NF-κβ and stimulation of TGF-β/Smad, Nrf2 in normal human dermal fibroblasts. J. Photochem. Photobiol. B, 2018, 185, 241-253.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.06.007] [PMID: 29966991]
[57]
Wang, PW; Cheng, YC Hung, YC Red Raspberry Extract Protects the Skin against UVB-Induced Damage with Antioxidative and Anti- inflammatory Properties. Oxid Med Cell Longev;, 2019. Epub ahead of print 2019.
[http://dx.doi.org/10.1155/2019/9529676]
[58]
Ispiryan, A.; Viškelis, J.; Viškelis, P. Red raspberry (Rubus idaeus L.) seed oil: A review. Plants, 2021, 10(5), 944. Epub ahead of print
[http://dx.doi.org/10.3390/plants10050944] [PMID: 34065144]
[59]
Ginsenoside C-Mx Isolated from Notoginseng Stem-leaf Ginsenosides Attenuates Ultraviolet B-mediated Photoaging in Human Dermal Fibroblasts. Photochem. Photobiol., 2018, 94, 1040-1048.
[60]
Antiphotoaging and antimelanogenesis properties of ginsenoside C-Y, a ginsenoside Rb2 metabolite from american ginseng PDD-ginsenoside. Photochem. Photobiol., 2019, 95, 1412-1423.
[61]
Leis, K; Pisanko, K ; Jundziłł, A Resveratrol as a factor preventing skin aging and affecting its regeneration. Advances in Dermatology and Allergology/Postepy Dermatologii i Alergologii, 2022, 39, 439.
[62]
Lee, T.H.; Seo, J.O.; Baek, S.H.; Kim, S.Y. Inhibitory effects of resveratrol on melanin synthesis in ultraviolet B-induced pigmentation in Guinea pig skin. Biomol. Ther., 2014, 22(1), 35-40.
[http://dx.doi.org/10.4062/biomolther.2013.081] [PMID: 24596619]
[63]
Santín-Márquez, R.; Alarcón-Aguilar, A.; López-Diazguerrero, N.E.; Chondrogianni, N.; Königsberg, M. Sulforaphane - role in aging and neurodegeneration. Geroscience, 2019, 41(5), 655-670.
[http://dx.doi.org/10.1007/s11357-019-00061-7] [PMID: 30941620]
[64]
Sikdar, S.; Papadopoulou, M.; Dubois, J. What do we know about sulforaphane protection against photoaging? J. Cosmet. Dermatol., 2016, 15(1), 72-77.
[http://dx.doi.org/10.1111/jocd.12176] [PMID: 26799467]
[65]
Gul, M.; Liu, ZW. haq, Iahtisham-Ul- Functional and nutraceutical significance of Amla (Phyllanthus emblica L.): A Review. Antioxidants, 2022, 11, 1. Epub ahead of print
[http://dx.doi.org/10.3390/antiox11050816]
[66]
Indian Medicinal Plants. Indian Medicinal Plants., 2007. Epub ahead of print,
[http://dx.doi.org/10.1007/978-0-387-70638-2]
[67]
Jadoon, S; Karim, S; Asad, MHH Anti-aging potential of phytoextract loaded-pharmaceutical creams for human skin cell longetivity. Oxid Med Cell Longev, 2015. Epub ahead of print, 2015.
[http://dx.doi.org/10.1155/2015/709628]
[68]
Adil, M.D.; Kaiser, P.; Satti, N.K.; Zargar, A.M.; Vishwakarma, R.A.; Tasduq, S.A. Effect of Emblica officinalis (fruit) against UVB-induced photo-aging in human skin fibroblasts. J. Ethnopharmacol., 2010, 132(1), 109-114.
[http://dx.doi.org/10.1016/j.jep.2010.07.047] [PMID: 20688142]
[69]
Huang, GJ; Wang, B ; Sen, ; Lin, WC Antioxidant and Anti- Inflammatory Properties of Longan (Dimocarpus longan Lour.) Pericarp. Evid Based Complement Alternat Med, 2012. Epub ahead of print 2012.
[http://dx.doi.org/10.1155/2012/709483 ]
[70]
Doungsaard, P.; Chansakaow, S.; Sirithunyalug, J.; Lue, S-C.; Lin, W-C.; Liang, C-H.; Lee, K-H.; Leelapornpisid, P. In vitro biological activities of the anti-aging potential of dimocarpus longan leaf extracts. Chiang Mai University Journal of Natural Sciences, 2020, 19(2), 235.
[http://dx.doi.org/10.12982/CMUJNS.2020.0016]
[71]
Gromkowska-Kępka, K.J.; Markiewicz-Żukowska, R.; Nowakowski, P.; Naliwajko, S.K.; Moskwa, J.; Puścion-Jakubik, A.; Bielecka, J.; Grabia, M.; Mielcarek, K.; Soroczyńska, J.; Socha, K. Chemical composition and protective effect of young barley (Hordeum vulgare l.) dietary supplements extracts on uv-treated human skin fibroblasts in in vitro studies. Antioxidants, 2021, 10(9), 1402. Epub ahead of print
[http://dx.doi.org/10.3390/antiox10091402] [PMID: 34573034]
[72]
Ni, J.; Au, M.; Kong, H. Lycium barbarum polysaccharides in ageing and its potential use for prevention and treatment of osteoarthritis: a systematic review. BMC Complementary Medicine and Therapies, 2021, 21, 1-16.
[73]
Gao, Y.; Wei, Y.; Wang, Y.; Gao, F.; Chen, Z. Lycium Barbarum: A traditional chinese herb and a promising anti-aging agent. Aging Dis., 2017, 8(6), 778-791.
[http://dx.doi.org/10.14336/AD.2017.0725] [PMID: 29344416]
[74]
Niu, Y.; Liao, J.; Zhou, H.; Wang, C.; Wang, L.; Fan, Y. Flavonoids from Lycium barbarum leaves exhibit anti-aging effects through the redox-modulation. Molecules, 2022, 27(15), 4952. Epub ahead of print
[http://dx.doi.org/10.3390/molecules27154952] [PMID: 35956901]
[75]
Nocera, R.; Eletto, D.; Santoro, V.; Parisi, V.; Bellone, M.L.; Izzo, M.; Tosco, A.; Dal Piaz, F.; Donadio, G.; De Tommasi, N. Design of an herbal preparation composed by a combination of Ruscus aculeatus L. and Vitis vinifera L. extracts, magnolol and diosmetin to address chronic venous diseases through an anti-inflammatory effect and AP-1 modulation. Plants, 2023, 12(5), 1051.
[http://dx.doi.org/10.3390/plants12051051] [PMID: 36903912]
[76]
Singh, A.; Lal, U.; Mukhtar, H.; Singh, P.; Shah, G.; Dhawan, R. Phytochemical profile of sugarcane and its potential health aspects. Pharmacogn. Rev., 2015, 9(17), 45-54.
[http://dx.doi.org/10.4103/0973-7847.156340] [PMID: 26009693]
[77]
Ji, J.; Yang, X.; Flavel, M. Age-deterring and skin care function of a polyphenol rich sugarcane concentrate. Cosmetics, 2020, 7, 30.
[78]
Joo Park, H.; Park, K-K.; Hwang, J-K. Protective effects of prunus persica flesh extract (PPFE) on UV-induced oxidative stress and matrix metalloproteinases expression in human skin cells. Nat. Prod. Sci., 2012, 18, 52-59.
[79]
Mostafa, E.S.; Maher, A.; Mostafa, D.A.; Gad, S.S.; Nawwar, M.A.M.; Swilam, N. A unique acylated flavonol glycoside from Prunus persica (L.) var. florida prince: A new solid lipid nanoparticle cosmeceutical formulation for skincare. Antioxidants, 2021, 10(3), 436.
[http://dx.doi.org/10.3390/antiox10030436] [PMID: 33809166]
[80]
Gaweł-Bęben, K.; Strzępek-Gomółka, M.; Czop, M.; Sakipova, Z.; Gł owniak, K.; Kukula-Koch, W. Achillea millefolium L. and Achillea biebersteinii Afan. Hydroglycolic extracts–bioactive ingredients for cosmetic use. Molecules, 2020, 25(15), 3368. Epub ahead of print
[http://dx.doi.org/10.3390/molecules25153368] [PMID: 32722270]
[81]
Strzępek-Gomółka, M; Gaweł-Bęben, K; Kukula-Koch, W. Achillea species as sources of active phytochemicals for dermatological and cosmetic applications. Oxid Med Cell Longev, 2021. Epub ahead of print, 2021.
[http://dx.doi.org/10.1155/2021/6643827]
[82]
Peerzada, A.M.; Ali, H.H.; Naeem, M.; Latif, M.; Bukhari, A.H.; Tanveer, A. Cyperus rotundus L.: Traditional uses, phytochemistry, and pharmacological activities. J. Ethnopharmacol., 2015, 174, 540-560.
[http://dx.doi.org/10.1016/j.jep.2015.08.012] [PMID: 26297840]
[83]
El Khoury, R.; Michael-Jubeli, R.; Bakar, J.; Dakroub, H.; Rizk, T.; Baillet-Guffroy, A.; Lteif, R.; Tfayli, A. Origanum essential oils reduce the level of melanin in B16-F1 melanocytes. Eur. J. Dermatol., 2019, 29(6), 596-602.
[http://dx.doi.org/10.1684/ejd.2019.3677] [PMID: 31903949]
[84]
Yarovaya, L.; Waranuch, N.; Wisuitiprot, W.; Khunkitti, W. Clinical study of Asian skin changes after application of a sunscreen formulation containing grape seed extract. J. Cosmet. Dermatol., 2022, 21(10), 4523-4535.
[http://dx.doi.org/10.1111/jocd.14982] [PMID: 35403355]
[85]
Tao, K.; Guo, L.; Hu, X.; Fitzgerald, C.; Rouzard, K.; Healy, J.; Tamura, M.; Stock, J.B.; Stock, M.; Pérez, E.; Fernández, J.R. Encapsulated activated grape seed extract: A novel formulation with anti-aging, skin-brightening, and hydration properties. Cosmetics, 2021, 9(1), 4.
[http://dx.doi.org/10.3390/cosmetics9010004]
[86]
Benameur, T.; Soleti, R.; Panaro, M.A.; La Torre, M.E.; Monda, V.; Messina, G.; Porro, C. Curcumin as prospective anti-aging natural compound: Focus on brain. Molecules, 2021, 26(16), 4794. Epub ahead of print
[http://dx.doi.org/10.3390/molecules26164794] [PMID: 34443381]
[87]
Tavakol, S.; Zare, S.; Hoveizi, E.; Tavakol, B.; Rezayat, S.M. The impact of the particle size of curcumin nanocarriers and the ethanol on beta_1-integrin overexpression in fibroblasts: A regenerative pharmaceutical approach in skin repair and anti-aging formulations. Daru, 2019, 27(1), 159-168.
[http://dx.doi.org/10.1007/s40199-019-00258-3] [PMID: 30875026]
[88]
de Souza Silva, F.K.; Costa-Orlandi, C.B.; Fernandes, M.A.; Pegorin Brasil, G.S.A.; Mussagy, C.U.; Scontri, M.; Sasaki, J.C.S.; de Sousa Abreu, A.P.; Guerra, N.B.; Floriano, J.F.; de Mendonça, R.J.; Caetano, G.F.; Farhadi, N.; Gómez, A.; Huang, S.; Farias, A.M.; Primo, F.L.; Li, B.; Fusco-Almeida, A.M.; Dokmeci, M.R.; Jucaud, V.; Mendes-Giannini, M.J.S.; Cardoso, M.R.; Herculano, R.D. Biocompatible anti-aging face mask prepared with curcumin and natural rubber with antioxidant properties. Int. J. Biol. Macromol., 2023, 242(Pt 1), 124778.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.124778] [PMID: 37172704]
[89]
Ciorîţă, A; Zăgrean-tuza, C; Moţ, AC. The Phytochemical Analysis of Vinca L. Species Leaf Extracts Is Correlated with the Antioxidant, Antibacterial, and Antitumor Effects. Molecules, 2021, 26, 3040.
[90]
Molaei, E.; Molaei, A.; Abedi, F.; Hayes, A.W.; Karimi, G. Nephroprotective activity of natural products against chemical toxicants: The role of Nrf2/ARE signaling pathway. Food Sci. Nutr., 2021, 9(6), 3362-3384.
[http://dx.doi.org/10.1002/fsn3.2320] [PMID: 34136201]
[91]
Lima Santos, L.; Brandão, L.B.; Pena da Costa, A.L.; Martins, R.L.; Rodrigues, A.B.L.; Lobato, A.A. Moreira da Silva de Almeida, S.S. Bioinsecticidal and pharmacological activities of the essential oil of pogostemon cablin benth leaves: A review. Pharmacogn. Rev., 2022, 16(32), 139-145.
[http://dx.doi.org/10.5530/phrev.2022.16.18]
[92]
Junren, C.; Xiaofang, X.; Mengting, L. Pharmacological activities and mechanisms of action of pogostemon cablin benth: A review. Chinese. Medicine., 2021, 16, 1-20.
[93]
Ullah, M.A.; Tungmunnithum, D.; Garros, L.; Hano, C.; Abbasi, B.H. Monochromatic lights-induced trends in antioxidant and antidiabetic polyphenol accumulation in in vitro callus cultures of Lepidium sativum L. J. Photochem. Photobiol. B, 2019, 196, 111505.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.05.002] [PMID: 31129506]
[94]
Amer, A.A.; Mohammed, R.S.; Hussein, Y.; Ali, A.S.M.; Khalil, A.A. Development of Lepidium sativum Extracts/PVA electrospun nanofibers as wound healing dressing. ACS Omega, 2022, 7(24), 20683-20695.
[http://dx.doi.org/10.1021/acsomega.2c00912] [PMID: 35755335]
[95]
Nazir, S.; El-Sherif, A.A.; Abdel-Ghani, N.T.; Ibrahim, M.A.A.; Hegazy, M.E.F.; Atia, M.A.M. Lepidium sativum secondary metabolites (Essential oils): in vitro and in silico studies on human hepatocellular carcinoma cell lines. Plants, 2021, 10(9), 1863.
[http://dx.doi.org/10.3390/plants10091863] [PMID: 34579396]
[96]
Shahkoomahally, S.; Shin, D.; Habibi, F.; Kim, J.; Sarkhosh, A. Profiling phenolic compounds in juice and peel of fourteen pomegranate (Punica granatum L.) varieties grown in Florida, USA. Food Chemistry Advances, 2023, 2, 100225.
[http://dx.doi.org/10.1016/j.focha.2023.100225]
[97]
Mansoor, K.; Bardees, R.; Alkhawaja, B.; Mallah, E.; AbuQatouseh, L.; Schmidt, M.; Matalka, K. Impact of pomegranate juice on the pharmacokinetics of CYP3A4- and CYP2C9-mediated drugs metabolism: A preclinical and clinical review. Molecules, 2023, 28(5), 2117. Epub ahead of print
[http://dx.doi.org/10.3390/molecules28052117] [PMID: 36903363]
[98]
Hagag, OY.A-E; Younis, FE-E.; Al-Eisa, RA Effect of feeding pomegranate (punica granatum) peel and garlic (allium sativum) on antioxidant status and reproductive efficiency of female rabbits. Veterinary Sciences, 2023, 10, 179.
[99]
Wang, Y. Wang, L.; Wen, X.; Hao, D.; Zhang, N.; He, G.; Jiang, X. NF-κB signaling in skin aging. Mech. Ageing Dev., 2019, 184, 111160. Epub ahead of print
[http://dx.doi.org/10.1016/j.mad.2019.111160] [PMID: 31634486]
[100]
Hu, S.; Huang, J.; Pei, S.; Ouyang, Y.; Ding, Y.; Jiang, L.; Lu, J.; Kang, L.; Huang, L.; Xiang, H.; Xiao, R.; Zeng, Q.; Chen, J. Ganoderma lucidum polysaccharide inhibits UVB-induced melanogenesis by antagonizing cAMP/PKA and ROS/MAPK signaling pathways. J. Cell. Physiol., 2019, 234(5), 7330-7340.
[http://dx.doi.org/10.1002/jcp.27492] [PMID: 30362532]
[101]
Zia, A.; Farkhondeh, T.; Pourbagher-Shahri, A.M.; Samarghandian, S. The role of curcumin in aging and senescence: Molecular mechanisms. Biomed. Pharmacother., 2021, 134, 111119. Epub ahead of print
[http://dx.doi.org/10.1016/j.biopha.2020.111119] [PMID: 33360051]
[102]
Cao, Y.; Chen, J.; Ren, G.; Zhang, Y.; Tan, X.; Yang, L. Punicalagin prevents inflammation in LPS-Induced RAW264.7 macrophages by inhibiting FoxO3a/Autophagy signaling pathway. Nutrients, 2019, 11(11), 2794. Epub ahead of print
[http://dx.doi.org/10.3390/nu11112794] [PMID: 31731808]
[103]
Xu, J.; Cao, K.; Liu, X. Punicalagin regulates signaling pathways in inflammation-associated chronic diseases. Antioxidants, 2021, 11, 29.
[104]
Mukherjee, S.; Ghosh, S.; Choudhury, S.; Gupta, P.; Adhikary, A.; Chattopadhyay, S. Pomegranate polyphenols attenuate inflammation and hepatic damage in tumor-bearing mice: Crucial role of NF-κB and the Nrf2/GSH axis. J. Nutr. Biochem., 2021, 97, 108812.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108812] [PMID: 34224820]
[105]
Yu, Z.Y.; Xu, K.; Wang, X.; Wen, Y-T.; Wang, L-J.; Huang, D-Q.; Chen, X-X.; Chai, W-M. Punicalagin as a novel tyrosinase and melanin inhibitor: Inhibitory activity and mechanism. Lebensm. Wiss. Technol., 2022, 161, 113318.
[http://dx.doi.org/10.1016/j.lwt.2022.113318]
[106]
Shuhua, Y; Lingqi; Yunlong, M D Proanthocyanidins Activate Nrf2/ARE Signaling Pathway in Intestinal Epithelial Cells by Inhibiting the Ubiquitinated Degradation of Nrf2 Biomed Res Int, 2022. Epub ahead of print, 2022, 39, 327.
[http://dx.doi.org/10.1155/2022/8562795]
[107]
Chen, J; Li, H; Liang, B Effects of tea polyphenols on UVAinduced melanogenesis via inhibition of α-MSH-MC1R signalling pathway. Advances in Dermatology and Allergology/Postepy Dermatologii i Alergologii 2022, 39, 327.
[108]
Baicalin prevents LPS-induced activation of TLR4/NF-κB p65 pathway and inflammation in mice via inhibiting the expression of CD14. Acta Pharmacol. Sin., 2021, 42, 88-96.
[109]
Reinisalo, M; Kårlund, A Koskela, A Polyphenol stilbenes: Molecular mechanisms of defence against oxidative stress and agingrelated diseases Oxid Med Cell Longev, 2015. Epub ahead of print, 2015.
[http://dx.doi.org/10.1155/2015/340520]
[110]
Darvin, ME.; Lademann, J.; von Hagen, J. Carotenoids in human skin in vivo: Antioxidant and photo-protectant role against external and internal stressors. Antioxidants, 2022, 11, 1451.
[111]
Cai, X.; Hua, S.; Deng, J.; Du, Z.; Zhang, D.; Liu, Z.; Khan, N.U.; Zhou, M.; Chen, Z. Astaxanthin activated the Nrf2/HO-1 pathway to enhance autophagy and inhibit ferroptosis, ameliorating acetaminophen-induced liver injury. ACS Appl. Mater. Interfaces, 2022, 14(38), 42887-42903.
[http://dx.doi.org/10.1021/acsami.2c10506] [PMID: 36094079]
[112]
Zhang, X.S.; Lu, Y.; Li, W.; Tao, T.; Peng, L.; Wang, W.H.; Gao, S.; Liu, C.; Zhuang, Z.; Xia, D.Y.; Hang, C.H.; Li, W. Astaxanthin ameliorates oxidative stress and neuronal apoptosis via SIRT1/NRF2/Prx2/ASK1/p38 after traumatic brain injury in mice. Br. J. Pharmacol., 2021, 178(5), 1114-1132.
[http://dx.doi.org/10.1111/bph.15346] [PMID: 33326114]
[113]
Hussain, Y. Abdullah; Alsharif, K.F.; Aschner, M.; Theyab, A.; Khan, F.; Saso, L.; Khan, H. Therapeutic role of carotenoids in blood cancer: mechanistic insights and therapeutic potential. Nutrients, 2022, 14(9), 1949. Epub ahead of print
[http://dx.doi.org/10.3390/nu14091949] [PMID: 35565917]
[114]
Waras Nurcholis, ; Tama, N.D.; Wulandari, N.R. Nadhiya Nurfitra Rahmah; Nabilla Dira Tama; Nenis Rahma Wulandari. Potential of β-carotene as anti-aging serum: A narrative review. Int. J. Res. Pharm. Sci., 2021, 12(3), 1999-2004.
[http://dx.doi.org/10.26452/ijrps.v12i3.4807]
[115]
Zheng, W.V.; Xu, W.; Li, Y.; Qin, J.; Zhou, T.; Li, D.; Xu, Y.; Cheng, X.; Xiong, Y.; Chen, Z. Anti-aging effect of β-carotene through regulating the KAT7-P15 signaling axis, inflammation and oxidative stress process. Cell. Mol. Biol. Lett., 2022, 27(1), 86.
[http://dx.doi.org/10.1186/s11658-022-00389-7] [PMID: 36209059]
[116]
Mannino, F.; Imbesi, C.; Bitto, A.; Minutoli, L.; Squadrito, F.; D’Angelo, T.; Booz, C.; Pallio, G.; Irrera, N. Anti-oxidant and anti-inflammatory effects of ellagic and punicic acid in an in vitro model of cardiac fibrosis. Biomed. Pharmacother., 2023, 162, 114666.
[http://dx.doi.org/10.1016/j.biopha.2023.114666] [PMID: 37030134]
[117]
Valero-Mendoza, A.G.; Meléndez-Rentería, N.P.; Chávez-González, M.L.; Flores-Gallegos, A.C.; Wong-Paz, J.E.; Govea-Salas, M.; Zugasti-Cruz, A.; Ascacio-Valdés, J.A. The whole pomegranate (Punica granatum. L), biological properties and important findings: A review. Food Chemistry Advances, 2023, 2, 100153.
[http://dx.doi.org/10.1016/j.focha.2022.100153]
[118]
Kubo, E; Chhunchha, B; Singh, P Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress. Scientific Reports., 2017, 7, 1-17.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy