Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

Exosomes: Friends or Foes in Microbial Infections?

Author(s): Samane Teymouri, Maryam Pourhajibagher* and Abbas Bahador*

Volume 24, Issue 5, 2024

Published on: 17 January, 2024

Article ID: e170124225730 Pages: 18

DOI: 10.2174/0118715265264388231128045954

Price: $65

Abstract

The use of new approaches is necessary to address the global issue of infections caused by drug-resistant pathogens. Antimicrobial photodynamic therapy (aPDT) is a promising approach that reduces the emergence of drug resistance, and no resistance has been reported thus far. APDT involves using a photosensitizer (PS), a light source, and oxygen. The mechanism of aPDT is that a specific wavelength of light is directed at the PS in the presence of oxygen, which activates the PS and generates reactive oxygen species (ROS), consequently causing damage to microbial cells. However, due to the PS's poor stability, low solubility in water, and limited bioavailability, it is necessary to employ drug delivery platforms to enhance the effectiveness of PS in photodynamic therapy (PDT). Exosomes are considered a desirable carrier for PS due to their specific characteristics, such as low immunogenicity, innate stability, and high ability to penetrate cells, making them a promising platform for drug delivery. Additionally, exosomes also possess antimicrobial properties, although in some cases, they may enhance microbial pathogenicity. As there are limited studies on the use of exosomes for drug delivery in microbial infections, this review aims to present significant points that can provide accurate insights.

Graphical Abstract

[1]
Aslam B, Wang W, Arshad MI, et al. Antibiotic resistance: A rundown of a global crisis. Infect Drug Resist 2018; 11: 1645-58.
[http://dx.doi.org/10.2147/IDR.S173867] [PMID: 30349322]
[2]
Zetts RM, Stoesz A, Smith BA, Hyun DY. Outpatient antibiotic use and the need for increased antibiotic stewardship efforts. Pediatrics 2018; 141(6): e20174124.
[http://dx.doi.org/10.1542/peds.2017-4124] [PMID: 29793986]
[3]
Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog Glob Health 2015; 109(7): 309-18.
[http://dx.doi.org/10.1179/2047773215Y.0000000030] [PMID: 26343252]
[4]
Renwick MJ, Simpkin V, Mossialos E, Organization WH. Targeting innovation in antibiotic drug discovery and development: The need for a One Health–One Europe–One World Framework: World Health Organization. Regional Office for Europe 2016.
[5]
Organization WH. Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2016-2017 2017.
[6]
Bekmukhametova A, Ruprai H, Hook JM, Mawad D, Houang J, Lauto A. Photodynamic therapy with nanoparticles to combat microbial infection and resistance. Nanoscale 2020; 12(41): 21034-59.
[http://dx.doi.org/10.1039/D0NR04540C] [PMID: 33078823]
[7]
Nossier SA. Vaccine hesitancy: the greatest threat to COVID-19 vaccination programs. SpringerOpen 2021; pp. 1-3.
[8]
Organization WH. Vaccine efficacy, effectiveness and protection. Geneba 2021. Available from: https://wwwwhoint/newsroom/ feature-stories/detail/vaccine-efficacy-effectiveness-andprotection (Accessed on: Sep. 2021).
[9]
Davis M, Liu TL, Taylor Y, et al. Exploring patient awareness and perceptions of the appropriate use of antibiotics: A mixed-methods study. Antibiotics 2017; 6(4): 23.
[http://dx.doi.org/10.3390/antibiotics6040023] [PMID: 29088074]
[10]
Figueiredo AQ, Rodrigues CF, Fernandes N, de Melo-Diogo D, Correia IJ, Moreira AF. Metal-polymer nanoconjugates application in cancer imaging and therapy. Nanomaterials 2022; 12(18): 3166.
[http://dx.doi.org/10.3390/nano12183166] [PMID: 36144953]
[11]
Cao J, Li X, Tian H. Metal-organic framework (MOF)-based drug delivery. Curr Med Chem 2020; 27(35): 5949-69.
[http://dx.doi.org/10.2174/0929867326666190618152518] [PMID: 31215374]
[12]
Martínez-Ballesta MC, Gil-Izquierdo Á, García-Viguera C, Domínguez-Perles R. Nanoparticles and controlled delivery for bioactive compounds: Outlining challenges for new “smart-foods” for health. Foods 2018; 7(5): 72.
[http://dx.doi.org/10.3390/foods7050072] [PMID: 29735897]
[13]
Polat E, Kang K. Natural photosensitizers in antimicrobial photodynamic therapy. Biomedicines 2021; 9(6): 584.
[http://dx.doi.org/10.3390/biomedicines9060584] [PMID: 34063973]
[14]
Rak J, Pouckova P, Benes J, Vetvicka D. Drug delivery systems for phthalocyanines for photodynamic therapy. Anticancer Res 2019; 39(7): 3323-39.
[http://dx.doi.org/10.21873/anticanres.13475] [PMID: 31262853]
[15]
da Fonseca AS, Mencalha AL, de Paoli F. Antimicrobial photodynamic therapy against Acinetobacter baumannii. Photodiagn Photodyn Ther 2021; 35: 102430.
[http://dx.doi.org/10.1016/j.pdpdt.2021.102430]
[16]
Ellson CD, Riça IG, Kim JS, et al. An integrated pharmacological, structural, and genetic analysis of extracellular versus intracellular ROS production in neutrophils. J Mol Biol 2022; 434(9): 167533.
[http://dx.doi.org/10.1016/j.jmb.2022.167533] [PMID: 35314146]
[17]
Laforge M, Elbim C, Frère C, et al. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat Rev Immunol 2020; 20(9): 515-6.
[http://dx.doi.org/10.1038/s41577-020-0407-1] [PMID: 32728221]
[18]
Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: mechanisms of NADPH oxidase activation and bacterial resistance. Front Cell Infect Microbiol 2017; 7: 373.
[http://dx.doi.org/10.3389/fcimb.2017.00373] [PMID: 28890882]
[19]
Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev 2016; 116(5): 2826-85.
[http://dx.doi.org/10.1021/acs.chemrev.5b00148] [PMID: 26799741]
[20]
Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem J 2016; 473(4): 347-64.
[http://dx.doi.org/10.1042/BJ20150942] [PMID: 26862179]
[21]
Dao A, Kushwaha R, Kumar A, Huang H, Banerjee S. Engineered exosomes as a photosensitizer delivery platform for cancer photodynamic therapy. ChemMedChem 2022; 17(10): e202200119.
[http://dx.doi.org/10.1002/cmdc.202200119] [PMID: 35384336]
[22]
Ai X, Mu J, Xing B. Recent advances of light-mediated theranostics. Theranostics 2016; 6(13): 2439-57.
[http://dx.doi.org/10.7150/thno.16088] [PMID: 27877246]
[23]
Deng K, Li C, Huang S, et al. Recent progress in near infrared light triggered photodynamic therapy. Small 2017; 13(44): 1702299.
[http://dx.doi.org/10.1002/smll.201702299] [PMID: 28961374]
[24]
Chinna Ayya Swamy P, Sivaraman G, Priyanka RN, et al. Near Infrared (NIR) absorbing dyes as promising photosensitizer for photo dynamic therapy. Coord Chem Rev 2020; 411: 213233.
[http://dx.doi.org/10.1016/j.ccr.2020.213233]
[25]
Chilakamarthi U, Giribabu L. Photodynamic therapy: Past, present and future. Chem Rec 2017; 17(8): 775-802.
[http://dx.doi.org/10.1002/tcr.201600121] [PMID: 28042681]
[26]
Mfouo-Tynga IS, Dias LD, Inada NM, Kurachi C. Features of third generation photosensitizers used in anticancer photodynamic therapy. [Review]. Photodiagn Photodyn Ther 2021; 34: 102091.
[http://dx.doi.org/ 10.1016/j.pdpdt.2020.102091] [PMID: 33453423]
[27]
Josefsen LB, Boyle RW. Photodynamic therapy: Novel third:generation photosensitizers one step closer? Br J Pharmacol 2008; 154(1): 1-3.
[http://dx.doi.org/10.1038/bjp.2008.98] [PMID: 18362894]
[28]
de Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 2016; 22(3): 348-64.
[http://dx.doi.org/10.1109/JSTQE.2016.2561201] [PMID: 28070154]
[29]
da Silva Souza Campanholi K, Jaski JM, da Silva Junior R.C., et al. Photodamage on Staphylococcus aureus by natural extract from Tetragonia tetragonoides (Pall.) Kuntze: Clean method of extraction, characterization and photophysical studies. J Photochem Photobiol B 2020; 203: 111763.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111763] [PMID: 31931382]
[30]
Liang Y, Duan L, Lu J, Xia J. Engineering exosomes for targeted drug delivery. Theranostics 2021; 11(7): 3183-95.
[http://dx.doi.org/10.7150/thno.52570] [PMID: 33537081]
[31]
Farooqi AA, Desai NN, Qureshi MZ, et al. Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnol Adv 2018; 36(1): 328-34.
[http://dx.doi.org/10.1016/j.biotechadv.2017.12.010] [PMID: 29248680]
[32]
Frühbeis C, Helmig S, Tug S, Simon P, Krämer-Albers EM. Physical exercise induces rapid release of small extracellular vesicles into the circulation. J Extracell Vesicles 2015; 4(1): 28239.
[http://dx.doi.org/10.3402/jev.v4.28239] [PMID: 26142461]
[33]
Fleming A, Sampey G, Chung MC, et al. The carrying pigeons of the cell: Exosomes and their role in infectious diseases caused by human pathogens. Pathog Dis 2014; 71(2): 109-20.
[http://dx.doi.org/10.1111/2049-632X.12135] [PMID: 24449527]
[34]
Mahmoodzadeh Hosseini H, Ali Imani Fooladi A, Reza Nourani M, Ghanezadeh F. The role of exosomes in infectious diseases. Inflamm Allergy Drug Targets 2013; 12(1): 29-37.
[http://dx.doi.org/10.2174/1871528111312010005]
[35]
Zhang W, Jiang X, Bao J, Wang Y, Liu H, Tang L. Exosomes in pathogen infections: A bridge to deliver molecules and link functions. Front Immunol 2018; 9: 90.
[http://dx.doi.org/10.3389/fimmu.2018.00090] [PMID: 29483904]
[36]
Schorey JS, Harding CV. Extracellular vesicles and infectious diseases: new complexity to an old story. J Clin Invest 2016; 126(4): 1181-9.
[http://dx.doi.org/10.1172/JCI81132] [PMID: 27035809]
[37]
Barile L, Vassalli G. Exosomes: Therapy delivery tools and biomarkers of diseases. Pharmacol Ther 2017; 174: 63-78.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.020] [PMID: 28202367]
[38]
Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 2015; 219: 396-405.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.030] [PMID: 26241750]
[39]
Denzer K, Kleijmeer MJ, Heijnen HFG, Stoorvogel W, Geuze HJ. Exosome: From internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 2000; 113(19): 3365-74.
[http://dx.doi.org/10.1242/jcs.113.19.3365] [PMID: 10984428]
[40]
Subra C, Grand D, Laulagnier K, et al. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res 2010; 51(8): 2105-20.
[http://dx.doi.org/10.1194/jlr.M003657] [PMID: 20424270]
[41]
Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci 2019; 9(1): 19.
[http://dx.doi.org/10.1186/s13578-019-0282-2] [PMID: 30815248]
[42]
Shi Y, Du L, Lv D, et al. Emerging role and therapeutic application of exosome in hepatitis virus infection and associated diseases. J Gastroenterol 2021; 56(4): 336-49.
[http://dx.doi.org/10.1007/s00535-021-01765-4] [PMID: 33665710]
[43]
Wang W, Hao LP, Song H, Chu XY, Wang R. The potential roles of exosomal non-coding RNAs in hepatocellular carcinoma. Front Oncol 2022; 12: 790916.
[http://dx.doi.org/10.3389/fonc.2022.790916] [PMID: 35280805]
[44]
Moreno-Gonzalo O, Villarroya-Beltri C, Sánchez-Madrid F. Post-translational modifications of exosomal proteins. Front Immunol 2014; 5: 383.
[http://dx.doi.org/10.3389/fimmu.2014.00383] [PMID: 25157254]
[45]
Waheed ZA, Sarhan NH. Exosomes and their role in immunity, metabolic, cardiovascular, neurodegeneration, reproduction and development. Indian J Forensic Med Toxicol 2021; 15(2): 3571-81.
[46]
Bhome R, Del Vecchio F, Lee GH, et al. Exosomal microRNAs (exomiRs): Small molecules with a big role in cancer. Cancer Lett 2018; 420: 228-35.
[http://dx.doi.org/10.1016/j.canlet.2018.02.002] [PMID: 29425686]
[47]
Park Y. MicroRNA exocytosis by vesicle fusion in neuroendocrine cells. Front Endocrinol 2017; 8: 355.
[http://dx.doi.org/10.3389/fendo.2017.00355] [PMID: 29312145]
[48]
Bai S, Hou W, Yao Y, et al. Exocyst controls exosome biogenesis via Rab11a. Mol Ther Nucleic Acids 2022; 27: 535-46.
[http://dx.doi.org/10.1016/j.omtn.2021.12.023] [PMID: 35036064]
[49]
Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 2019; 21(1): 9-17.
[http://dx.doi.org/10.1038/s41556-018-0250-9] [PMID: 30602770]
[50]
Blanc L, Vidal M. New insights into the function of Rab GTPases in the context of exosomal secretion. Small GTPases 2018; 9(1-2): 95-106.
[http://dx.doi.org/10.1080/21541248.2016.1264352] [PMID: 28135905]
[51]
Essandoh K, Fan G-C. Insights into the mechanism of exosome formation and secretion. Mesenchymal Stem Cell Derived Exosomes 2015; pp. 1-19.
[http://dx.doi.org/10.1016/B978-0-12-800164-6.00001-0]
[52]
Lancaster GI, Febbraio MA. Exosome-dependent Trafficking of HSP70. J Biol Chem 2005; 280(24): 23349-55.
[http://dx.doi.org/10.1074/jbc.M502017200] [PMID: 15826944]
[53]
Ozkocak DC, Phan TK, Poon IKH. Translating extracellular vesicle packaging into therapeutic applications. Front Immunol 2022; 13: 946422.
[http://dx.doi.org/10.3389/fimmu.2022.946422] [PMID: 36045692]
[54]
Lauwers E, Wang Y-C, Gallardo R, et al. Hsp90 mediates membrane deformation and exosome release. Molecular Cell 2018; 71(5): 689-702.
[http://dx.doi.org/10.1016/j.molcel.2018.07.016]
[55]
Zhang M, Jin K, Gao L, et al. Methods and technologies for exosome isolation and characterization. Small Methods 2018; 2(9): 1800021.
[http://dx.doi.org/10.1002/smtd.201800021]
[56]
Yang D, Zhang W, Zhang H, et al. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics 2020; 10(8): 3684-707.
[http://dx.doi.org/10.7150/thno.41580] [PMID: 32206116]
[57]
Cvjetkovic A, Lötvall J, Lässer C. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J Extracell Vesicles 2014; 3(1): 23111.
[http://dx.doi.org/10.3402/jev.v3.23111] [PMID: 24678386]
[58]
Chen J, Li P, Zhang T, et al. Review on strategies and technologies for exosome isolation and purification. Front Bioeng Biotechnol 2022; 9: 811971.
[http://dx.doi.org/10.3389/fbioe.2021.811971] [PMID: 35071216]
[59]
Soares Martins T, Catita J, Martins Rosa I. A B da Cruz E Silva O, Henriques AG, Henriques AG. Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS One 2018; 13(6): e0198820.
[http://dx.doi.org/10.1371/journal.pone.0198820] [PMID: 29889903]
[60]
Livshits MA, Khomyakova E, Evtushenko EG, et al. Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol. Sci Rep 2015; 5(1): 17319.
[http://dx.doi.org/10.1038/srep17319] [PMID: 26616523]
[61]
Jeppesen DK, Hvam ML, Primdahl-Bengtson B, et al. Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J Extracell Vesicles 2014; 3(1): 25011.
[http://dx.doi.org/10.3402/jev.v3.25011] [PMID: 25396408]
[62]
Ruivo CF, Adem B, Silva M, Melo SA. The biology of cancer exosomes: Insights and new perspectives. Cancer Res 2017; 77(23): 6480-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0994] [PMID: 29162616]
[63]
Lin B, Tian T, Lu Y, et al. Tracing tumor-derived exosomal PD-L1 by dual-aptamer activated proximity-induced droplet digital PCR. Angew Chem Int Ed 2021; 60(14): 7582-6.
[http://dx.doi.org/10.1002/anie.202015628] [PMID: 33382182]
[64]
Antimisiaris S, Mourtas S, Marazioti A. Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics 2018; 10(4): 218.
[http://dx.doi.org/10.3390/pharmaceutics10040218] [PMID: 30404188]
[65]
Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation techniques. Theranostics 2017; 7(3): 789-804.
[http://dx.doi.org/10.7150/thno.18133] [PMID: 28255367]
[66]
Cai S, Luo B, Jiang P, et al. Immuno-modified superparamagnetic nanoparticles via host–guest interactions for high-purity capture and mild release of exosomes. Nanoscale 2018; 10(29): 14280-9.
[http://dx.doi.org/10.1039/C8NR02871K] [PMID: 30014056]
[67]
Shen M, Di K, He H, et al. Progress in exosome associated tumor markers and their detection methods. Molecular Biomedicine 2020; 1(1): 3.
[http://dx.doi.org/10.1186/s43556-020-00002-3] [PMID: 35006428]
[68]
Serrano-Pertierra E, Oliveira-Rodríguez M, Matos M, et al. Extracellular vesicles: Current analytical techniques for detection and quantification. Biomolecules 2020; 10(6): 824.
[http://dx.doi.org/10.3390/biom10060824] [PMID: 32481493]
[69]
Vu CHT, Lee HG, Chang YK, Oh HM. Axenic cultures for microalgal biotechnology: Establishment, assessment, maintenance, and applications. Biotechnol Adv 2018; 36(2): 380-96.
[http://dx.doi.org/10.1016/j.biotechadv.2017.12.018] [PMID: 29292155]
[70]
Shirejini SZ, Inci F. The Yin and Yang of exosome isolation methods: conventional practice, microfluidics, and commercial kits. Biotechnol Adv 2022; 54: 107814.
[http://dx.doi.org/10.1016/j.biotechadv.2021.107814] [PMID: 34389465]
[71]
Xu K, Jin Y, Li Y, Huang Y, Zhao R. Recent Progress of Exosome Isolation and Peptide Recognition-Guided Strategies for Exosome Research. Front Chem 2022; 10: 844124.
[http://dx.doi.org/10.3389/fchem.2022.844124] [PMID: 35281563]
[72]
Sidhom K, Obi PO, Saleem A. A review of exosomal isolation methods: Is size exclusion chromatography the best option? Int J Mol Sci 2020; 21(18): 6466.
[http://dx.doi.org/10.3390/ijms21186466] [PMID: 32899828]
[73]
Haraszti RA, Miller R, Stoppato M, et al. Exosomes produced from 3D cultures of MSCs by tangential flow filtration show higher yield and improved activity. Mol Ther 2018; 26(12): 2838-47.
[http://dx.doi.org/10.1016/j.ymthe.2018.09.015] [PMID: 30341012]
[74]
Brownlee Z, Lynn KD, Thorpe PE, Schroit AJ. A novel “salting-out” procedure for the isolation of tumor-derived exosomes. J Immunol Methods 2014; 407: 120-6.
[http://dx.doi.org/10.1016/j.jim.2014.04.003] [PMID: 24735771]
[75]
Yamamoto KR, Alberts BM, Benzinger R, Lawhorne L, Treiber G. Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology 1970; 40(3): 734-44.
[http://dx.doi.org/10.1016/0042-6822(70)90218-7] [PMID: 4908735]
[76]
Dash M, Palaniyandi K, Ramalingam S, Sahabudeen S, Raja NS. Exosomes isolated from two different cell lines using three different isolation techniques show variation in physical and molecular characteristics. Biochim Biophys Acta Biomembr 2021; 1863(2): 183490.
[http://dx.doi.org/10.1016/j.bbamem.2020.183490] [PMID: 33212036]
[77]
Tan A, Rajadas J, Seifalian AM. Exosomes as nano-theranostic delivery platforms for gene therapy. Adv Drug Deliv Rev 2013; 65(3): 357-67.
[http://dx.doi.org/10.1016/j.addr.2012.06.014] [PMID: 22820532]
[78]
Abdel-Haq H. Blood exosomes as a tool for monitoring treatment efficacy and progression of neurodegenerative diseases. Neural Regen Res 2019; 14(1): 72-4.
[http://dx.doi.org/10.4103/1673-5374.243709] [PMID: 30531076]
[79]
Yuan D, Zhao Y, Banks WA, et al. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials 2017; 142: 1-12.
[http://dx.doi.org/10.1016/j.biomaterials.2017.07.011] [PMID: 28715655]
[80]
Lai CP, Mardini O, Ericsson M, et al. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 2014; 8(1): 483-94.
[http://dx.doi.org/10.1021/nn404945r] [PMID: 24383518]
[81]
Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin 2017; 38(6): 754-63.
[http://dx.doi.org/10.1038/aps.2017.12] [PMID: 28392567]
[82]
Mirzakhani M, Shahbazi M, Oliaei F, Mohammadnia-Afrouzi M. Immunological biomarkers of tolerance in human kidney transplantation: An updated literature review. J Cell Physiol 2019; 234(5): 5762-74.
[http://dx.doi.org/10.1002/jcp.27480] [PMID: 30362556]
[83]
Stickney Z, Losacco J, McDevitt S, Zhang Z, Lu B. Development of exosome surface display technology in living human cells. Biochem Biophys Res Commun 2016; 472(1): 53-9.
[http://dx.doi.org/10.1016/j.bbrc.2016.02.058] [PMID: 26902116]
[84]
Huda MN, Nafiujjaman M, Deaguero IG, et al. Potential use of exosomes as diagnostic biomarkers and in targeted drug delivery: Progress in clinical and preclinical applications. ACS Biomater Sci Eng 2021; 7(6): 2106-49.
[http://dx.doi.org/10.1021/acsbiomaterials.1c00217] [PMID: 33988964]
[85]
Gowen A, Shahjin F, Chand S, Odegaard KE, Yelamanchili SV. Mesenchymal stem cell-derived extracellular vesicles: Challenges in clinical applications. Front Cell Dev Biol 2020; 8: 149.
[http://dx.doi.org/10.3389/fcell.2020.00149] [PMID: 32226787]
[86]
Wang J, Chen D, Ho EA. Challenges in the development and establishment of exosome-based drug delivery systems. J Control Release 2021; 329: 894-906.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.020] [PMID: 33058934]
[87]
Betzer O, Barnoy E, Sadan T, et al. Advances in imaging strategies for in vivo tracking of exosomes. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020; 12(2): e1594.
[http://dx.doi.org/10.1002/wnan.1594] [PMID: 31840427]
[88]
Ashique S, Anand K. Radiolabelled extracellular vesicles as imaging modalities for precise targeted drug delivery. Pharmaceutics 2023; 15(5): 1426.
[http://dx.doi.org/10.3390/pharmaceutics15051426] [PMID: 37242668]
[89]
Murray CJ, Ortblad KF, Guinovart C, et al. Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014; 384(9947): 1005-70.
[http://dx.doi.org/10.1016/S0140-6736(14)60844-8] [PMID: 25059949]
[90]
Izadi M, Dehghan Marvast L, Rezvani ME, et al. Mesenchymal stem-cell derived exosome therapy as a potential future approach for treatment of male infertility caused by Chlamydia infection. Front Microbiol 2022; 12: 785622.
[http://dx.doi.org/10.3389/fmicb.2021.785622] [PMID: 35095800]
[91]
Mendt M, Rezvani K, Shpall E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant 2019; 54(S2) (Suppl. 2): 789-92.
[http://dx.doi.org/10.1038/s41409-019-0616-z] [PMID: 31431712]
[92]
Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles - endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta 2014; 1846(1): 75-87.
[PMID: 24747178]
[93]
Liu SL, Sun P, Li Y, Liu SS, Lu Y. Exosomes as critical mediators of cell-to-cell communication in cancer pathogenesis and their potential clinical application. Transl Cancer Res 2019; 8(1): 298-311.
[http://dx.doi.org/10.21037/tcr.2019.01.03] [PMID: 35116759]
[94]
Tai YL, Chen KC, Hsieh JT, Shen TL. Exosomes in cancer development and clinical applications. Cancer Sci 2018; 109(8): 2364-74.
[http://dx.doi.org/10.1111/cas.13697] [PMID: 29908100]
[95]
Wang S, Shi Y. Exosomes derived from immune cells: The new role of tumor immune microenvironment and tumor therapy. Int J Nanomedicine 2022; 17: 6527-50.
[http://dx.doi.org/10.2147/IJN.S388604] [PMID: 36575698]
[96]
Kalani A, Tyagi A, Tyagi N. Exosomes: Mediators of neurodegeneration, neuroprotection and therapeutics. Mol Neurobiol 2014; 49(1): 590-600.
[http://dx.doi.org/10.1007/s12035-013-8544-1] [PMID: 23999871]
[97]
Baharlooi H, Azimi M, Salehi Z, Izad M. Mesenchymal stem cell-derived exosomes: A promising therapeutic ace card to address autoimmune diseases. Int J Stem Cells 2020; 13(1): 13-23.
[http://dx.doi.org/10.15283/ijsc19108] [PMID: 31887849]
[98]
Zarovni N, Corrado A, Guazzi P, et al. Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods 2015; 87: 46-58.
[http://dx.doi.org/10.1016/j.ymeth.2015.05.028] [PMID: 26044649]
[99]
Liu Q, Li S, Dupuy A, et al. Exosomes as new biomarkers and drug delivery tools for the prevention and treatment of various diseases: current perspectives. Int J Mol Sci 2021; 22(15): 7763.
[http://dx.doi.org/10.3390/ijms22157763] [PMID: 34360530]
[100]
Lee J, Lee JH, Chakraborty K, Hwang J, Lee YK. Exosome-based drug delivery systems and their therapeutic applications. RSC Advances 2022; 12(29): 18475-92.
[http://dx.doi.org/10.1039/D2RA02351B] [PMID: 35799926]
[101]
Donoso-Quezada J, Ayala-Mar S, González-Valdez J. State-of-the-art exosome loading and functionalization techniques for enhanced therapeutics: A review. Crit Rev Biotechnol 2020; 40(6): 804-20.
[http://dx.doi.org/10.1080/07388551.2020.1785385] [PMID: 32605394]
[102]
Mehryab F, Rabbani S, Shahhosseini S, et al. Exosomes as a next-generation drug delivery system: An update on drug loading approaches, characterization, and clinical application challenges. Acta Biomater 2020; 113: 42-62.
[http://dx.doi.org/10.1016/j.actbio.2020.06.036] [PMID: 32622055]
[103]
Fu S, Wang Y, Xia X, Zheng JC. Exosome engineering: Current progress in cargo loading and targeted delivery. NanoImpact 2020; 20: 100261.
[http://dx.doi.org/10.1016/j.impact.2020.100261]
[104]
Amiri A, Bagherifar R, Ansari Dezfouli E, Kiaie SH, Jafari R, Ramezani R. Exosomes as bio-inspired nanocarriers for RNA delivery: Preparation and applications. J Transl Med 2022; 20(1): 125.
[http://dx.doi.org/10.1186/s12967-022-03325-7] [PMID: 35287692]
[105]
Kibria G, Ramos EK, Wan Y, Gius DR, Liu H. Exosomes as a drug delivery system in cancer therapy: Potential and challenges. Mol Pharm 2018; 15(9): 3625-33.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00277] [PMID: 29771531]
[106]
McNicholas K, Michael MZ. Immuno-characterization of exosomes using nanoparticle tracking analysis. Exosomes and Microvesicles: Methods and Protocols 2017; 35-42.
[http://dx.doi.org/10.1007/978-1-4939-6728-5_3]
[107]
Khatun Z, Bhat A, Sharma S, Sharma A. Elucidating diversity of exosomes: Biophysical and molecular characterization methods. Nanomedicine 2016; 11(17): 2359-77.
[http://dx.doi.org/10.2217/nnm-2016-0192] [PMID: 27488053]
[108]
Chia BS, Low YP, Wang Q, Li P, Gao Z. Advances in exosome quantification techniques. Trends Analyt Chem 2017; 86: 93-106.
[http://dx.doi.org/10.1016/j.trac.2016.10.012]
[109]
Schey KL, Luther JM, Rose KL. Proteomics characterization of exosome cargo. Methods 2015; 87: 75-82.
[http://dx.doi.org/10.1016/j.ymeth.2015.03.018] [PMID: 25837312]
[110]
Wu Y, Deng W, Klinke DJ II. Exosomes: Improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst 2015; 140(19): 6631-42.
[http://dx.doi.org/10.1039/C5AN00688K] [PMID: 26332016]
[111]
Keshtkar S, Kaviani M, Soleimanian S, Azarpira N, Asvar Z, Pakbaz S. Stem cell-derived exosome as potential therapeutics for microbial diseases. Front Microbiol 2022; 12: 786111.
[http://dx.doi.org/10.3389/fmicb.2021.786111] [PMID: 35237239]
[112]
Alenquer M, Amorim M. Exosome biogenesis, regulation, and function in viral infection. Viruses 2015; 7(9): 5066-83.
[http://dx.doi.org/10.3390/v7092862] [PMID: 26393640]
[113]
Mao L, Chen Y, Gu J, Zhao Y, Chen Q. Roles and mechanisms of exosomal microRNAs in viral infections. Arch Virol 2023; 168(4): 121.
[http://dx.doi.org/10.1007/s00705-023-05744-3] [PMID: 36977948]
[114]
Peng Y, Yang Y, Li Y, Shi T, Luan Y, Yin C. Exosome and virus infection. Front Immunol 2023; 14: 1154217.
[http://dx.doi.org/10.3389/fimmu.2023.1154217] [PMID: 37063897]
[115]
Feeley EM, Sims JS, John SP, et al. IFITM3 inhibits influenza A virus infection by preventing cytosolic entry. PLoS Pathog 2011; 7(10): e1002337.
[http://dx.doi.org/10.1371/journal.ppat.1002337] [PMID: 22046135]
[116]
Chaudhari P, Ghate V, Nampoothiri M, Lewis S. Multifunctional role of exosomes in viral diseases: From transmission to diagnosis and therapy. Cell Signal 2022; 94: 110325.
[http://dx.doi.org/10.1016/j.cellsig.2022.110325] [PMID: 35367363]
[117]
Popowski KD, Dinh PUC, George A, Lutz H, Cheng K. Exosome therapeutics for COVID-19 and respiratory viruses. VIEW 2021; 2(3): 20200186.
[http://dx.doi.org/10.1002/VIW.20200186] [PMID: 34766162]
[118]
Keller MD, Ching KL, Liang FX, et al. Decoy exosomes provide protection against bacterial toxins. Nature 2020; 579(7798): 260-4.
[http://dx.doi.org/10.1038/s41586-020-2066-6] [PMID: 32132711]
[119]
Zhang Q, Honko A, Zhou J, et al. Cellular nanosponges inhibit SARS-CoV-2 infectivity. Nano Lett 2020; 20(7): 5570-4.
[http://dx.doi.org/10.1021/acs.nanolett.0c02278] [PMID: 32551679]
[120]
Novak JA. Exosomes: Antiviral agents in the human lung. 2013.
[121]
Fu Y, Xiong S. Tagged extracellular vesicles with the RBD of the viral spike protein for delivery of antiviral agents against SARS-COV-2 infection. J Control Release 2021; 335: 584-95.
[http://dx.doi.org/10.1016/j.jconrel.2021.05.049] [PMID: 34089793]
[122]
Wang Y, Wang G, Wang Z, Zhang H, Zhang L, Cheng Z. Chicken biliary exosomes enhance CD4 + T proliferation and inhibit ALV-J replication in liver. Biochem Cell Biol 2014; 92(2): 145-51.
[http://dx.doi.org/10.1139/bcb-2013-0096] [PMID: 24697699]
[123]
Smith JA, Daniel R. Human vaginal fluid contains exosomes that have an inhibitory effect on an early step of the HIV-1 life cycle. AIDS 2016; 30(17): 2611-6.
[http://dx.doi.org/10.1097/QAD.0000000000001236] [PMID: 27536982]
[124]
Ghasemian SO. Application of exosomes-derived mesenchymal stem cells in treatment of Fungal diseases: From basic to clinical sciences. Front Fungal Biol 2021; 2: 736093.
[http://dx.doi.org/10.3389/ffunb.2021.736093] [PMID: 37744094]
[125]
Gangadaran P, Madhyastha H, Madhyastha R, et al. The emerging role of exosomes in innate immunity, diagnosis and therapy. Front Immunol 2023; 13: 1085057.
[http://dx.doi.org/10.3389/fimmu.2022.1085057] [PMID: 36726968]
[126]
Chen HX, Liang FC, Gu P, et al. Exosomes derived from mesenchymal stem cells repair a Parkinson’s disease model by inducing autophagy. Cell Death Dis 2020; 11(4): 288.
[http://dx.doi.org/10.1038/s41419-020-2473-5] [PMID: 32341347]
[127]
Zhu Y, Feng X, Abbott J, et al. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells 2014; 32(1): 116-25.
[http://dx.doi.org/10.1002/stem.1504] [PMID: 23939814]
[128]
Monsel A, Zhu Y, Gennai S, et al. Therapeutic effects of human mesenchymal stem cell–derived microvesicles in severe pneumonia in mice. Am J Respir Crit Care Med 2015; 192(3): 324-36.
[http://dx.doi.org/10.1164/rccm.201410-1765OC] [PMID: 26067592]
[129]
Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 2014; 14(3): 195-208.
[http://dx.doi.org/10.1038/nri3622] [PMID: 24566916]
[130]
Colino J, Snapper CM. Exosomes from bone marrow dendritic cells pulsed with diphtheria toxoid preferentially induce type 1 antigen-specific IgG responses in naive recipients in the absence of free antigen. J Immunol 2006; 177(6): 3757-62.
[http://dx.doi.org/10.4049/jimmunol.177.6.3757] [PMID: 16951336]
[131]
Shahabipour F, Barati N, Johnston TP, Derosa G, Maffioli P, Sahebkar A. Exosomes: Nanoparticulate tools for RNA interference and drug delivery. J Cell Physiol 2017; 232(7): 1660-8.
[http://dx.doi.org/10.1002/jcp.25766] [PMID: 28063231]
[132]
Majumdar R, Tavakoli Tameh A, Parent CA. Exosomes mediate LTB4 release during neutrophil chemotaxis. PLoS Biol 2016; 14(1): e1002336.
[http://dx.doi.org/10.1371/journal.pbio.1002336] [PMID: 26741884]
[133]
Szatmary AC, Nossal R, Parent CA, Majumdar R. Modeling neutrophil migration in dynamic chemoattractant gradients: Assessing the role of exosomes during signal relay. Mol Biol Cell 2017; 28(23): 3457-70.
[http://dx.doi.org/10.1091/mbc.e17-05-0298] [PMID: 28954858]
[134]
Bhatnagar S, Shinagawa K, Castellino FJ, Schorey JS. Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood 2007; 110(9): 3234-44.
[http://dx.doi.org/10.1182/blood-2007-03-079152] [PMID: 17666571]
[135]
Chen Y, Wang X, Yu Y, et al. Serum exosomes of chronic gastritis patients infected with Helicobacter pylori mediate IL-1α expression via IL-6 trans-signalling in gastric epithelial cells. Clin Exp Immunol 2018; 194(3): 339-49.
[http://dx.doi.org/10.1111/cei.13200] [PMID: 30105789]
[136]
Qian Z, Bai Y, Zhou J, et al. A moisturizing chitosan-silk fibroin dressing with silver nanoparticles-adsorbed exosomes for repairing infected wounds. J Mater Chem B Mater Biol Med 2020; 8(32): 7197-212.
[http://dx.doi.org/10.1039/D0TB01100B] [PMID: 32633312]
[137]
Yang X, Shi G, Guo J, Wang C, He Y. Exosome-encapsulated antibiotic against intracellular infections of methicillin-resistant Staphylococcus aureus. Int J Nanomedicine 2018; 13: 8095-104.
[http://dx.doi.org/10.2147/IJN.S179380] [PMID: 30555228]
[138]
Wang J, Sun X, Zhao J, et al. Exosomes: A novel strategy for treatment and prevention of diseases. Front Pharmacol 2017; 8: 300.
[http://dx.doi.org/10.3389/fphar.2017.00300] [PMID: 28659795]
[139]
Aline F, Bout D, Amigorena S, Roingeard P, Dimier-Poisson I. Toxoplasma gondii antigen-pulsed-dendritic cell-derived exosomes induce a protective immune response against T. gondii infection. Infect Immun 2004; 72(7): 4127-37.
[http://dx.doi.org/10.1128/IAI.72.7.4127-4137.2004] [PMID: 15213158]
[140]
Cruz FF, Borg ZD, Goodwin M, et al. Systemic administration of human bone marrow-derived mesenchymal stromal cell extracellular vesicles ameliorates aspergillus hyphal extract-induced allergic airway inflammation in immunocompetent mice. Stem Cells Transl Med 2015; 4(11): 1302-16.
[http://dx.doi.org/10.5966/sctm.2014-0280] [PMID: 26378259]
[141]
Martin-Jaular L, Nakayasu ES, Ferrer M, Almeida IC, del Portillo HA. Exosomes from plasmodium yoelii-infected reticulocytes protect mice from lethal infections. PLoS One 2011; 6(10): e26588.
[http://dx.doi.org/10.1371/journal.pone.0026588] [PMID: 22046311]
[142]
Schwab A, Meyering SS, Lepene B, et al. Extracellular vesicles from infected cells: Potential for direct pathogenesis. Front Microbiol 2015; 6: 1132.
[http://dx.doi.org/10.3389/fmicb.2015.01132] [PMID: 26539170]
[143]
Happel C, Peñalber-Johnstone C, Tagle DA. Pivoting novel exosome-based technologies for the detection of SARS-CoV-2. Viruses 2022; 14(5): 1083.
[http://dx.doi.org/10.3390/v14051083] [PMID: 35632824]
[144]
Gurunathan S, Kang MH, Kim JH. Diverse effects of exosomes on COVID-19: A perspective of progress from transmission to therapeutic developments. Front Immunol 2021; 12: 716407.
[http://dx.doi.org/10.3389/fimmu.2021.716407] [PMID: 34394121]
[145]
Kim B, Kim KM. Role of exosomes and their potential as biomarkers in epstein-barr virus-associated gastric cancer. Cancers 2023; 15(2): 469.
[http://dx.doi.org/10.3390/cancers15020469] [PMID: 36672418]
[146]
McNamara RP, Chugh PE, Bailey A, et al. Extracellular vesicles from Kaposi Sarcoma-associated herpesvirus lymphoma induce long-term endothelial cell reprogramming. PLoS Pathog 2019; 15(2): e1007536.
[http://dx.doi.org/10.1371/journal.ppat.1007536] [PMID: 30716130]
[147]
Barclay RA, Schwab A, DeMarino C, et al. Exosomes from uninfected cells activate transcription of latent HIV-1. J Biol Chem 2017; 292(28): 11682-701.
[http://dx.doi.org/10.1074/jbc.M117.793521] [PMID: 28536264]
[148]
Welch JL, Stapleton JT, Okeoma CM. Vehicles of intercellular communication: Exosomes and HIV-1. J Gen Virol 2019; 100(3): 350-66.
[http://dx.doi.org/10.1099/jgv.0.001193] [PMID: 30702421]
[149]
Mori Y, Koike M, Moriishi E, et al. Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway. Traffic 2008; 9(10): 1728-42.
[http://dx.doi.org/10.1111/j.1600-0854.2008.00796.x] [PMID: 18637904]
[150]
Chapuy-Regaud S, Dubois M, Plisson-Chastang C, et al. Characterization of the lipid envelope of exosome encapsulated HEV particles protected from the immune response. Biochimie 2017; 141: 70-9.
[http://dx.doi.org/10.1016/j.biochi.2017.05.003] [PMID: 28483690]
[151]
Ge Y, Sun F, Zhao B, Kong F, Li Z, Kong X. Bacteria derived extracellular vesicles in the pathogenesis and treatment of gastrointestinal tumours. Front Oncol 2023; 12: 1103446.
[http://dx.doi.org/10.3389/fonc.2022.1103446] [PMID: 36776356]
[152]
Shimoda A, Ueda K, Nishiumi S, et al. Exosomes as nanocarriers for systemic delivery of the Helicobacter pylori virulence factor CagA. Sci Rep 2016; 6(1): 18346.
[http://dx.doi.org/10.1038/srep18346] [PMID: 26739388]
[153]
Smith VL, Jackson L, Schorey JS. Ubiquitination as a mechanism to transport soluble mycobacterial and eukaryotic proteins to exosomes. J Immunol 2015; 195(6): 2722-30.
[http://dx.doi.org/10.4049/jimmunol.1403186] [PMID: 26246139]
[154]
Singh PP, LeMaire C, Tan JC, Zeng E, Schorey JS. Exosomes released from M. tuberculosis infected cells can suppress IFN-γ mediated activation of naïve macrophages. PLoS One 2011; 6(4): e18564.
[http://dx.doi.org/10.1371/journal.pone.0018564] [PMID: 21533172]
[155]
Sun Z, Pang X, Wang X, Zeng H. Differential expression analysis of miRNAs in macrophage-derived exosomes in the tuberculosis-infected bone microenvironment. Front Microbiol 2023; 14: 1236012.
[http://dx.doi.org/10.3389/fmicb.2023.1236012] [PMID: 37601387]
[156]
Kim MJ, Jung BK, Cho J, et al. Exosomes secreted by Toxoplasma gondii-infected L6 cells: their effects on host cell proliferation and cell cycle changes. Korean J Parasitol 2016; 54(2): 147-54.
[http://dx.doi.org/10.3347/kjp.2016.54.2.147] [PMID: 27180572]
[157]
Gómez-Chávez F, Murrieta-Coxca JM, Caballero-Ortega H, Morales-Prieto DM, Markert UR. Host-pathogen interactions mediated by extracellular vesicles in Toxoplasma gondii infection during pregnancy. J Reprod Immunol 2023; 158: 103957.
[http://dx.doi.org/10.1016/j.jri.2023.103957] [PMID: 37253287]
[158]
Silverman JM, Clos J, Horakova E, et al. Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells. J Immunol 2010; 185(9): 5011-22.
[http://dx.doi.org/10.4049/jimmunol.1000541] [PMID: 20881185]
[159]
Soto-Serna LE, Diupotex M, Zamora-Chimal J, et al. Leishmania mexicana: Novel insights of immune modulation through amastigote exosomes. J Immun Res 2020; 2020.
[160]
Hassani K, Olivier M. Immunomodulatory impact of leishmania-induced macrophage exosomes: A comparative proteomic and functional analysis. PLoS Negl Trop Dis 2013; 7(5): e2185.
[http://dx.doi.org/10.1371/journal.pntd.0002185] [PMID: 23658846]
[161]
Cortes-Serra N, Gualdron-Lopez M, Pinazo M-J, Torrecilhas AC, Fernandez-Becerra C. Extracellular vesicles in Trypanosoma cruzi infection: Immunomodulatory effects and future perspectives as potential control tools against chagas disease. J Immun Res 2022; 2022.
[162]
Licá ICL, Frazão GCCG, Nogueira RA, et al. Immunological mechanisms involved in macrophage activation and polarization in schistosomiasis. Parasitology 2023; 150(5): 401-15.
[http://dx.doi.org/10.1017/S0031182023000021] [PMID: 36601859]
[163]
Wang L, Li Z, Shen J, et al. Exosome-like vesicles derived by Schistosoma japonicum adult worms mediates M1 type immune- activity of macrophage. Parasitol Res 2015; 114(5): 1865-73.
[http://dx.doi.org/10.1007/s00436-015-4373-7] [PMID: 25855345]
[164]
Rodrigues ML, Nakayasu ES, Oliveira DL, et al. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell 2008; 7(1): 58-67.
[http://dx.doi.org/10.1128/EC.00370-07] [PMID: 18039940]
[165]
Panepinto J, Komperda K, Frases S, et al. Sec6-dependent sorting of fungal extracellular exosomes and laccase of Cryptococcus neoformans. Mol Microbiol 2009; 71(5): 1165-76.
[http://dx.doi.org/10.1111/j.1365-2958.2008.06588.x] [PMID: 19210702]
[166]
Ratushnyak MG, Semochkina YP. Exosomes: Natural Nanoparticles with Therapeutic Potential. Nanotechnol Russ 2020; 15(7-8): 415-27.
[http://dx.doi.org/10.1134/S1995078020040126]
[167]
Elliott RO, He M. Unlocking the power of exosomes for crossing biological barriers in drug delivery. Pharmaceutics 2021; 13(1): 122.
[http://dx.doi.org/10.3390/pharmaceutics13010122] [PMID: 33477972]
[168]
Perocheau D, Touramanidou L, Gurung S, Gissen P, Baruteau J. Clinical applications for exosomes: Are we there yet? Br J Pharmacol 2021; 178(12): 2375-92.
[http://dx.doi.org/10.1111/bph.15432] [PMID: 33751579]
[169]
Devhare PB, Ray RB. A novel role of exosomes in the vaccination approach. Ann Transl Med 2017; 5(1): 23.
[http://dx.doi.org/10.21037/atm.2016.12.75] [PMID: 28164108]
[170]
Lener T, Gimona M, Aigner L, et al. Applying extracellular vesicles based therapeutics in clinical trials-an ISEV position paper. J Extracell Vesicles 2015; 4(1): 30087.
[http://dx.doi.org/10.3402/jev.v4.30087] [PMID: 26725829]
[171]
Sharma SK, Dai T, Kharkwal GB, et al. Drug discovery of antimicrobial photosensitizers using animal models. Curr Pharm Des 2011; 17(13): 1303-19.
[http://dx.doi.org/10.2174/138161211795703735] [PMID: 21504410]
[172]
Zhi X, Liu Y, Lin L, et al. Oral pH sensitive GNS@ab nanoprobes for targeted therapy of Helicobacter pylori without disturbance gut microbiome. Nanomedicine 2019; 20: 102019.
[http://dx.doi.org/10.1016/j.nano.2019.102019] [PMID: 31125676]
[173]
Yin R, Agrawal T, Khan U, et al. Antimicrobial photodynamic inactivation in nanomedicine: Small light strides against bad bugs. Nanomedicine 2015; 10(15): 2379-404.
[http://dx.doi.org/10.2217/nnm.15.67] [PMID: 26305189]
[174]
Thomas-Moore BA, del Valle CA, Field RA, Marín MJ. Recent advances in nanoparticle-based targeting tactics for antibacterial photodynamic therapy. Photochem Photobiol Sci 2022; 21(6): 1111-31.
[http://dx.doi.org/10.1007/s43630-022-00194-3] [PMID: 35384638]
[175]
Dharmaratne P, Sapugahawatte DN, Wang B, et al. Contemporary approaches and future perspectives of antibacterial photodynamic therapy (aPDT) against methicillin-resistant Staphylococcus aureus (MRSA): A systematic review. Eur J Med Chem 2020; 200: 112341.
[http://dx.doi.org/10.1016/j.ejmech.2020.112341] [PMID: 32505848]
[176]
Lin S, Yu Z, Chen D, et al. Progress in microfluidics-based exosome separation and detection technologies for diagnostic applications. Small 2020; 16(9): 1903916.
[http://dx.doi.org/10.1002/smll.201903916] [PMID: 31663295]
[177]
Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New technologies for analysis of extracellular vesicles. Chem Rev 2018; 118(4): 1917-50.
[http://dx.doi.org/10.1021/acs.chemrev.7b00534] [PMID: 29384376]
[178]
Li Z, Wu N, Cheng J, et al. Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration. Theranostics 2020; 10(11): 5090-106.
[http://dx.doi.org/10.7150/thno.44270] [PMID: 32308770]
[179]
Ding L, Yang X, Gao Z, et al. A holistic review of the state-of-the-art microfluidics for exosome separation: An overview of the current status, existing obstacles, and future outlook. Small 2021; 17(29): 2007174.
[http://dx.doi.org/10.1002/smll.202007174] [PMID: 34047052]
[180]
Kaushik AC, Wu Q, Lin L, et al. Exosomal ncRNAs profiling of mycobacterial infection identified miRNA-185-5p as a novel biomarker for tuberculosis. Brief Bioinform 2021; 22(6): bbab210.
[http://dx.doi.org/10.1093/bib/bbab210] [PMID: 34169968]
[181]
Yi J, Wang Y, Zhang H, et al. Interferon-inducible transmembrane protein 3-containing exosome as a new carrier for the cell-to-cell transmission of anti-Brucella activity. Front Vet Sci 2021; 8: 642968.
[http://dx.doi.org/10.3389/fvets.2021.642968] [PMID: 33816587]
[182]
Kalarikkal SP, Sundaram GM. Edible plant-derived exosomal microRNAs: Exploiting a cross-kingdom regulatory mechanism for targeting SARS-CoV-2. Toxicol Appl Pharmacol 2021; 414: 115425.
[http://dx.doi.org/10.1016/j.taap.2021.115425] [PMID: 33516820]
[183]
Kim KU, Han K, Kim J, et al. The protective role of exosome-derived MicroRNAs and proteins from human breast milk against infectious agents. Metabolites 2023; 13(5): 635.
[http://dx.doi.org/10.3390/metabo13050635] [PMID: 37233676]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy