Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Anti-inflammatory Activity and Computational Biology Study of Indole/Pyrimidine Hybrids

Author(s): Mostafa Sayed*, Ahmed M. Sayed, Ahmed A. El-Rashedy, Abdelreheem Abdelfatah Saddik, Azhaar T. Alsaggaf, Adel M. Kamal El-Dean, Reda Hassanien and Mostafa Ahmed*

Volume 28, Issue 1, 2024

Published on: 05 January, 2024

Page: [56 - 64] Pages: 9

DOI: 10.2174/0113852728289430231227042754

Price: $65

Abstract

This research paper embarks on an interdisciplinary exploration encompassing synthetic chemistry, pharmacology, and computational biology. The development of novel anti-inflammatory agents is an imperative endeavor within pharmaceutical research. Pyrimidines and thienopyrimidines are class of heterocyclic compounds that have gained prominence for their diverse pharmacological properties, including potential anti-inflammatory effects. When augmented with an indole moiety, these compounds exhibit structural diversity that can profoundly influence their biological activities. The integration of computational biology specifically molecular docking, plays a crucial role in predicting and understanding the binding interactions between these compounds and select protein targets associated with inflammatory pathways. This computational approach expedites the screening of potential drug candidates and elucidates the molecular underpinnings of their anti-inflammatory actions. Pyrimidine and thienopyrimidines tethering indole scaffold were obtained according to our reported methods. Subsequently, in vivo evaluation of anti-inflammatory is indispensable to gauge the anti-inflammatory potential of these compounds and establish structure-activity relationships. The experimental and computational biology studies of the target indole-pyrimidines hybrids revealed that these compounds can serve as anti-inflammatory agents. This paper can potentially open new avenues for therapeutic strategies against inflammation-associated disorders. The synergy of synthetic innovation, pharmacological evaluation, and computational insights offers a holistic approach to advance our understanding of pyrimidines with an indole moiety as potential agents for mitigating inflammation.

Graphical Abstract

[1]
Oronsky, B.; Caroen, S.; Reid, T. What exactly is inflammation (and what is it not?). Int. J. Mol. Sci., 2022, 23(23), 14905.
[http://dx.doi.org/10.3390/ijms232314905] [PMID: 36499232]
[2]
Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; Miller, A.H.; Mantovani, A.; Weyand, C.M.; Barzilai, N.; Goronzy, J.J.; Rando, T.A.; Effros, R.B.; Lucia, A.; Kleinstreuer, N.; Slavich, G.M. Chronic inflammation in the etiology of disease across the life span. Nat. Med., 2019, 25(12), 1822-1832.
[http://dx.doi.org/10.1038/s41591-019-0675-0] [PMID: 31806905]
[3]
Bullock, J.; Rizvi, S.A.A.; Saleh, A.M.; Ahmed, S.S.; Do, D.P.; Ansari, R.A.; Ahmed, J. Rheumatoid arthritis: A brief overview of the treatment. Med. Princ. Pract., 2018, 27(6), 501-507.
[http://dx.doi.org/10.1159/000493390] [PMID: 30173215]
[4]
Alves, L.P.; da Silva Oliveira, K.; da Paixão Santos, J.A.; da Silva Leite, J.M.; Rocha, B.P.; de Lucena Nogueira, P.; de Araújo Rêgo, R.I.; Oshiro-Junior, J.A.; Damasceno, B.P.G.L. A review on developments and prospects of anti-inflammatory in microemulsions. J. Drug Deliv. Sci. Technol., 2020, 60, 102008.
[http://dx.doi.org/10.1016/j.jddst.2020.102008]
[5]
Pathania, S.; Rawal, R.K. Pyrrolopyrimidines: An update on recent advancements in their medicinal attributes. Eur. J. Med. Chem., 2018, 157, 503-526.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.023] [PMID: 30114661]
[6]
Kumar, S.; Narasimhan, B. Therapeutic potential of heterocyclic pyrimidine scaffolds. Chem. Cent. J., 2018, 12(1), 38.
[http://dx.doi.org/10.1186/s13065-018-0406-5] [PMID: 29619583]
[7]
Nadar, S.; Khan, T. Pyrimidine: An elite heterocyclic leitmotif in drug discovery‐synthesis and biological activity. Chem. Biol. Drug Des., 2022, 100(6), 818-842.
[http://dx.doi.org/10.1111/cbdd.14001] [PMID: 34914188]
[8]
El-Malah, A.A.; Kassab, A. Design, synthesis and biological evaluation of new thieno[2,3-d]pyrimidines as anti-inflammatory agents. Antiinflamm. Antiallergy Agents Med. Chem., 2016, 14(3), 204-214.
[http://dx.doi.org/10.2174/1871523015666160126142041] [PMID: 26813329]
[9]
Tolba, M.S.; Sayed, A.M.; Sayed, M.; Ahmed, M. Design, synthesis, biological evaluation, and molecular docking of some new Thieno[2,3-d] pyrimidine derivatives. J. Mol. Struct., 2021, 1246, 131179.
[http://dx.doi.org/10.1016/j.molstruc.2021.131179]
[10]
Jacquemard, U.; Dias, N.; Lansiaux, A.; Bailly, C.; Logé, C.; Robert, J.M.; Lozach, O.; Meijer, L.; Mérour, J.Y.; Routier, S. Synthesis of 3,5-bis(2-indolyl)pyridine and 3-[(2-indolyl)-5-phenyl]pyridine derivatives as CDK inhibitors and cytotoxic agents. Bioorg. Med. Chem., 2008, 16(9), 4932-4953.
[http://dx.doi.org/10.1016/j.bmc.2008.03.034] [PMID: 18439832]
[11]
Jasiewicz, B.; Babijczuk, K.; Warżajtis, B.; Rychlewska, U.; Starzyk, J.; Cofta, G.; Mrówczyńska, L. Indole derivatives bearing imidazole, benzothiazole-2-thione or benzoxazole-2-thione moieties-synthesis, structure and evaluation of their cytoprotective, antioxidant, antibacterial and fungicidal activities. Molecules, 2023, 28(2), 708.
[http://dx.doi.org/10.3390/molecules28020708] [PMID: 36677766]
[12]
Sayed, M.; Younis, O.; Hassanien, R.; Ahmed, M.; Mohammed, A.A.K.; Kamal, A.M.; Tsutsumi, O. Design and synthesis of novel indole derivatives with aggregation-induced emission and antimicrobial activity. J. Photochem. Photobiol. Chem., 2019, 383, 111969.
[http://dx.doi.org/10.1016/j.jphotochem.2019.111969]
[13]
Younis, O.; Sayed, M.; Mohammed, A.A.K.; Tolba, M.S.; Hassanien, R.; Kamal El-Dean, A.M.; Tsutsumi, O.; Ahmed, M. Solid-state luminescent materials containing both indole and pyrimidine moieties: Design, synthesis, and density functional theory calculations. ACS Omega, 2022, 7(17), 15016-15026.
[http://dx.doi.org/10.1021/acsomega.2c00775] [PMID: 35557695]
[14]
Marrero-Ponce, Y.; Siverio-Mota, D.; Gálvez-Llompart, M.; Recio, M.C.; Giner, R.M.; García-Domènech, R.; Torrens, F.; Arán, V.J.; Cordero-Maldonado, M.L.; Esguera, C.V.; de Witte, P.A.M.; Crawford, A.D. Discovery of novel anti-inflammatory drug-like compounds by aligning in silico and in vivo screening: The nitroindazolinone chemotype. Eur. J. Med. Chem., 2011, 46(12), 5736-5753.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.053] [PMID: 22000935]
[15]
Saleem, F.; Khan, K.M. Indole derivatives: Unveiling new frontiers in medicinal and synthetic organic chemistry. Molecules, 2023, 28(14), 5477.
[http://dx.doi.org/10.3390/molecules28145477] [PMID: 37513349]
[16]
Guo, W.Y.; Chen, L.Z.; Shen, B.N.; Liu, X.H.; Tai, G.P.; Li, Q.S.; Gao, L.; Ruan, B.F. Synthesis and in vitro and in vivo anti-inflammatory activity of novel 4-ferrocenylchroman-2-one derivatives. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1678-1689.
[http://dx.doi.org/10.1080/14756366.2019.1664499] [PMID: 31530032]
[17]
Guha, R. On exploring structure-activity relationships. Methods Mol. Biol., 2013, 993, 81-94.
[http://dx.doi.org/10.1007/978-1-62703-342-8_6] [PMID: 23568465]
[18]
Lee, C.T.; Amaro, R.E. Exascale computing: A new dawn for computational biology. Comput. Sci. Eng., 2018, 20(5), 18-25.
[http://dx.doi.org/10.1109/MCSE.2018.05329812] [PMID: 30983889]
[19]
Agu, P.C.; Afiukwa, C.A.; Orji, O.U.; Ezeh, E.M.; Ofoke, I.H.; Ogbu, C.O.; Ugwuja, E.I.; Aja, P.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci. Rep., 2023, 13(1), 13398.
[http://dx.doi.org/10.1038/s41598-023-40160-2] [PMID: 37592012]
[20]
Hassanein, E.H.M.; Abd El-Maksoud, M.S.; Ibrahim, I.M.; Abd-alhameed, E.K.; Althagafy, H.S.; Mohamed, N.M.; Ross, S.A. The molecular mechanisms underlying anti‐inflammatory effects of galangin in different diseases. Phytother. Res., 2023, 37(7), 3161-3181.
[http://dx.doi.org/10.1002/ptr.7874] [PMID: 37246827]
[21]
Sayed, M.; Shi, Z.; Gholami, F.; Fatehi, P.; Soliman, A.I.A. Ag@TiO2 nanocomposite as an efficient catalyst for knoevenagel condensation. ACS Omega, 2022, 7(36), 32393-32400.
[http://dx.doi.org/10.1021/acsomega.2c03852] [PMID: 36120061]
[22]
Hamed, M.M.; Sayed, M.; Abdel-Mohsen, S.A.; Saddik, A.A.; Ibrahim, O.A.; El-Dean, A.M.K.; Tolba, M.S. Synthesis, biological evaluation, and molecular docking studies of novel diclofenac derivatives as antibacterial agents. J. Mol. Struct., 2023, 1273, 134371.
[http://dx.doi.org/10.1016/j.molstruc.2022.134371]
[23]
Sayed, M.; Saddik, A.A.; Kamal El-Dean, A.M.; Fatehi, P.; Soliman, A.I.A. A post-sulfonated one-pot synthesized magnetic cellulose nanocomposite for Knoevenagel and Thorpe-Ziegler reactions. RSC Advances, 2023, 13(40), 28051-28062.
[http://dx.doi.org/10.1039/D3RA05439J] [PMID: 37746344]
[24]
Elsayed, S.; Abdelkhalek, A.S.; Rezq, S.; Abu Kull, M.E.; Romero, D.G.; Kothayer, H. Magic shotgun approach to anti-inflammatory pharmacotherapy: Synthesis of novel thienopyrimidine monomers/heterodimer as dual COX-2 and 15-LOX inhibitors endowed with potent antioxidant activity. Eur. J. Med. Chem., 2023, 260, 115724.
[http://dx.doi.org/10.1016/j.ejmech.2023.115724] [PMID: 37611534]
[25]
Sun, Y.; Jiang, P.; Jiang, Y.K.; Pan, J.; Wu, J.T.; Li, X.M.; Guan, W.; Min, X.Y.; Wang, Y.X.; Kuang, H.X.; Liu, Y.; Yang, B.Y. New chromones from the roots of Saposhnikovia divaricata (Turcz.) Schischk with anti-inflammatory activity. Bioorg. Chem., 2023, 134, 106447.
[http://dx.doi.org/10.1016/j.bioorg.2023.106447] [PMID: 36889198]
[26]
Nedeljković, N.; Dobričić, V.; Bošković, J.; Vesović, M.; Bradić, J.; Anđić, M.; Kočović, A.; Jeremić, N.; Novaković, J.; Jakovljević, V.; Vujić, Z.; Nikolić, M. Synthesis and investigation of anti-inflammatory activity of new thiourea derivatives of naproxen. Pharmaceuticals, 2023, 16(5), 666.
[http://dx.doi.org/10.3390/ph16050666] [PMID: 37242450]
[27]
Ghaffari, S.; Jarrahpour, A.; Özdemir, N.; Brunel, J.M.; Rastegari, B.; Riazimontazer, E.; Turos, E. New indolo-β-lactam hybrids as potential anticancer and anti-inflammatory agents. Med. Chem. Res., 2023, 32(12), 2516-2534.
[http://dx.doi.org/10.1007/s00044-023-03152-5]
[28]
Abdelkhalek, A.S.; Kothayer, H.; Rezq, S.; Orabi, K.Y.; Romero, D.G.; El-Sabbagh, O.I. Synthesis of new multitarget-directed ligands containing thienopyrimidine nucleus for inhibition of 15-lipoxygenase, cyclooxygenases, and pro-inflammatory cytokines. Eur. J. Med. Chem., 2023, 256, 115443.
[http://dx.doi.org/10.1016/j.ejmech.2023.115443] [PMID: 37182334]
[29]
Solanki, H.K.; Shah, D.A.; Maheriya, P.M.; Patel, C.A. Evaluation of anti-inflammatory activity of probiotic on carrageenan-induced paw edema in Wistar rats. Int. J. Biol. Macromol., 2015, 72, 1277-1282.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.09.059] [PMID: 25316426]
[30]
Archer, A.C.; Muthukumar, S.P.; Halami, P.M. Anti-inflammatory potential of probiotic Lactobacillus spp. on carrageenan induced paw edema in Wistar rats. Int. J. Biol. Macromol., 2015, 81, 530-537.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.08.044] [PMID: 26314910]
[31]
Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Exp. Biol. Med., 1962, 111(3), 544-547.
[http://dx.doi.org/10.3181/00379727-111-27849] [PMID: 14001233]
[32]
Williams, C.S.; Mann, M.; DuBois, R.N. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene, 1999, 18(55), 7908-7916.
[http://dx.doi.org/10.1038/sj.onc.1203286] [PMID: 10630643]
[33]
Wang, B.; Wu, L.; Chen, J.; Dong, L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal Transduct. Target. Ther., 2021, 6(1), 94.
[http://dx.doi.org/10.1038/s41392-020-00443-w] [PMID: 33637672]
[34]
Kumari, A.; Singh, R.K. Synthesis, molecular docking and biological evaluation of N‐substituted indole derivatives as potential anti‐inflammatory and antioxidant agents. Chem. Biodivers., 2022, 19(9), e202200290.
[http://dx.doi.org/10.1002/cbdv.202200290] [PMID: 35818885]
[35]
Rani, P.; Srivastava, V.K.; Kumar, A. Synthesis and antiinflammatory activity of heterocyclic indole derivatives. Eur. J. Med. Chem., 2004, 39(5), 449-452.
[http://dx.doi.org/10.1016/j.ejmech.2003.11.002] [PMID: 15110970]
[36]
Kumar, S.; Ritika, A brief review of the biological potential of indole derivatives. Fut. J. Pharmaceut. Sci., 2020, 6(1), 121.
[http://dx.doi.org/10.1186/s43094-020-00141-y]
[37]
Mirzaei, S.; Eisvand, F.; Hadizadeh, F.; Mosaffa, F.; Ghasemi, A.; Ghodsi, R. Design, synthesis and biological evaluation of novel 5,6,7-trimethoxy-N-aryl-2-styrylquinolin-4-amines as potential anticancer agents and tubulin polymerization inhibitors. Bioorg. Chem., 2020, 98, 103711.
[http://dx.doi.org/10.1016/j.bioorg.2020.103711] [PMID: 32179282]
[38]
Hasanin, M.; Hashem, A.H.; El-Rashedy, A.A.; Kamel, S. Synthesis of novel heterocyclic compounds based on dialdehyde cellulose: Characterization, antimicrobial, antitumor activity, molecular dynamics simulation and target identification. Cellulose, 2021, 28(13), 8355-8374.
[http://dx.doi.org/10.1007/s10570-021-04063-7]
[39]
Cournia, Z.; Allen, B.; Sherman, W. Relative binding free energy calculations in drug discovery: Recent advances and practical considerations. J. Chem. Inf. Model., 2017, 57(12), 2911-2937.
[http://dx.doi.org/10.1021/acs.jcim.7b00564] [PMID: 29243483]
[40]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[41]
Abouelenein, M.G.; El-Rashedy, A.A.; Awad, H.M.; El Farargy, A.F.; Nassar, I.F.; Nassrallah, A. Synthesis, molecular modeling Insights, and anticancer assessment of novel polyfunctionalized Pyridine congeners. Bioorg. Chem., 2023, 141, 106910.
[http://dx.doi.org/10.1016/j.bioorg.2023.106910] [PMID: 37871393]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy