Generic placeholder image

Current Forensic Science

Editor-in-Chief

ISSN (Print): 2666-4844
ISSN (Online): 2666-4852

Mini-Review Article

Review of Six Different Next Generation Sequencing (NGS) Techniques for Forensic Science, including Advantages and Disadvantages

Author(s): Sheerin Bashar, Naga Jogayya Kothakota* and Bikash Ranjan Jena

Volume 2, 2024

Published on: 12 January, 2024

Article ID: e120124225623 Pages: 18

DOI: 10.2174/0126664844274727231218061037

Price: $65

Abstract

Next-generation sequencing methods have advanced greatly since Sanger sequencing, allowing for increased data yield, productivity, and utility. Read time can be used to categorize the upcoming technological generations. This article summarizes the differences between the two technological paradigms, the second-generation (short-read) kind, and the third-generation (long-read) variety. Popular technologies such as Ion Torrent and Illumina stand in for short-read sequencing methods, whereas Oxford Nanopore and Pacific Biosciences are used to represent long-read sequencing approaches. The introduction of the first next-generation sequencing (NGS) technology about ten years ago completely transformed the study of genetics. Whole genomes are now mapped and published practically weekly as a result of speed and cost advances. The number of scholarly papers and conference presentations highlighting the forensic uses of NGS in multiple forensic genetic laboratories has somewhat increased from the previous year. These results show that NGS provides new opportunities for forensic genomic investigation. To gather more information from multiple specimens in a single experiment, combinations of different markers, such as Short Tandem Repeats (STRs), Single Nucleotide Polymorphisms (SNPs), insertion/deletions, and mRNA, can be used instead of the usual Polymerase Chain Reactions- CE techniques. The most significant forensic STR loci's true spectrum of variation and hitherto unknown STR alleles have been discovered. We will address the possible use of singlemolecule sequencing and NGS in forensic science.

[1]
Church GM, Gilbert W. Genomic sequencing. Proc Natl Acad Sci 1984; 81(7): 1991-5.
[http://dx.doi.org/10.1073/pnas.81.7.1991] [PMID: 6326095]
[2]
Leal SM, Speer MC. Genetic linkage analysis in human disease. In: Econs MJ, Ed. The Genetics of Osteoporosis and Metabolic Bone Disease. Totowa, NJ: Humana Press 2000; pp. 377-413.
[http://dx.doi.org/10.1007/978-1-59259-033-9_20]
[3]
Dawn Teare M, Barrett JH. Genetic linkage studies. Lancet 2005; 366(9490): 1036-44.
[http://dx.doi.org/10.1016/S0140-6736(05)67382-5] [PMID: 16168786]
[4]
Engbers HM, Berger R, van Hasselt P, et al. Yield of additional metabolic studies in neurodevelopmental disorders. Ann Neurol 2008; 64(2): 212-7.
[http://dx.doi.org/10.1002/ana.21435] [PMID: 18570304]
[5]
Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 1977; 74(12): 5463-7.
[http://dx.doi.org/10.1073/pnas.74.12.5463] [PMID: 271968]
[6]
Morey M, Fernández-Marmiesse A, Castiñeiras D, Fraga JM, Couce ML, Cocho JA. A glimpse into past, present, and future DNA sequencing. Mol Genet Metab 2013; 110(1-2): 3-24.
[http://dx.doi.org/10.1016/j.ymgme.2013.04.024] [PMID: 23742747]
[7]
Heather JM, Chain B. The sequence of sequencers: The history of sequencing DNA. Genomics 2016; 107(1): 1-8.
[http://dx.doi.org/10.1016/j.ygeno.2015.11.003] [PMID: 26554401]
[8]
DNA sequencing. Available from: http://en.wikipedia.org/wiki/DNA sequencing/
[9]
Collins FS, Morgan M, Patrinos A. The Human Genome Project: Lessons from large-scale biology. Science 2003; 300(5617): 286-90.
[http://dx.doi.org/10.1126/science.1084564] [PMID: 12690187]
[10]
[12]
Freedman ML, Reich D, Penney KL, et al. Assessing the impact of population stratification on genetic association studies. Nat Genet 2004; 36(4): 388-93.
[http://dx.doi.org/10.1038/ng1333] [PMID: 15052270]
[13]
Thomas DC, Witte JS. Point: population stratification: A problem for case-control studies of candidate-gene associations? Cancer Epidemiol Biomarkers Prev 2002; 11(6): 505-12.
[PMID: 12050090]
[14]
Horton RH, Lucassen AM. Recent developments in genetic/genomic medicine. Clin Sci 2019; 133(5): 697-708.
[http://dx.doi.org/10.1042/CS20180436] [PMID: 30837331]
[15]
Posey JE, O’Donnell-Luria AH, Chong JX, et al. Insights into genetics, human biology and disease gleaned from family based genomic studies. Genet Med 2019; 21(4): 798-812.
[http://dx.doi.org/10.1038/s41436-018-0408-7] [PMID: 30655598]
[16]
Tucker T, Marra M, Friedman JM. Massively parallel sequencing: The next big thing in genetic medicine. Am J Hum Genet 2009; 85(2): 142-54.
[http://dx.doi.org/10.1016/j.ajhg.2009.06.022] [PMID: 19679224]
[17]
Head SR, Komori HK, LaMere SA, et al. Library construction for next-generation sequencing: Overviews and challenges. Biotechniques 2014; 56(2): 61-77. 66, 68 passim.
[http://dx.doi.org/10.2144/000114133] [PMID: 24502796]
[19]
Illumina Stranded Total RNA Prep Ligation with Ribo-Zero Plus Reference Guide. Available from:RNA/illumina-stranded-total- RNA-reference-1000000124514-01.pdf
[22]
Mardis ER. Next-generation sequencing platforms. Annu Rev Anal Chem 2013; 6(1): 287-303.
[http://dx.doi.org/10.1146/annurev-anchem-062012-092628] [PMID: 23560931]
[23]
van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation sequencing technology. Trends Genet 2014; 30(9): 418-26.
[http://dx.doi.org/10.1016/j.tig.2014.07.001] [PMID: 25108476]
[24]
Fordyce SL, Mogensen HS, Børsting C, et al. Second-generation sequencing of forensic STRs using the Ion Torrent™ HID STR 10-plex and the Ion PGM™. Forensic Sci Int Genet 2015; 14: 132-40.
[http://dx.doi.org/10.1016/j.fsigen.2014.09.020] [PMID: 25450784]
[25]
Levy SE, Myers RM. Advancements in next-generation sequencing. Annu Rev Genomics Hum Genet 2016; 17(1): 95-115.
[http://dx.doi.org/10.1146/annurev-genom-083115-022413] [PMID: 27362342]
[26]
Goodwin S, McPherson JD, McCombie WR. Coming of age: Ten years of next-generation sequencing technologies. Nat Rev Genet 2016; 17(6): 333-51.
[http://dx.doi.org/10.1038/nrg.2016.49] [PMID: 27184599]
[27]
Berka J, Chen YJ, Leamon JH. Bead emulsion nucleic acid amplification. U.S. Patnet 20050079510A1, 2005.
[28]
Froehlich T. Miniaturized, high-throughput nucleic acid analysis. U.S. Patnet 20100248237A1, 2010.
[29]
Pyrosequencing. Available from: http://www.pyrosequencing.com/DynPage.aspx
[30]
Roche Applied Science. Available from: http://www.roche-applied-science.com/
[31]
Mardis ER. The impact of next-generation sequencing technology on genetics. Trends Genet 2008; 24(3): 133-41.
[http://dx.doi.org/10.1016/j.tig.2007.12.007] [PMID: 18262675]
[32]
Huse SM, Huber JA, Morrison HG, Sogin ML, Welch D. Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 2007; 8(7): R143.
[http://dx.doi.org/10.1186/gb-2007-8-7-r143] [PMID: 17659080]
[33]
The new GS junior sequencer. Available from: http://www.gsjunior.com/instrument-workflow.php
[35]
ThermoFisher. Ion Torrent Next-Generation Sequencing Instruments. Available from: https://www.thermofisher.com/us/en/home/life-science/sequencing/
[36]
Flusberg BA, Webster DR, Lee JH, et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 2010; 7(6): 461-5.
[http://dx.doi.org/10.1038/nmeth.1459] [PMID: 20453866]
[37]
Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011; 29(7): 644-52.
[http://dx.doi.org/10.1038/nbt.1883] [PMID: 21572440]
[38]
Trapnell C, Roberts A, Goff L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012; 7(3): 562-78.
[http://dx.doi.org/10.1038/nprot.2012.016] [PMID: 22383036]
[39]
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011; 12(1): 323.
[http://dx.doi.org/10.1186/1471-2105-12-323] [PMID: 21816040]
[40]
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15(12): 550.
[http://dx.doi.org/10.1186/s13059-014-0550-8] [PMID: 25516281]
[41]
Bahassi EM, Stambrook PJ. Next-generation sequencing technologies: Breaking the sound barrier of human genetics. Mutagenesis 2014; 29(5): 303-10.
[http://dx.doi.org/10.1093/mutage/geu031] [PMID: 25150023]
[42]
van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C. The third revolution in sequencing technology. Trends Genet 2018; 34: 666.
[43]
Logsdon GA, Vollger MR, Eichler EE. Long-read human genome sequencing and its applications. Nat Rev Genet 2020; 21(10): 597-614.
[http://dx.doi.org/10.1038/s41576-020-0236-x] [PMID: 32504078]
[44]
PacBio-Introducing the Sequel System: The Scalable Platform for SMRT Sequencing. Available from: https://www.pacb.com/blog/introducing-the-sequel-systemthe scalable-platform-for-smrt-sequencing/
[46]
[47]
Rhoads A, Au KF. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 2015; 13(5): 278-89.
[http://dx.doi.org/10.1016/j.gpb.2015.08.002] [PMID: 26542840]
[48]
PacBio. SMRT Sequencing Available from: https://www.pacb.com/smr science/smrtsequencing/
[49]
Wenger AM, Peluso P, Rowell WJ, et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol 2019; 37(10): 1155-62.
[http://dx.doi.org/10.1038/s41587-019-0217-9] [PMID: 31406327]
[50]
[51]
Software packages are compatible with PacBio_ data. 2012. Available from: https://github.com/PacificBiosciences/DevNet/wiki/Compatible-Software#denovo%20accessed
[52]
PacBio. Sequel II System v8.0 & SMRT Link v8.0 Technical Overview. Available from: https://www.pacb.com/wp-content/uploads/Sequel-II-System-v8.0-and-SMRT-Linkv8.0 Technical-Overview-Customer-Training.pdf
[53]
Berbers B, Saltykova A, Garcia-Graells C, et al. Combining short and long read sequencing to characterize antimicrobial resistance genes on plasmids applied to an unauthorized genetically modified Bacillus. Sci Rep 2020; 10(1): 4310.
[http://dx.doi.org/10.1038/s41598-020-61158-0] [PMID: 32152350]
[54]
Karst SM, Ziels RM, Kirkegaard RH, et al. High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing. Nat Methods 2021; 18(2): 165-9.
[http://dx.doi.org/10.1038/s41592-020-01041-y] [PMID: 33432244]
[55]
Miga KH, Koren S, Rhie A, et al. Telomere-to-telomere assembly of a complete human X chromosome. bioRxiv 2019; 2019; 735928.
[http://dx.doi.org/10.1101/735928]
[56]
Payne A, Holmes N, Rakyan V, Loose M. BulkVis: a graphical viewer for Oxford nanopore bulk FAST5 files. Bioinformatics 2019; 35(13): 2193-8.
[http://dx.doi.org/10.1093/bioinformatics/bty841] [PMID: 30462145]
[57]
Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 2009; 4(4): 265-70.
[http://dx.doi.org/10.1038/nnano.2009.12] [PMID: 19350039]
[58]
Nanopore. Nanopore Media Resources. Available from: https://nanoporetech.com/aboutus/
[59]
Shafin K, Pesout T, Lorig-Roach R, et al. Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes. Nat Biotechnol 2020; 38(9): 1044-53.
[http://dx.doi.org/10.1038/s41587-020-0503-6] [PMID: 32686750]
[60]
Ip CLC, Loose M, Tyson JR, et al. MinION analysis and reference consortium: Phase 1 data release and analysis. F1000 Res 2015; 4: 1075.
[http://dx.doi.org/10.12688/f1000research.7201.1] [PMID: 26834992]
[61]
De Santis D, Truong L, Martinez P, D’Orsogna L. Rapid high‐resolution HLA genotyping by MinION Oxford nanopore sequencing for deceased donor organ allocation. HLA 2020; 96(2): 141-62.
[http://dx.doi.org/10.1111/tan.13901] [PMID: 32274854]
[62]
Mosbruger TL, Dinou A, Duke JL, et al. Utilizing nanopore sequencing technology for the rapid and comprehensive characterization of eleven HLA loci; addressing the need for deceased donor expedited HLA typing. Hum Immunol 2020; 81(8): 413-22.
[http://dx.doi.org/10.1016/j.humimm.2020.06.004] [PMID: 32595056]
[63]
Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: Delivery of nanopore sequencing to the genomics community. Genome Biol 2016; 17(1): 239.
[http://dx.doi.org/10.1186/s13059-016-1103-0] [PMID: 27887629]
[64]
Barzon L, Lavezzo E, Militello V, Toppo S, Palù G. Applications of next-generation sequencing technologies to diagnostic virology. Int J Mol Sci 2011; 12(11): 7861-84.
[http://dx.doi.org/10.3390/ijms12117861] [PMID: 22174638]
[65]
Zhang J, Chiodini R, Badr A, Zhang G. The impact of next-generation sequencing on genomics. J Genet Genomics 2011; 38(3): 95-109.
[http://dx.doi.org/10.1016/j.jgg.2011.02.003]
[66]
Oikonomopoulos S, Wang YC, Djambazian H, Badescu D, Ragoussis J. Benchmarking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA populations. Sci Rep 2016; 6(1): 31602.
[http://dx.doi.org/10.1038/srep31602] [PMID: 27554526]
[67]
Byrne A, Beaudin AE, Olsen HE, et al. Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat Commun 2017; 8(1): 16027.
[http://dx.doi.org/10.1038/ncomms16027] [PMID: 28722025]
[68]
Kovaka S, Fan Y, Ni B, Timp W, Schatz MC. Targeted nanopore sequencing by real-time mapping of raw electrical signal with UN-CALLED. Nat Biotechnol 2020.
[69]
Quick J, Loman NJ, Duraffour S, et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 2016; 530(7589): 228-32.
[http://dx.doi.org/10.1038/nature16996] [PMID: 26840485]
[70]
McCombie WR, McPherson JD, Mardis ER. Next-generation sequencing technologies. Cold Spring Harb Perspect Med 2019; 9(11): a036798.
[http://dx.doi.org/10.1101/cshperspect.a036798] [PMID: 30478097]
[71]
Van Neste C, Vandewoestyne M, Van Criekinge W, Deforce D, Van Nieuwerburgh F. My-Forensic-Loci-queries (MyFLq) framework for analysis of forensic STR data generated by massive parallel sequencing. Forensic Sci Int Genet 2014; 9: 1-8.
[http://dx.doi.org/10.1016/j.fsigen.2013.10.012] [PMID: 24528572]
[72]
Yamada T, Iwai T, Takahashi G, et al. Utility of KRAS mutation detection using circulating cell‐free DNA from patients with colorectal cancer. Cancer Sci 2016; 107(7): 936-43.
[http://dx.doi.org/10.1111/cas.12959] [PMID: 27116474]
[73]
Guo K, Zhang Z, Han L, et al. Detection of epidermal growth factor receptor mutation in plasma as a biomarker in Chinese patients with early-stage non-small cell lung cancer. OncoTargets Ther 2015; 8: 3289-96.
[http://dx.doi.org/10.2147/OTT.S94297] [PMID: 26609241]
[74]
Stutz WE, Bolnick DI. Stepwise threshold clustering: a new method for genotyping MHC loci using next-generation sequencing technology. PLoS One 2014; 9(7): e100587.
[http://dx.doi.org/10.1371/journal.pone.0100587] [PMID: 25036866]
[75]
Hofman P. Liquid biopsy for early detection of lung cancer. Curr Opin Oncol 2017; 29(1): 73-8.
[http://dx.doi.org/10.1097/CCO.0000000000000343] [PMID: 27906860]
[76]
Fernandez-Cuesta L, Perdomo S, Avogbe PH, et al. Identification of circulating tumor DNA for the early detection of small-cell lung cancer. EBioMedicine 2016; 10: 117-23.
[http://dx.doi.org/10.1016/j.ebiom.2016.06.032] [PMID: 27377626]
[77]
Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014; 6(224): 224ra24.
[http://dx.doi.org/10.1126/scitranslmed.3007094] [PMID: 24553385]
[78]
Weimer ET, Montgomery M, Petraroia R, Crawford J, Schmitz JL. Performance characteristics and validation of next-generation sequencing for human leucocyte antigen typing. J Mol Diagn 2016; 18(5): 668-75.
[http://dx.doi.org/10.1016/j.jmoldx.2016.03.009] [PMID: 27376474]
[79]
Ai B, Liu H, Huang Y, Peng P. Circulating cell-free DNA as a prognostic and predictive biomarker in non-small cell lung cancer. Oncotarget 2016; 7(28): 44583-95.
[http://dx.doi.org/10.18632/oncotarget.10069] [PMID: 27323821]
[80]
Chan KCA, Jiang P, Zheng YWL, et al. Cancer genome scanning in plasma: Detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin Chem 2013; 59(1): 211-24.
[http://dx.doi.org/10.1373/clinchem.2012.196014] [PMID: 23065472]
[81]
Anvar SY, van der Gaag KJ, van der Heijden JWF, et al. TSSV: a tool for characterization of complex allelic variants in pure and mixed genomes. Bioinformatics 2014; 30(12): 1651-9.
[http://dx.doi.org/10.1093/bioinformatics/btu068] [PMID: 24532718]
[82]
Warshauer DH, Lin D, Hari K, et al. STRait Razor: A length-based forensic STR allele-calling tool for use with second generation sequencing data. Forensic Sci Int Genet 2013; 7(4): 409-17.
[http://dx.doi.org/10.1016/j.fsigen.2013.04.005] [PMID: 23768312]
[83]
Shendure J, Balasubramanian S, Church GM, et al. DNA sequencing at 40: Past, present and future. Nature 2017; 550(7676): 345-53.
[http://dx.doi.org/10.1038/nature24286] [PMID: 29019985]
[84]
Irwin J, Just R, Scheible M, Loreille O. Assessing the potential of next generation sequencing technologies for missing persons identification efforts. Forensic Sci International Genet Suppl Ser 2011; 3(1): e447-8. a
[http://dx.doi.org/10.1016/j.fsigss.2011.09.085]
[85]
González B, Mercado M, Salas O, et al. Biological evidence analysis in cases of sexual assault. In: Biochemical Analysis Tools. IntechOpen 2020.
[86]
Tridico SR, Murray DC, Addison J, Kirkbride KP, Bunce M. Metagenomic analyses of bacteria on human hairs: a qualitative assessment for applications in forensic science. Investig Genet 2014; 5(1): 16.
[http://dx.doi.org/10.1186/s13323-014-0016-5] [PMID: 25516795]
[87]
Yao Y, Yang Q, Shao C, et al. Null alleles and sequence variations at primer binding sites of STR loci within multiplex typing systems. Leg Med 2018; 30: 10-3.
[http://dx.doi.org/10.1016/j.legalmed.2017.10.007] [PMID: 29125964]
[88]
Churchill JD, Stoljarova M, King JL, Budowle B. Massively parallel sequencing-enabled mixture analysis of mitochondrial DNA samples. Int J Legal Med 2018; 132(5): 1263-72.
[http://dx.doi.org/10.1007/s00414-018-1799-3] [PMID: 29468381]
[89]
Naue A, Hoefsloot HCJ, Kloosterman AD, Verschure PJ. Forensic DNA methylation profiling from minimal traces: How low can we go? Forensic Sci Int Genet 2018; 33: 17-23.
[http://dx.doi.org/10.1016/j.fsigen.2017.11.004]
[90]
Yang Y, Xie B, Yan J. Application of next-generation sequencing technology in forensic science. Genomics Proteomics Bioinformatics 2014; 12(5): 190-7.
[http://dx.doi.org/10.1016/j.gpb.2014.09.001]
[91]
Børsting C, Morling N. Next generation sequencing and its applications in forensic genetics. Forensic Sci Int Genet 2015; 18: 78-89.
[http://dx.doi.org/10.1016/j.fsigen.2015.02.002]
[92]
Groß TE. Development of novel SNP panels for the application of massively parallel sequencing to forensic genetics. Doctoral dissertation, Dissertation, Köln, Universität zu Köln, 2017 2017.
[93]
Li R, Li Y, Fang X, et al. SNP detection for massively parallel whole-genome resequencing. Genome Res 2009; 19(6): 1124-32.
[http://dx.doi.org/10.1101/gr.088013.108] [PMID: 19420381]
[94]
Gross TE, Fleckhaus J, Schneider PM. Progress in the implementation of massively parallel sequencing for forensic genetics: results of a European-wide survey among professional users. Int J Legal Med 2021; 135(4): 1425-32.
[http://dx.doi.org/10.1007/s00414-021-02569-0] [PMID: 33847802]
[95]
Patterson N, Petersen DC, van der Ross RE, et al. Genetic structure of a unique admixed population: implications for medical research. Hum Mol Genet 2010; 19(3): 411-9.
[http://dx.doi.org/10.1093/hmg/ddp505] [PMID: 19892779]
[96]
Lu X, Wang L, Lin X, et al. Genome-wide association study in Chinese identifies novel loci for blood pressure and hypertension. Hum Mol Genet 2015; 24(3): 865-74.
[http://dx.doi.org/10.1093/hmg/ddu478] [PMID: 25249183]
[97]
Elwick KE. Enhanced sample preparation and data interpretation strategies using massively parallel sequencing for human identification in missing persons’ and DVI Casework. Doctoral dissertation, Sam Houston State University 2018.
[98]
Hollard C, Keyser C, Delabarde T, et al. Case report: on the use of the HID-Ion AmpliSeq™ Ancestry Panel in a real forensic case. Int J Legal Med 2017; 131(2): 351-8.
[http://dx.doi.org/10.1007/s00414-016-1425-1] [PMID: 27470319]
[99]
Kulski JK. Next-generation sequencing an overview of the history, tools, and “Omic” applications. In: Next Gene Seq. InTech 2016.
[http://dx.doi.org/10.5772/61964]
[100]
Miller AD, Good RT, Coleman RA, Lancaster ML, Weeks AR. Microsatellite loci and the complete mitochondrial DNA sequence characterized through next generation sequencing and de novo genome assembly for the critically endangered orange-bellied parrot, Neophema chrysogaster. Mol Biol Rep 2013; 40(1): 35-42.
[http://dx.doi.org/10.1007/s11033-012-1950-z] [PMID: 23114913]
[101]
Satot TBT. Cryptic Species Within Anopheles Barbirostris van der Wulp, 1884 Inferred from Nuclear and Mitochondrial Gene Sequence Variation. United Kingdom: The University of Liverpool 2001.
[102]
Smith DR. The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs? Brief Funct Genomics 2016; 15(1): 47-54.
[PMID: 26117139]
[103]
Zhang AM, Bandelt HJ, Jia X, et al. Is mitochondrial tRNA(phe) variant m.593T>C a synergistically pathogenic mutation in Chinese LHON families with m.11778G>A? PLoS One 2011; 6(10): e26511.
[http://dx.doi.org/10.1371/journal.pone.0026511] [PMID: 22039503]
[104]
Palaiokostas C, Bekaert M, Khan MGQ, et al. Mapping and validation of the major sex-determining region in Nile tilapia (Oreochromis niloticus L.) Using RAD sequencing. PLoS One 2013; 8(7): e68389.
[http://dx.doi.org/10.1371/journal.pone.0068389] [PMID: 23874606]
[105]
Cihlar JC, Amory C, Lagacé R, Roth C, Parson W, Budowle B. Developmental validation of a MPS workflow with a PCR-based short am-plicon whole mitochondrial genome panel. Genes 2020; 11(11): 1345.
[http://dx.doi.org/10.3390/genes11111345] [PMID: 33202822]
[106]
Ma K, Zhao X, Li H, et al. Massive parallel sequencing of mitochondrial DNA genomes from mother-child pairs using the ion torrent personal genome machine (PGM). Forensic Sci Int Genet 2018; 32: 88-93.
[http://dx.doi.org/10.1016/j.fsigen.2017.11.001] [PMID: 29128545]
[107]
Gouveia N, Brito P, Bogas V, et al. Massively parallel sequencing of forensic samples using precision ID mtDNA whole genome panel on the ion S5™ system. Forensic Sci International Genet Suppl Ser 2017; 6: e167-8.
[http://dx.doi.org/10.1016/j.fsigss.2017.09.057]
[108]
Gallimore JM, McElhoe JA, Holland MM. Assessing heteroplasmic variant drift in the mtDNA control region of human hairs using an MPS approach. Forensic Sci Int Genet 2018; 32: 7-17.
[http://dx.doi.org/10.1016/j.fsigen.2017.09.013] [PMID: 29024924]
[109]
Roy D, Tomo S, Purohit P, Setia P. Microbiome in death and beyond current vistas and future trends. Front Ecol Evol 2021; 9: 630397.
[http://dx.doi.org/10.3389/fevo.2021.630397]
[110]
Dash HR, Das S. Thanatomicrobiome and epinecrotic community signatures for estimation of post-mortem time interval in human cadaver. Appl Microbiol Biotechnol 2020; 104(22): 9497-512.
[http://dx.doi.org/10.1007/s00253-020-10922-3] [PMID: 33001249]
[111]
Goel N, Karir P, Garg VK. Role of DNA methylation in human age prediction. Mech Ageing Dev 2017; 166: 33-41.
[http://dx.doi.org/10.1016/j.mad.2017.08.012] [PMID: 28844970]
[112]
Cai N, Chang S, Li Y, et al. Molecular signatures of major depression. Curr Biol 2015; 25(9): 1146-56.
[http://dx.doi.org/10.1016/j.cub.2015.03.008] [PMID: 25913401]
[113]
De Schutter K, Lin YC, Tiels P, et al. Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 2009; 27(6): 561-6.
[http://dx.doi.org/10.1038/nbt.1544] [PMID: 19465926]
[114]
Zaaijer S, Gordon A, Speyer D, Piccone R, Groen S C, Erlich Y. Rapid re-identification of human samples using portable DNA sequencing. elife 2017; 6: e27798.
[115]
Scudder N, McNevin D, Kelty SF, Walsh SJ, Robertson J. Forensic DNA phenotyping: Developing a model privacy impact assessment. Forensic Sci Int Genet 2018; 34: 222-30.
[http://dx.doi.org/10.1016/j.fsigen.2018.03.005] [PMID: 29554642]
[116]
de Knijff P. From next generation sequencing to now generation sequencing in forensics. Forensic Sci Int Genet 2019; 38: 175-80.
[http://dx.doi.org/10.1016/j.fsigen.2018.10.017] [PMID: 30419516]
[117]
Zascavage RR, Shewale SJ, Planz JV. Deep-sequencing technologies and potential applications in forensic DNA testing. Forensic Sci Rev 2013; 25(1-2): 79-105.
[118]
Glynn CL. Bridging disciplines to form a new one: The emergence of forensic genetic genealogy. Genes 2022; 13(8): 1381.
[http://dx.doi.org/10.3390/genes13081381] [PMID: 36011291]
[119]
Wu Y, Chen H, Chen Z, Nie L, Liu B, He N. Multifunctional device for nucleic acid extraction based on magnetic separation and its co-working with liquid handling system for high throughput sample preparation. J Nanosci Nanotechnol 2016; 16(7): 6919-24.
[http://dx.doi.org/10.1166/jnn.2016.12583]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy