Generic placeholder image

Current Hypertension Reviews

Editor-in-Chief

ISSN (Print): 1573-4021
ISSN (Online): 1875-6506

Research Article

Association of COVID-19 and Arterial Stiffness Assessed using Cardiovascular Index (CAVI)

Author(s): Valery Podzolkov, Anna Bragina, Aida Tarzimanova, Lyubov Vasilyeva*, Ilya Shvedov, Natalya Druzhinina, Yulia Rodionova, Tatiana Ishina, Iuliia Akyol, Valentina Maximova and Alexandr Cherepanov

Volume 20, Issue 1, 2024

Published on: 22 January, 2024

Page: [44 - 51] Pages: 8

DOI: 10.2174/0115734021279173240110095037

Price: $65

Abstract

Background: COVID-19 is characterized by an acute inflammatory response with the formation of endothelial dysfunction and may affect arterial stiffness. Studies of cardio-ankle vascular index in COVID-19 patients with considered cardiovascular risk factors have not been conducted.

Objective: The purpose of our study was to assess the association between cardio-ankle vascular index and COVID-19 in hospitalized patients adjusted for known cardiovascular risk factors.

Methods: A cross-sectional study included 174 people hospitalized with a diagnosis of moderate COVID-19 and 94 people without COVID-19. Significant differences in the cardio-ankle vascular index values measured by VaSera VS - 1500N between the two groups were analyzed using parametric (Student's t-criterion) and nonparametric (Mann-Whitney) criteria. Independent association between COVID-19 and an increased cardio-ankle vascular index ≥ 9.0 adjusted for known cardiovascular risk factors was assessed by multivariate logistic regression.

Results: There were significantly higher values of the right cardio-ankle vascular index 8.10 [7.00;9.40] and the left cardio-ankle vascular index 8.10 [6.95;9.65] in patients undergoing inpatient treatment for COVID-19 than in the control group – 7.55 [6.60;8.60] and 7.60 [6.60;8.70], respectively. A multivariate logistic regression model adjusted for age, hypertension, plasma glucose level, glomerular filtration rate and diabetes mellitus showed a significant association between increased cardio-ankle vascular index and COVID-19 (OR 2.41 [CI 1.09;5.30]).

Conclusion: Hospitalized patients with COVID-19 had significantly higher cardio-ankle vascular index values compared to the control group. An association between an increased cardio-ankle vascular index and COVID-19 was revealed, independent of age, hypertension, plasma glucose level, glomerular filtration rate and diabetes mellitus.

Graphical Abstract

[1]
Leao JC, Gusmao TPL, Zarzar AM, et al. Coronaviridae—Old friends, new enemy! Oral Dis 2022; 28(S1): 858-66.
[http://dx.doi.org/10.1111/odi.13447] [PMID: 32475006]
[2]
Harapan H, Itoh N, Yufika A, et al. Coronavirus disease 2019 (COVID-19): A literature review. J Infect Public Health 2020; 13(5): 667-73.
[http://dx.doi.org/10.1016/j.jiph.2020.03.019] [PMID: 32340833]
[3]
Woo PCY, de Groot RJ, Haagmans B, et al. ICTV virus taxonomy profile: Coronaviridae 2023. J Gen Virol 2023; 104(4)
[http://dx.doi.org/10.1099/jgv.0.001843] [PMID: 37097842]
[4]
WHO. Weekly epidemiological update on COVID-19 - 22 June 2022. 2023. Available from: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---22-june-2022
[5]
Chow EJ, Uyeki TM, Chu HY. The effects of the COVID-19 pandemic on community respiratory virus activity. Nat Rev Microbiol 2022; 21(3): 195-210.
[http://dx.doi.org/10.1038/s41579-022-00807-9] [PMID: 36253478]
[6]
Mohamed S, Saad K, Elgohary G, AbdElHaffez A, El-Aziz NA. Is COVID-19 a systemic disease? Coronaviruses 2021; 2(5): 4-8.
[http://dx.doi.org/10.2174/2666796701999201216101914] [PMID: 34580633]
[7]
Podzolkov VI, Bragina AE, Tarzimanova AI, et al. Arterial hypertension and severe COVID-19 in hospitalized patients: Data from a cohort study. Ration Pharmacother Cardiol 2023; 19(1): 4-10.
[http://dx.doi.org/10.20996/1819-6446-2023-01-10]
[8]
Masjedi M, Jafari P. A mini-review on cardiovascular and hematological complications of COVID-19. Coronaviruses 2021; 2(2): 204-8.
[http://dx.doi.org/10.2174/2666796701999201026211142]
[9]
Saeed S, Mancia G. Arterial stiffness and COVID-19: A bidirectional cause-effect relationship. J Clin Hypertens 2021; 23(6): 1099-103.
[http://dx.doi.org/10.1111/jch.14259] [PMID: 33951308]
[10]
Jud P, Gressenberger P, Muster V, et al. Evaluation of endothelial dysfunction and inflammatory vasculopathy after SARS-CoV-2 infection—A cross-sectional study. Front Cardiovasc Med 2021; 8: 750887.
[http://dx.doi.org/10.3389/fcvm.2021.750887] [PMID: 34722682]
[11]
Dharra R, Kumar Sharma A, Datta S. Emerging aspects of cytokine storm in COVID-19: The role of proinflammatory cytokines and therapeutic prospects. Cytokine 2023; 169: 156287.
[http://dx.doi.org/10.1016/j.cyto.2023.156287] [PMID: 37402337]
[12]
Balta S, Balta I. COVID-19 and inflammatory markers. Curr Vasc Pharmacol 2022; 20(4): 326-32.
[http://dx.doi.org/10.2174/1570161120666220404200205] [PMID: 35379133]
[13]
Restini C, Belavek T, Bernal R, et al. The significance of angiotensin-converting enzyme-2 (ACE2) in SARSCov- 2 infection and COVID-19. Coronaviruses 2021; 2(6): e280521189255.
[http://dx.doi.org/10.2174/2666796701999201218141035]
[14]
Vieira C, Nery L, Martins L, Jabour L, Dias R, Simões E Silva AC. Downregulation of membrane-bound angiotensin converting enzyme 2 (ACE2) receptor has a pivotal role in COVID-19 immunopathology. Curr Drug Targets 2021; 22(3): 254-81.
[http://dx.doi.org/10.2174/18735592MTEwFNzYF3] [PMID: 33081670]
[15]
Kar M. Vascular dysfunction and its cardiovascular consequences during and after COVID-19 infection: A narrative review. Vasc Health Risk Manag 2022; 18: 105-12.
[http://dx.doi.org/10.2147/VHRM.S355410] [PMID: 35283631]
[16]
Podzolkov VI, Bragina AE, Tarzimanova AI, et al. Association between cardio-ankle vascular index and markers of thrombosis in hospitalized patients COVID-19. Ter Arkh 2023; 95(7): 548-53.
[http://dx.doi.org/10.26442/00403660.2023.07.202292]
[17]
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020; 395(10234): 1417-8.
[http://dx.doi.org/10.1016/S0140-6736(20)30937-5] [PMID: 32325026]
[18]
Podzolkov VI, Tarzimanova AI, Bragina AE, et al. Effect of spironolactone therapy on the activity of the matrix metalloproteinase system in patients with heart failure after COVID-19. Cardiovasc Ther Prev 2022; 21(10): 3431.
[http://dx.doi.org/10.15829/1728-8800-2022-3431]
[19]
Carvalho PR, Sirois P, Fernandes PD. The role of kallikrein-kinin and renin-angiotensin systems in COVID-19 infection. Peptides 2021; 135: 170428.
[http://dx.doi.org/10.1016/j.peptides.2020.170428]
[20]
Nagashima S, Dutra AA, Arantes MP, et al. COVID-19 and lung mast cells: The kallikrein–kinin activation pathway. Int J Mol Sci 2022; 23(3): 1714.
[http://dx.doi.org/10.3390/ijms23031714] [PMID: 35163636]
[21]
Mackman N, Sachetto ATA. Tissue factor and COVID-19: An update. Curr Drug Targets 2022; 23(17): 1573-7.
[http://dx.doi.org/10.2174/1389450123666220926144432] [PMID: 36165519]
[22]
Zha D, Fu M, Qian Y. Vascular endothelial glycocalyx damage and potential targeted therapy in COVID-19. Cells 2022; 11(12): 1972.
[http://dx.doi.org/10.3390/cells11121972] [PMID: 35741101]
[23]
Podzolkov VI, Tarzimanova AI, Bragina AE, et al. Damage to the cardiovascular system in patients with SARS-CoV-2 Coronavirus infection. Part 1: Predictors of the development of an unfavorable prognosis. Ration Pharmacother Cardiol 2022; 17(6): 825-30.
[http://dx.doi.org/10.20996/1819-6446-2021-11-03]
[24]
Galán M, Jiménez-Altayó F. Small resistance artery disease and ACE2 in hypertension: A new paradigm in the context of COVID-19. Front Cardiovasc Med 2020; 7: 588692.
[http://dx.doi.org/10.3389/fcvm.2020.588692] [PMID: 33195477]
[25]
Solimando AG, Marziliano D, Ribatti D. SARS-CoV-2 and endothelial cells: Vascular changes, intussusceptive microvascular growth and novel therapeutic windows. Biomedicines 2022; 10(9): 2242.
[http://dx.doi.org/10.3390/biomedicines10092242] [PMID: 36140343]
[26]
Pleiner J, Heere-Ress E, Langenberger H, et al. Adrenoceptor hyporeactivity is responsible for Escherichia coli endotoxin-induced acute vascular dysfunction in humans. Arterioscler Thromb Vasc Biol 2002; 22(1): 95-100.
[http://dx.doi.org/10.1161/hq0102.101818] [PMID: 11788467]
[27]
Jin L, Wu L, Chen J, et al. Uncoupling of the center-to-periphery arterial stiffness gradient and pulse pressure amplification in viral pneumonia infection. BMC Infect Dis 2023; 23(1): 657.
[http://dx.doi.org/10.1186/s12879-023-08650-w] [PMID: 37798630]
[28]
Zota IM, Stătescu C, Sascău RA, et al. Acute and long-term consequences of COVID-19 on arterial stiffness—A narrative review. Life 2022; 12(6): 781.
[http://dx.doi.org/10.3390/life12060781] [PMID: 35743812]
[29]
Badaras I, Laučytė-Cibulskienė A. Vascular aging and COVID-19. Angiology 2023; 74(4): 308-16.
[http://dx.doi.org/10.1177/00033197221121007] [PMID: 36031949]
[30]
Aydın E, Kant A, Yilmaz G. Evaluation of the cardio-ankle vascular index in COVID-19 patients. Rev Assoc Med Bras 2022; 68(1): 73-6.
[http://dx.doi.org/10.1590/1806-9282.20210781] [PMID: 34909966]
[31]
Jannasz I, Pruc M, Rahnama-Hezavah M, et al. The impact of COVID-19 on carotid–femoral pulse wave velocity: A systematic review and meta-analysis. J Clin Med 2023; 12(17): 5747.
[http://dx.doi.org/10.3390/jcm12175747] [PMID: 37685813]
[32]
Mavraganis G, Dimopoulou MA, Delialis D, et al. Clinical implications of vascular dysfunction in acute and convalescent COVID-19: A systematic review. Eur J Clin Invest 2022; 52(11): e13859.
[http://dx.doi.org/10.1111/eci.13859] [PMID: 35986716]
[33]
Rodilla E, López-Carmona MD, Cortes X, et al. Impact of arterial stiffness on all-cause mortality in patients hospitalized with COVID-19 in Spain. Hypertension 2021; 77(3): 856-67.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.16563] [PMID: 33377393]
[34]
Raisi-Estabragh Z, McCracken C, Cooper J, et al. Adverse cardiovascular magnetic resonance phenotypes are associated with greater likelihood of incident coronavirus disease 2019: Findings from the UK Biobank. Aging Clin Exp Res 2021; 33(4): 1133-44.
[http://dx.doi.org/10.1007/s40520-021-01808-z] [PMID: 33683678]
[35]
Parvu S, Müller K, Dahdal D, et al. COVID-19 and cardiovascular manifestations. Eur Rev Med Pharmacol Sci 2022; 26(12): 4509-19.
[http://dx.doi.org/10.26355/eurrev_202206_29090] [PMID: 35776052]
[36]
Pepera G, Tribali MS, Batalik L, Petrov I, Papathanasiou J. Epidemiology, risk factors and prognosis of cardiovascular disease in the Coronavirus Disease 2019 (COVID-19) pandemic era: A systematic review. Rev Cardiovasc Med 2022; 23(1): 1.
[http://dx.doi.org/10.31083/j.rcm2301028] [PMID: 35092220]
[37]
Gallo G, Calvez V, Savoia C. Hypertension and COVID-19: Current evidence and perspectives. High Blood Press Cardiovasc Prev 2022; 29(2): 115-23.
[http://dx.doi.org/10.1007/s40292-022-00506-9] [PMID: 35184271]
[38]
Salabei JK, Asnake ZT, Ismail ZH, et al. COVID-19 and the cardiovascular system: An update. Am J Med Sci 2022; 364(2): 139-47.
[http://dx.doi.org/10.1016/j.amjms.2022.01.022] [PMID: 35151635]
[39]
Xuereb RA, Magri CJ, Xuereb RG. Arterial Stiffness and its impact on cardiovascular health. Curr Cardiol Rep 2023; 25(10): 1337-49.
[http://dx.doi.org/10.1007/s11886-023-01951-1] [PMID: 37676581]
[40]
Galih A, Tri TC, Saifur RM, Kurniningsih N. Arterial stiffness as a predictor of future cardiovascular events: Methods of measurement and clinical implications. Health Sci J 2023; 4(2): 5-12.
[http://dx.doi.org/10.21776/ub.hsj.2023.004.02.2]
[41]
Bonarjee VVS. Arterial stiffness: A prognostic marker in coronary heart disease. Available methods and clinical application. Front Cardiovasc Med 2018; 5: 64.
[http://dx.doi.org/10.3389/fcvm.2018.00064] [PMID: 29951487]
[42]
Saz-Lara A, Bruno RM, Cavero-Redondo I, Álvarez-Bueno C, Notario-Pacheco B, Martínez-Vizcaíno V. Association between arterial stiffness and blood pressure progression with incident hypertension: A systematic review and meta-analysis. Front Cardiovasc Med 2022; 9: 798934.
[http://dx.doi.org/10.3389/fcvm.2022.798934] [PMID: 35224042]
[43]
Oikonomou E, Lampsas S, Theofilis P, et al. Impaired left ventricular deformation and ventricular-arterial coupling in post-COVID-19: Association with autonomic dysregulation. Heart Vessels 2023; 38(3): 381-93.
[http://dx.doi.org/10.1007/s00380-022-02180-2] [PMID: 36169708]
[44]
Tudoran C, Bende F, Bende R, Giurgi-Oncu C, Dumache R, Tudoran M. Correspondence between aortic and arterial stiffness, and diastolic dysfunction in apparently healthy female patients with post-acute COVID-19 syndrome. Biomedicines 2023; 11(2): 492.
[http://dx.doi.org/10.3390/biomedicines11020492] [PMID: 36831027]
[45]
Pierce JD, Shen Q, Cintron SA, Hiebert JB. Post-COVID-19 syndrome. Nurs Res 2022; 71(2): 164-74.
[http://dx.doi.org/10.1097/NNR.0000000000000565] [PMID: 34653099]
[46]
Chen C, Haupert SR, Zimmermann L, Shi X, Fritsche LG, Mukherjee B. Global prevalence of post-Coronavirus disease 2019 (COVID-19) condition or long COVID: A meta-analysis and systematic review. J Infect Dis 2022; 226(9): 1593-607.
[http://dx.doi.org/10.1093/infdis/jiac136] [PMID: 35429399]
[47]
Vyas P, Joshi D, Sharma V, et al. Incidence and predictors of development of new onset hypertension post COVID-19 disease. Indian Heart J 2023; 75(5): 347-51.
[http://dx.doi.org/10.1016/j.ihj.2023.06.002] [PMID: 37328135]
[48]
Akpek M. Does COVID-19 cause hypertension? Angiology 2022; 73(7): 682-7.
[http://dx.doi.org/10.1177/00033197211053903] [PMID: 34889662]
[49]
Banerjee M, Pal R, Dutta S. Risk of incident diabetes post-COVID-19: A systematic review and meta-analysis. Prim Care Diabetes 2022; 16(4): 591-3.
[http://dx.doi.org/10.1016/j.pcd.2022.05.009] [PMID: 35654679]
[50]
Chourasia P, Goyal L, Kansal D, et al. Risk of new-onset diabetes mellitus as a post-COVID-19 condition and possible mechanisms: A scoping review. J Clin Med 2023; 12(3): 1159.
[http://dx.doi.org/10.3390/jcm12031159] [PMID: 36769807]
[51]
Wrona M, Skrypnik D. New-Onset diabetes mellitus, hypertension, dyslipidaemia as sequelae of COVID-19 infection—Systematic review. Int J Environ Res Public Health 2022; 19(20): 13280.
[http://dx.doi.org/10.3390/ijerph192013280] [PMID: 36293857]
[52]
Abdel-Gawad M, Zaghloul MS, Abd-elsalam S, et al. Post-COVID-19 syndrome clinical manifestations: A systematic review. Antiinflamm Antiallergy Agents Med Chem 2021; 21(2): 115-20.
[http://dx.doi.org/10.2174/1871523021666220328115818] [PMID: 35346011]
[53]
Miyoshi T, Ito H. Assessment of arterial stiffness using the Cardio-Ankle Vascular Index. Pulse 2016; 4(1): 11-23.
[http://dx.doi.org/10.1159/000445214] [PMID: 27493899]
[54]
Townsend RR, Wilkinson IB, Schiffrin EL, et al. Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension 2015; 66(3): 698-722.
[http://dx.doi.org/10.1161/HYP.0000000000000033] [PMID: 26160955]
[55]
Vasyuk YA, Ivanova SV, Shkolnik EL, et al. Consensus of Russian experts on the evaluation of arterial stiffness in clinical practice. Cardiovasc Ther Prev 2016; 15(2): 4-19.
[http://dx.doi.org/10.15829/1728-8800-2016-2-4-19]
[56]
Safronova T, Kravtsova A, Vavilov S, et al. Model-based assessment of the reference values of CAVI in healthy Russian population and benchmarking with CAVI0. Am J Hypertens 2023; 37(1): hpad082.
[http://dx.doi.org/10.1093/ajh/hpad082] [PMID: 37696678]
[57]
Wohlfahrt P, Cífková R, Movsisyan N, et al. Reference values of cardio-ankle vascular index in a random sample of a white population. J Hypertens 2017; 35(11): 2238-44.
[http://dx.doi.org/10.1097/HJH.0000000000001437] [PMID: 28594708]
[58]
Namekata T, Suzuki K, Ishizuka N, Shirai K. Establishing baseline criteria of cardio-ankle vascular index as a new indicator of arteriosclerosis: A cross-sectional study. BMC Cardiovasc Disord 2011; 11(1): 51.
[http://dx.doi.org/10.1186/1471-2261-11-51] [PMID: 21831311]
[59]
Budoff MJ, Alpert B, Chirinos JA, et al. Clinical applications measuring arterial stiffness: An expert Consensus for the application of cardio-ankle vascular index. Am J Hypertens 2022; 35(5): 441-53.
[http://dx.doi.org/10.1093/ajh/hpab178] [PMID: 34791038]
[60]
Nagayama D, Fujishiro K, Suzuki K, Shirai K. Comparison of predictive ability of arterial stiffness parameters including cardio-ankle vascular index, pulse wave velocity and cardio-ankle vascular index0. Vasc Health Risk Manag 2022; 18: 735-45.
[http://dx.doi.org/10.2147/VHRM.S378292] [PMID: 36120719]
[61]
Homma S, Kato K. Validity of atherosclerotic calcified lesions observed on low-dose computed tomography and cardio-ankle vascular index as surrogate markers of atherosclerosis progression. Angiology 2023; 0(0)
[http://dx.doi.org/10.1177/00033197231155963] [PMID: 36787785]
[62]
Sinitsyn VE, Tyurin IE, Mitkov VV. Role of imaging (X-ray, CT and US) in diagnosis of COVID-19 pneumonia. J Radiol Nucl Med 2020; 101(2): 72-89.
[http://dx.doi.org/10.20862/0042-4676-2020-101-2-72-89]
[63]
Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2018; 39(33): 3021-104.
[http://dx.doi.org/10.1093/eurheartj/ehy339] [PMID: 30165516]
[64]
Schiffrin EL, Flack JM, Ito S, Muntner P, Webb RC. Hypertension and COVID-19. Am J Hypertens 2020; 33(5): 373-4.
[http://dx.doi.org/10.1093/ajh/hpaa057] [PMID: 32251498]
[65]
Stefan N, Birkenfeld AL, Schulze MB. Global pandemics interconnected — obesity, impaired metabolic health and COVID-19. Nat Rev Endocrinol 2021; 17(3): 135-49.
[http://dx.doi.org/10.1038/s41574-020-00462-1] [PMID: 33479538]
[66]
de Leeuw AJM, Oude Luttikhuis MAM, Wellen AC, Müller C, Calkhoven CF. Obesity and its impact on COVID-19. J Mol Med 2021; 99(7): 899-915.
[http://dx.doi.org/10.1007/s00109-021-02072-4] [PMID: 33824998]
[67]
Vasan RS, Pan S, Xanthakis V, et al. Arterial stiffness and long-term risk of health outcomes: The Framingham Heart Study. Hypertension 2022; 79(5): 1045-56.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.121.18776] [PMID: 35168368]
[68]
Pavlovska I, Mechanick JI, Maranhao Neto GA, et al. Arterial stiffness and cardiometabolic-based chronic disease: The Kardiovize Study. Endocr Pract 2021; 27(6): 571-8.
[http://dx.doi.org/10.1016/j.eprac.2021.03.004] [PMID: 33722731]
[69]
Szeghy RE, Province VM, Stute NL, et al. Carotid stiffness, intima–media thickness and aortic augmentation index among adults with SARS-CoV-2. Exp Physiol 2022; 107(7): 694-707.
[http://dx.doi.org/10.1113/EP089481] [PMID: 33904234]
[70]
Ratchford SM, Stickford JL, Province VM, et al. Vascular alterations among young adults with SARS-CoV-2. Am J Physiol Heart Circ Physiol 2021; 320(1): H404-10.
[http://dx.doi.org/10.1152/ajpheart.00897.2020] [PMID: 33306450]
[71]
Faria D, Moll-Bernardes RJ, Testa L, et al. Sympathetic neural overdrive, aortic stiffening, endothelial dysfunction, and impaired exercise capacity in severe COVID-19 survivors: A mid-term study of cardiovascular sequelae. Hypertension 2023; 80(2): 470-81.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.122.19958] [PMID: 36416143]
[72]
Schnaubelt S, Oppenauer J, Tihanyi D, et al. Arterial stiffness in acute COVID-19 and potential associations with clinical outcome. J Intern Med 2021; 290(2): 437-43.
[http://dx.doi.org/10.1111/joim.13275] [PMID: 33651387]
[73]
Stamatelopoulos K, Georgiopoulos G, Baker KF, et al. Estimated pulse wave velocity improves risk stratification for all-cause mortality in patients with COVID-19. Sci Rep 2021; 11(1): 20239.
[http://dx.doi.org/10.1038/s41598-021-99050-0] [PMID: 34642385]
[74]
Ibata J, Sasaki H, Kakimoto T, et al. Cardio-ankle vascular index measures arterial wall stiffness independent of blood pressure. Diabetes Res Clin Pract 2008; 80(2): 265-70.
[http://dx.doi.org/10.1016/j.diabres.2007.12.016] [PMID: 18242761]
[75]
Saiki A, Sato Y, Watanabe R, et al. The role of a novel arterial stiffness parameter, Cardio-Ankle Vascular Index (CAVI), as a surrogate marker for cardiovascular diseases. J Atheroscler Thromb 2016; 23(2): 155-68.
[http://dx.doi.org/10.5551/jat.32797] [PMID: 26607350]
[76]
Hahad O, Schmitt VH, Arnold N, et al. Chronic cigarette smoking is associated with increased arterial stiffness in men and women: evidence from a large population-based cohort. Clin Res Cardiol 2023; 112(2): 270-84.
[http://dx.doi.org/10.1007/s00392-022-02092-1] [PMID: 36068365]
[77]
Szeghy RE, Stute NL, Province VM, et al. Six-month longitudinal tracking of arterial stiffness and blood pressure in young adults following SARS-CoV-2 infection. J Appl Physiol 2022; 132(5): 1297-309.
[http://dx.doi.org/10.1152/japplphysiol.00793.2021] [PMID: 35439042]
[78]
Zanoli L, Gaudio A, Mikhailidis DP, et al. Vascular dysfunction of COVID-19 is partially reverted in the long-term. Circ Res 2022; 130(9): 1276-85.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.320460] [PMID: 35345906]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy