Abstract
Diseases caused by bacteria are a big challenge for scientists worldwide. These bacteria can be resistant through the adaption of new ways to protect themselves against antimicrobial drugs and thus become multidrug resistance. In this work, new derivatives of 1,3,4-oxadiazole- cholic acid were synthesized and fully characterized using different techniques, such as 1H-NMR, 13C-NMR, and HRMS. Their biological activity, along with the measuring of their minimal inhibitory concentration (MIC), was studied and reported. The antimicrobial activity of the new library was assessed via in vitro screening against both Gram-positive and Gram-negative bacteria. The compounds showed selectivity against Gram-positive bacteria. Among the new analogues, compounds 4F and 5h were found to be potent against S. aureus with MIC of 47 μg/mL. Compounds 4f, 5g and 5h were active against MRSE with MIC of 188, 99, and 23 μg/mL, respectively.
Graphical Abstract
[http://dx.doi.org/10.3390/ijms20235844] [PMID: 31766441]
[http://dx.doi.org/10.3390/antibiotics11121778] [PMID: 36551435]
[http://dx.doi.org/10.1016/S0891-5520(03)00066-7] [PMID: 14711080]
[http://dx.doi.org/10.3390/molecules24213839] [PMID: 31731387];
(b) Heravi, M.M.; Zadsirjan, V. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Advances, 2020, 10(72), 44247-44311.
[http://dx.doi.org/10.1039/D0RA09198G] [PMID: 35557843]
[http://dx.doi.org/10.1021/acs.orglett.9b02614] [PMID: 31478379];
(b) Glomb, T.; Wiatrak, B.; Gębczak, K.; Gębarowski, T.; Bodetko, D.; Czyżnikowska, Ż.; Świątek, P. New 1,3,4-oxadiazole derivatives of pyridothiazine-1,1-dioxide with anti-inflammatory activity. Int. J. Mol. Sci., 2020, 21(23), 9122.
[http://dx.doi.org/10.3390/ijms21239122] [PMID: 33266208];
(c) Hossan, A.; Abumelha, H.M.; Alnoman, R.B.; Bayazeed, A.; Alsoliemy, A.; Keshk, A.A.; El-Metwaly, N.M. Synthesis, self-assembly and opticalproperties of novel fluorescent alkoxy-substituted fluoroaryl 1,3,4-oxadiazoleorganogelator. Arab. J. Chem., 2022, 15(5), 103771.
[http://dx.doi.org/10.1016/j.arabjc.2022.103771];
(d) Mamatha, S.V.; Belagali, S.L.; Bhat, M. Synthesis, characterisation andevaluation of oxadiazole as promising anticancer agent. SN Appl. Sci., 2020, 2(5), 882.
[http://dx.doi.org/10.1007/s42452-020-2511-z];
(e) Schwärzer, K.; Tüllmann, C.P.; Graßl, S.; Górski, B.; Brocklehurst, C.E.; Knochel, P. Functionalization of 1,3,4-oxadiazoles and 1,2,4-triazoles via selective zincation or magnesiation using 2,2,6,6-tetramethylpiperidyl bases. Org. Lett., 2020, 22(5), 1899-1902.
[http://dx.doi.org/10.1021/acs.orglett.0c00238] [PMID: 32048510];
(f) Umair, M.; Aziz-ur-Rehman,; Abbasi, M.A.; Siddiqui, S.Z.; Iqbal, J.; Rasool, S.; Khan, S.U.; Shah, S.A.A. Multi-selective reaction of azinane bearingoxadiazoles and substituted haloalkanes catalyzed by alkali metal hydrideto access anti-enzymatic agents. J. Mol. Struct., 2024, 1297, 136936.
[http://dx.doi.org/10.1016/j.molstruc.2023.136936]
[http://dx.doi.org/10.1039/D0NJ03708G]
[http://dx.doi.org/10.1080/14756366.2020.1864630] [PMID: 33356666];
(b) Stecoza, C.E.; Nitulescu, G.M.; Draghici, C.; Caproiu, M.T.; Olaru, O.T.; Bostan, M.; Mihaila, M. Synthesis and anticancer evaluation of new 1,3,4-oxadiazole derivatives. Pharmaceuticals, 2021, 14(5), 438.
[http://dx.doi.org/10.3390/ph14050438] [PMID: 34066442];
(c) El Mansouri, A.E.; Maatallah, M.; Ait Benhassou, H.; Moumen, A.; Mehdi, A.; Snoeck, R.; Andrei, G.; Zahouily, M.; Lazrek, H.B. Design, synthesis, chemical characterization, biological evaluation, and docking study of new 1,3,4-oxadiazole homonucleoside analogs. Nucleosides Nucleotides Nucleic Acids, 2020, 39(8), 1088-1107.
[http://dx.doi.org/10.1080/15257770.2020.1761982] [PMID: 32397827]
[http://dx.doi.org/10.3762/bjoc.18.63] [PMID: 35706993]
[http://dx.doi.org/10.3390/ph13060111] [PMID: 32485996];
(b) Kapadiya, K.; Dholaria, P. Microwave and conventional study of coumarin-oxadiazole adducts and their anti-microbial evaluation. Folia Med., 2021, 63(1), 105-112.
[http://dx.doi.org/10.3897/folmed.63.e52655] [PMID: 33650403]
[http://dx.doi.org/10.3390/molecules26082110] [PMID: 33916955]
[http://dx.doi.org/10.1016/j.bmc.2015.06.060] [PMID: 26183542]
[http://dx.doi.org/10.1515/znc-2022-0043] [PMID: 35942947]
[http://dx.doi.org/10.1007/s11274-021-03118-y] [PMID: 34398332];
(b) Cunningham, A.J.; Gibson, V.P.; Banquy, X.; Zhu, X.X.; Jeanne, L.C. Cholic acid-based mixed micelles as siRNA delivery agents for gene therapy. Int. J. Pharm., 2020, 578, 119078.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119078] [PMID: 31988037];
(c) Wang, M.Q.; Zhang, K.H.; Liu, F.L.; Zhou, R.; Zeng, Y.; Chen, A.L.; Yu, Y.; Xia, Q.; Zhu, C.C.; Lin, C.Z. Wedelolactone alleviates cholestatic liver injury by regulating FXR-bile acid-NF-κB/NRF2 axis to reduce bile acid accumulation and its subsequent inflammation and oxidative stress. Phytomedicine, 2024, 122, 155124.
[http://dx.doi.org/10.1016/j.phymed.2023.155124] [PMID: 38014837];
(d) Shanmugam, C.; Marimuthu, V.; Rajendiran, N. Photo-induced synthesisof star poly(DL-Lactide)-templated Au and Ag nanoparticles and evaluationof their catalytic performance. React. Funct. Polym., 2024, 194, 105772.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2023.105772];
(e) Du, Y.; Wang, G.; Yu, E.; Xie, J.; Xia, Y.; Li, H.; Zhang, K.; Gong, W.; Li, Z.; Xie, W.; Jiang, P.; Zhang, W.; Shao, L.; Tian, J. Dietary deoxycholicacid decreases fat accumulation by activating liver farnesoid X receptor ingrass crap (Ctenopharyngodon idella). Aquaculture, 2024, 578, 740123.
[http://dx.doi.org/10.1016/j.aquaculture.2023.740123];
(f) Jin, C.; Zhou, T.; Duan, Z.; Deng, Y.; Zhang, X.; Xiao, C.; He, J.; He, G.; Zhou, Y.; Li, S. Effect of chin brick tea [Camellia sinensis (L.) Kuntze] on lipid metabolism and inflammation by modulating intestinal flora and bile acids in mice with non-alcoholic fatty liver disease. J. Ethnopharmacol., 2024, 318(Pt B), 116950.
[http://dx.doi.org/10.1016/j.jep.2023.116950] [PMID: 37506781]
[http://dx.doi.org/10.1016/j.ejmech.2010.02.006] [PMID: 20181416];
(b) Yadav, K.; Yavvari, P.S.; Pal, S.; Kumar, S.; Mishra, D.; Gupta, S.; Mitra, M.; Soni, V.; Khare, N.; Sharma, P.; Srikanth, C.V.; Kapil, A.; Singh, A.; Nandicoori, V.K.; Bajaj, A. Oral delivery of cholic acid-derived amphiphilehelps in combating salmonella-mediated gut infection and inflammation. Bioconjug. Chem., 2019, 30(3), 721-732.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00880] [PMID: 30669829];
(c) Gupta, S.; Thakur, J.; Pal, S.; Gupta, R.; Mishra, D.; Kumar, S.; Yadav, K.; Saini, A.; Yavvari, P.S.; Vedantham, M.; Singh, A.; Srivastava, A.; Prasad, R.; Bajaj, A. Cholic acid-peptide conjugates as potent antimicrobialsagainst interkingdom polymicrobial biofilms. Antimicrob. Agents Chemother., 2019, 63(11), e00520-19.
[http://dx.doi.org/10.1128/AAC.00520-19] [PMID: 31427303]
(b) Sreekanth, V.; Bansal, S.; Motiani, R.K.; Kundu, S.; Muppu, S.K.; Majumdar, T.D.; Panjamurthy, K.; Sengupta, S.; Bajaj, A. Design, synthesis, and mechanistic investigations of bile acid-tamoxifen conjugates for breast cancer therapy. Bioconjug. Chem., 2013, 24(9), 1468-1484.
[http://dx.doi.org/10.1021/bc300664k] [PMID: 23909664]
[http://dx.doi.org/10.1080/15257770.2020.1725043] [PMID: 32312162]
[http://dx.doi.org/10.1016/j.ejmech.2018.10.008] [PMID: 30317025]