Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

The Impact of Carrageenan on Pharmascience

Author(s): Akanksha Bhatt, Nidhi Nainwal and Priyank Purohit*

Volume 10, Issue 6, 2024

Published on: 11 January, 2024

Article ID: e110124225504 Pages: 18

DOI: 10.2174/0122150838266638231117180516

Price: $65

Abstract

Carrageenan (CG) a sulfated polysaccharide (SP) is produced using a variety of seaweeds from the Rhodophyceae family. This type of seaweed is available in areas, like the Atlantic Ocean close to Great Britain, Europe, and North America. Carrageenan has been permitted for the use as food items with the European additive E-number E407. Carrageenan is a widely used polysaccharide derived from red seaweed and is known for its various applications in the chemical, biological, and pharmaceutical fields. It delves into its versatile applications across various sub areas, spanning from the food to the pharmaceutical industry. A significant emphasis is placed on the intricate roles of carrageenan in pharmaceutical science, where it serves as both a drug carrier agent and an active ingredient, owing to its noteworthy biological activity. This review aims to provide a comprehensive overview of carrageenan's versatile applications, with a focus on its chemical properties, biological activities, and pharmaceutical uses. The pharmaceutical applications of carrageenan are further categorized into various subparts, including its role in treating diseases and its use in drug delivery systems, such as topical, oral, nasal, and unconventional routes. The review also incorporates the most recent developments in clinical trials involving carrageenan and its updated applications, drawing from authoritative sources. This comprehensive analysis aims to offer readers a clear understanding of carrageenan's multifaceted nature and its evolving significance in diverse industries.

Graphical Abstract

[1]
Kaur IP, Deol PK. Therapeutic Potential and Drug Delivery Applications of Algal Polysaccharides. Curr Pharm Des 2019; 25(11): 1145-6.
[http://dx.doi.org/10.2174/138161282511190806114448] [PMID: 31465277]
[2]
Packer MA, Harris GC, Adams SL. Food and feed applications of algae. Algae Biotechnology: Products and Processes 2016; 217-47.
[http://dx.doi.org/10.1007/978-3-319-12334-9_12]
[3]
Bagal‐Kestwal DR, Pan MH, Chiang BH. Properties and applications of gelatin, pectin, and carrageenan gels. Bio monomers for green polymeric composite materials 2019; Sep 30: 117-40.
[http://dx.doi.org/10.1002/9781119301714.ch6]
[4]
Pacheco-Quito EM, Ruiz-Caro R, Veiga MD. Carrageenan: Drug delivery systems and other biomedical applications. Mar Drugs 2020; 18(11): 583.
[http://dx.doi.org/10.3390/md18110583] [PMID: 33238488]
[5]
Derby N, Lal M, Aravantinou M, et al. Griffithsin carrageenan fast dissolving inserts prevent SHIV HSV-2 and HPV infections in vivo. Nat Commun 2018; 9(1): 3881.
[http://dx.doi.org/10.1038/s41467-018-06349-0] [PMID: 30250170]
[6]
Klassen L, Xing X, Tingley JP, et al. Approaches to investigate selective dietary polysaccharide utilization by human gut microbiota at a functional level. Front Microbiol 2021; 12: 632684.
[http://dx.doi.org/10.3389/fmicb.2021.632684] [PMID: 33679661]
[7]
Jiao G, Yu G, Zhang J, Ewart HS. Chemical structures and bioactivities of CG from marine algae. Mar Drugs 2011; 9(2): 196-223.
[http://dx.doi.org/10.3390/md9020196] [PMID: 21566795]
[8]
Khalil HPS, Lai TK, Tye YY, et al. A review of extractions of seaweed hydrocolloids: Properties and applications. Express Polym Lett 2018; 12(4): 296-17.
[9]
Sankalia MG, Mashru RC, Sankalia JM, Sutariya VB. Physicochemical characterization of papain entrapped in ionotropically cross-linked kappa-carrageenan gel beads for stability improvement using Doehlert shell design. J Pharm Sci 2006; 95(9): 1994-2013.
[http://dx.doi.org/10.1002/jps.20665] [PMID: 16850431]
[10]
Campo VL, Kawano DF, Silva DB Jr, Carvalho I. Carrageenans: Biological properties, chemical modifications and structural analysis – A review. Carbohydr Polym 2009; 77(2): 167-80.
[http://dx.doi.org/10.1016/j.carbpol.2009.01.020]
[11]
Lahaye M. Developments on gelling algal galactans, their structure and physico-chemistry. J Appl Phycol 2001; 13(2): 173-84.
[http://dx.doi.org/10.1023/A:1011142124213]
[12]
Necas J, Bartosikova L. Carrageenan: A review. Vet Med 2013; 58(4): 187-205.
[http://dx.doi.org/10.17221/6758-VETMED]
[13]
Cyber colloids system. Intorduction to carrageenan structure. Available at: http://www.cybercolloids.net/information/technical-articles/introduction-carrageenan-structure
[14]
Gums A. The Five Different Forms of Carrageenan and its Significance in Industrial Applications. Available at: https://www.altrafine.com/blog/the-five-different-forms-of-carrageenan-and-it s-significance-in-industrial-applications//
[15]
Datta S, Mody K, Gopalsamy G, Jha B. Novel application of κ-carrageenan: As a gelling agent in microbiological media to study biodiversity of extreme alkaliphiles. Carbohydr Polym 2011; 85(2): 465-8.
[http://dx.doi.org/10.1016/j.carbpol.2011.02.036]
[16]
Lai VMF, Wong PAL, Lii CY. Effects of Cation Properties on Sol-gel Transition and Gel Properties of κ-carrageenan. J Food Sci 2000; 65(8): 1332-7.
[http://dx.doi.org/10.1111/j.1365-2621.2000.tb10607.x]
[17]
Iglauer S, Wu Y, Shuler P, Tang Y, Goddard WA III. Dilute iota- and kappa-Carrageenan solutions with high viscosities in high salinity brines. J Petrol Sci Eng 2011; 75(3-4): 304-11.
[http://dx.doi.org/10.1016/j.petrol.2010.11.025]
[18]
Stanley N. FAO Corporate document repository. Chapter 3: Production, properties and uses of carrageenan. FMC Corporation Marine Colloids Division 5 Maple Street
[19]
Yermak IM, Barabanova AO, Aminin DL, et al. Effects of structural peculiarities of carrageenans on their immunomodulatory and anticoagulant activities. Carbohydr Polym 2012; 87(1): 713-20.
[http://dx.doi.org/10.1016/j.carbpol.2011.08.053] [PMID: 34663026]
[20]
Bian C, Ji L, Qu H, Wang Z. A novel polysaccharide from Auricularia auricula alleviates thrombosis induced by carrageenan in mice. Molecules 2022; 27(15): 4831.
[http://dx.doi.org/10.3390/molecules27154831] [PMID: 35956781]
[21]
Eccles R, Meier C, Jawad M, Weinmüllner R, Grassauer A, Prieschl-Grassauer E. Efficacy and safety of an antiviral Iota-Carrageenan nasal spray: A randomized, double-blind, placebo-controlled exploratory study in volunteers with early symptoms of the common cold. Respir Res 2010; 11(1): 108.
[http://dx.doi.org/10.1186/1465-9921-11-108] [PMID: 20696083]
[22]
Haijin M, Xiaolu J, Huashi G. A κ-carrageenan derived oligosaccharide prepared by enzymatic degradation containing anti-tumor activity. J Appl Phycol 2003; 15(4): 297-303.
[http://dx.doi.org/10.1023/A:1025103530534]
[23]
Matsuhiro B, Rivas P. Second-derivative Fourier transform infrared spectra of seaweed galactans. J Appl Phycol 1993; 5(1): 45-51.
[http://dx.doi.org/10.1007/BF02182421]
[24]
Stortz CA, Cerezo AS. Room temperature, low-field 13C-n.m.r. spectra of degraded kappa/iota carrageenans. Int J Biol Macromol 1991; 13(2): 101-4.
[http://dx.doi.org/10.1016/0141-8130(91)90056-Z] [PMID: 1888710]
[25]
Asanza Teruel ML, Gontier E, Bienaime C, Nava Saucedo JE, Barbotin JN. Response surface analysis of chlortetracycline and tetracycline production with K-carrageenan immobilized Streptomyces aureofaciens. Enzyme Microb Technol 1997; 21(5): 314-20.
[http://dx.doi.org/10.1016/S0141-0229(97)00045-8] [PMID: 9322372]
[26]
Nagalakshmi V, Pai JS. Immobilisation of Penicillin Acylase Producing E. coli Cells with kappa-Carrageenan. Indian J Microbiol 1997; 37: 17-20.
[27]
Chao YP, Fu H, Lo TE, Chen PT, Wang JJ. One-step production of D-p-hydroxyphenylglycine by recombinant Escherichia coli strains. Biotechnol Prog 1999; 15(6): 1039-45.
[http://dx.doi.org/10.1021/bp9901163] [PMID: 10585187]
[28]
Takamatsu S, Tosa T. Production of L-alanine and D-aspartic acid. Bioprocess Technol 1993; 16: 25-35.
[PMID: 7763347]
[29]
De Clercq E. Vesicular stomatitis virus (VSV) as a paradigm for predicting antiviral activity against Ebola virus (EBOV). Marmara Pharm J 2015; 2(19): 141-52.
[http://dx.doi.org/10.12991/mpj.20151910461]
[30]
Yamada T, Ogamo A, Saito T, Uchiyama H, Nakagawa Y. Preparation of O-acylated low-molecular-weight carrageenans with potent anti-HIV activity and low anticoagulant effect. Carbohydr Polym 2000; 41(2): 115-20.
[http://dx.doi.org/10.1016/S0144-8617(99)00083-1]
[31]
Wijesekara I, Pangestuti R, Kim SK. Biological activities and potential health benefits of CG derived from marine algae. Carbohydr Polym 2011; 84(1): 14-21.
[http://dx.doi.org/10.1016/j.carbpol.2010.10.062]
[32]
Shanmugam M, Mody KH. Heparinoid-active sulphated polysaccharides from marine algae as potential blood anticoagulant agents. Curr Sci 2000; 1672-83.
[33]
Costa LS, Fidelis GP, Cordeiro SL, et al. Biological activities of CG from tropical seaweeds. Biomed Pharmacother 2010; 64(1): 21-8.
[http://dx.doi.org/10.1016/j.biopha.2009.03.005] [PMID: 19766438]
[34]
Gerber P, Dutcher JD, Adams EV, Sherman JH. Protective effect of seaweed extracts for chicken embryos infected with influenza B or mumps virus. Exp Biol Med 1958; 99(3): 590-3.
[http://dx.doi.org/10.3181/00379727-99-24429] [PMID: 13614432]
[35]
Huheihel M, Ishanu V, Tal J, Arad SM. Activity of Porphyridium sp. polysaccharide against herpes simplex viruses in vitro and in vivo. J Biochem Biophys Methods 2002; 50(2-3): 189-200.
[http://dx.doi.org/10.1016/S0165-022X(01)00186-5] [PMID: 11741707]
[36]
Cheong KL, Jesumani V, Khan BM, Liu Y, Du H. Algal polysaccharides and their biological properties. Recent Advances in Micro and Macroalgal Processing: Food and Health Perspectives 2021; 2021 Jul 19: 231-77.
[http://dx.doi.org/10.1002/9781119542650.ch10]
[37]
Hans N, Malik A, Naik S. Antiviral activity of CG from marine algae and its application in combating COVID-19: Mini review. Bioresour Technol Rep 2021; 13: 100623.
[http://dx.doi.org/10.1016/j.biteb.2020.100623] [PMID: 33521606]
[38]
Adhikari U, Mateu CG, Chattopadhyay K, Pujol CA, Damonte EB, Ray B. Structure and antiviral activity of sulfated fucans from Stoechospermum marginatum. Phytochemistry 2006; 67(22): 2474-82.
[http://dx.doi.org/10.1016/j.phytochem.2006.05.024] [PMID: 17067880]
[39]
Lüscher-Mattii M. Polyanions--a lost chance in the fight against HIV and other virus diseases? Antivir Chem Chemother 2000; 11(4): 249-59.
[http://dx.doi.org/10.1177/095632020001100401] [PMID: 10950387]
[40]
Ponce NMA, Pujol CA, Damonte EB, Flores ML, Stortz CA. Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies. Carbohydr Res 2003; 338(2): 153-65.
[http://dx.doi.org/10.1016/S0008-6215(02)00403-2] [PMID: 12526839]
[41]
Damonte E, Matulewicz M, Cerezo A. Sulfated seaweed polysaccharides as antiviral agents. Curr Med Chem 2004; 11(18): 2399-419.
[http://dx.doi.org/10.2174/0929867043364504] [PMID: 15379705]
[42]
Pujol CA, Estevez JM, Carlucci MJ, Ciancia M, Cerezo AS, Damonte EB. Novel DL-galactan hybrids from the red seaweed Gymnogongrus torulosus are potent inhibitors of herpes simplex virus and dengue virus. Antivir Chem Chemother 2002; 13(2): 83-9.
[http://dx.doi.org/10.1177/095632020201300202] [PMID: 12238532]
[43]
Schaeffer DJ, Krylov VS. Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicol Environ Saf 2000; 45(3): 208-27.
[http://dx.doi.org/10.1006/eesa.1999.1862] [PMID: 10702339]
[44]
Ye H, Wang K, Zhou C, Liu J, Zeng X. Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum. Food Chem 2008; 111(2): 428-32.
[http://dx.doi.org/10.1016/j.foodchem.2008.04.012] [PMID: 26047446]
[45]
Souza LAR, Dore CMPG, Castro AJG, et al. Galactans from the red seaweed Amansia multifida and their effects on inflammation, angiogenesis, coagulation and cell viability. Biomedicine & Preventive Nutrition 2012; 2(3): 154-62.
[http://dx.doi.org/10.1016/j.bionut.2012.03.007]
[46]
Opoku G, Qiu X, Doctor V. Effect of oversulfation on the chemical and biological properties of kappa carrageenan. Carbohydr Polym 2006; 65(2): 134-8.
[http://dx.doi.org/10.1016/j.carbpol.2005.12.033]
[47]
Yang JW, Yoon SY, Oh SJ, Kim SK, Kang KW. Bifunctional effects of fucoidan on the expression of inducible nitric oxide synthase. Biochem Biophys Res Commun 2006; 346(1): 345-50.
[http://dx.doi.org/10.1016/j.bbrc.2006.05.135] [PMID: 16756944]
[48]
Leiro JM, Castro R, Arranz JA, Lamas J. Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh. Int Immunopharmacol 2007; 7(7): 879-88.
[http://dx.doi.org/10.1016/j.intimp.2007.02.007] [PMID: 17499190]
[49]
Álvarez-Viñas M, Souto S, Flórez-Fernández N, Torres MD, Bandín I, Domínguez H. Antiviral activity of carrageenans and processing implications. Mar Drugs 2021; 19(8): 437.
[http://dx.doi.org/10.3390/md19080437] [PMID: 34436276]
[50]
Jang Y, Shin H, Lee MK, et al. Antiviral activity of lambda-carrageenan against influenza viruses in mice and severe acute respiratory syndrome coronavirus 2 in vitro bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.08.23.255364]
[51]
Eccles R. Iota-carrageenan as an antiviral treatment for the common cold. Open Virol J 2020; 14(1): 9-15.
[http://dx.doi.org/10.2174/1874357902014010009]
[52]
Frediansyah A. The antiviral activity of iota-, kappa-, and lambda-carrageenan against COVID-19: A critical review. Clin Epidemiol Glob Health 2021; 12: 100826.
[http://dx.doi.org/10.1016/j.cegh.2021.100826] [PMID: 34222718]
[53]
Clinical trial status government site. Available at: https://clinicaltrials.gov/search?term=carrageenan
[54]
Ciancia M, Matulewicz MC, Tuvikene R. Structural diversity in galactans from red seaweeds and its influence on rheological properties. Front Plant Sci 2020; 11: 559986.
[http://dx.doi.org/10.3389/fpls.2020.559986] [PMID: 33013979]
[55]
Genicot-Joncour S, Poinas A, Richard O, et al. The cyclization of the 3,6-anhydro-galactose ring of ι-carrageenan is catalyzed by two D-galactose-2,6-sulfurylases in the red alga Chondrus crispus. Plant Physiol 2009; 151(3): 1609-16.
[http://dx.doi.org/10.1104/pp.109.144329] [PMID: 19734263]
[56]
Rosales-Mendoza S, García-Silva I, González-Ortega O, Sandoval-Vargas JM, Malla A, Vimolmangkang S. The potential of algal biotechnology to produce antiviral compounds and biopharmaceuticals. Molecules 2020; 25(18): 4049.
[http://dx.doi.org/10.3390/molecules25184049] [PMID: 32899754]
[57]
Viana AG, Noseda MD, Duarte ME, Cerezo AS. Alkali modification of carrageenans. Part V. The iota–nu hybrid carrageenan from Eucheuma denticulatum and its cyclization to iota-carrageenan. Carbohydr Polym 2004; 58(4): 455-60.
[http://dx.doi.org/10.1016/j.carbpol.2004.08.006]
[58]
Bontpart T, Cheynier V, Ageorges A, Terrier N. BAHD or SCPL acyltransferase? What a dilemma for acylation in the world of plant phenolic compounds. New Phytol 2015; 208(3): 695-707.
[http://dx.doi.org/10.1111/nph.13498] [PMID: 26053460]
[59]
Cosenza VA, Navarro DA, Stortz CA. Chemical modification of carrageenans and application of the modified products Carrageenans: Sources and Extraction Methods. Molecular Structure, Bioactive Properties and Health Effects 2016; pp. 189-227.
[60]
Thatyane M. Acylated Carrageenan Changes the Physicochemical Properties of Mixed Enzymeâ Lipid Ultrathin Films and Enhances the Catalytic Properties of Sucrose Phosphorylase Nanostructured as Smart Surfaces. J Phys Chem 2016.
[61]
Groult H, Cousin R, Chot-Plassot C, et al. λ-Carrageenan oligosaccharides of distinct anti-heparanase and anticoagulant activities inhibit MDA-MB-231 breast cancer cell migration. Mar Drugs 2019; 17(3): 140.
[http://dx.doi.org/10.3390/md17030140] [PMID: 30818840]
[62]
Sokolova EV, Bogdanovich LN, Ivanova TB, Byankina AO, Kryzhanovskiy SP, Yermak IM. Effect of carrageenan food supplement on patients with cardiovascular disease results in normalization of lipid profile and moderate modulation of immunity system markers. PharmaNutrition 2014; 2(2): 33-7.
[http://dx.doi.org/10.1016/j.phanu.2014.02.001]
[63]
Valado A, Pereira M, Amaral M, Cotas J, Pereira L. Bioactivity of carrageenans in metabolic syndrome and cardiovascular diseases. Nutraceuticals 2022; 2(4): 441-54.
[http://dx.doi.org/10.3390/nutraceuticals2040032]
[64]
Harikrishnan R, Devi G, Van Doan H, Balamurugan P, Arockiaraj J, Balasundaram C. Hepatic antioxidant activity, immunomodulation, and pro-anti-inflammatory cytokines manipulation of κ-carrageenan (κ-CGN) in cobia, Rachycentron canadum against Lactococcus garvieae. Fish Shellfish Immunol 2021; 119: 128-44.
[http://dx.doi.org/10.1016/j.fsi.2021.09.024] [PMID: 34562582]
[65]
Yermak IM, Khotimchenko YS. Chemical properties, biological activities and applications of carrageenan from red algae. Recent advances in marine biotechnology 2003; 23: 207-55.
[66]
Khotimchenko M, Tiasto V, Kalitnik A, et al. Antitumor potential of carrageenans from marine red algae. Carbohydr Polym 2020; 246: 116568.
[http://dx.doi.org/10.1016/j.carbpol.2020.116568] [PMID: 32747241]
[67]
Emam HE, Ahmed HB. Antitumor/antiviral carbon quantum dots based on carrageenan and pullulan. Int J Biol Macromol 2021; 170: 688-700.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.151] [PMID: 33385452]
[68]
Calvo GH, Cosenza VA, Sáenz DA, et al. Disaccharides obtained from carrageenans as potential antitumor agents. Sci Rep 2019; 9(1): 6654.
[http://dx.doi.org/10.1038/s41598-019-43238-y] [PMID: 31040376]
[69]
Yuan H, Song J, Li X, Li N, Liu S. Enhanced immunostimulatory and antitumor activity of different derivatives of κ-carrageenan oligosaccharides from Kappaphycus striatum. J Appl Phycol 2011; 23(1): 59-65.
[http://dx.doi.org/10.1007/s10811-010-9536-4]
[70]
Tang M, Zhai L, Chen J, Wang F, Chen H, Wu W. The Antitumor Potential of λ-Carrageenan Oligosaccharides on Gastric Carcinoma by Immunomodulation. Nutrients 2023; 15(9): 2044.
[http://dx.doi.org/10.3390/nu15092044] [PMID: 37432179]
[71]
Luo M, Shao B, Nie W, et al. Antitumor and adjuvant activity of λ-carrageenan by stimulating immune response in cancer immunotherapy. Sci Rep 2015; 5(1): 11062.
[http://dx.doi.org/10.1038/srep11062] [PMID: 26098663]
[72]
Jafari A, Farahani M, Sedighi M, Rabiee N, Savoji H. Carrageenans for tissue engineering and regenerative medicine applications: A review. Carb Polymer 2022; 28(1): 119045.
[http://dx.doi.org/10.1016/j.carbpol.2021.119045]
[73]
Figueroa JM, Lombardo ME, Dogliotti A, et al. Efficacy of a nasal spray containing iota-carrageenan in the postexposure prophylaxis of COVID-19 in hospital personnel dedicated to patients care with COVID-19 disease. Int J Gen Med 2021; 14: 6277-86.
[http://dx.doi.org/10.2147/IJGM.S328486] [PMID: 34629893]
[74]
Graf C, Bernkop-Schnürch A, Egyed A, Koller C, Prieschl-Grassauer E, Morokutti-Kurz M. Development of a nasal spray containing xylometazoline hydrochloride and iota-carrageenan for the symptomatic relief of nasal congestion caused by rhinitis and sinusitis. Int J Gen Med 2018; 11: 275-83.
[http://dx.doi.org/10.2147/IJGM.S167123] [PMID: 30013382]
[75]
Héctor C, Roberto H, Psaltis A, Veronica C. Study of the efficacy and safety of topical ivermectin+ iota-carrageenan in the prophylaxis against COVID-19 in health personnel. J biomed res clin investig 2020; Nov 172(1): 1007.
[76]
Qureshi D, Nayak SK, Maji S, Kim D, Banerjee I, Pal K. Carrageenan: A wonder polymer from marine algae for potential drug delivery applications. Curr Pharm Des 2019; 25(11): 1172-86.
[http://dx.doi.org/10.2174/1381612825666190425190754] [PMID: 31465278]
[77]
Schmidt AG, Wartewig S, Picker KM. Potential of carrageenans to protect drugs from polymorphic transformation. Eur J Pharm Biopharm 2003; 56(1): 101-10.
[http://dx.doi.org/10.1016/S0939-6411(03)00037-7] [PMID: 12837488]
[78]
Li L, Wang L, Shao Y, et al. Elucidation of release characteristics of highly soluble drug trimetazidine hydrochloride from chitosan-carrageenan matrix tablets. J Pharm Sci 2013; 102(8): 2644-54.
[http://dx.doi.org/10.1002/jps.23632] [PMID: 23754467]
[79]
Gupta V, Hariharan M, Wheatley TA, Price JC. Controlled-release tablets from carrageenans: effect of formulation, storage and dissolution factors. Eur J Pharm Biopharm 2001; 51(3): 241-8.
[http://dx.doi.org/10.1016/S0939-6411(01)00135-7] [PMID: 11343889]
[80]
Aguzzi C, Bonferoni MC, Fortich MRO, Rossi S, Ferrari F, Caramella C. Influence of complex solubility on formulations based on lambda carrageenan and basic drugs. AAPS PharmSciTech 2002; 3(3): 83-9.
[http://dx.doi.org/10.1208/pt030327] [PMID: 12916942]
[81]
Vinogradov SV, Bronich TK, Kabanov AV. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 2002; 54(1): 135-47.
[http://dx.doi.org/10.1016/S0169-409X(01)00245-9] [PMID: 11755709]
[82]
Guan J, Li L, Mao S. Applications of carrageenan in advanced drug delivery. InSeaweed polysaccharides 2017; Jan 1: 283-303. Elsevier
[http://dx.doi.org/10.1016/B978-0-12-809816-5.00015-3]
[83]
Kalsoom Khan A, Saba AU, Nawazish S, et al. Carrageenan based bionanocomposites as drug delivery tool with special emphasis on the influence of ferromagnetic nanoparticles. Oxid Med Cell Longev 2017; 2017: 1-13.
[http://dx.doi.org/10.1155/2017/8158315] [PMID: 28303171]
[84]
Ige PP, Rajput P, Pardeshi C, et al. Development of pellets of nifedipine using HPMC K15 M and κ-carrageenan as mucoadhesive sustained delivery system and in vitro evaluation. Iran Polym J 2013; 22(12): 911-21.
[http://dx.doi.org/10.1007/s13726-013-0192-9]
[85]
Picker KM. Matrix tablets of carrageenans. II. Release behavior and effect of added cations. Drug Dev Ind Pharm 1999; 25(3): 339-46.
[http://dx.doi.org/10.1081/DDC-100102179] [PMID: 10071827]
[86]
Rosario NL, Ghaly ES. Matrices of water-soluble drug using natural polymer and direct compression method. Drug Dev Ind Pharm 2002; 28(8): 975-88.
[http://dx.doi.org/10.1081/DDC-120006429] [PMID: 12378966]
[87]
De Robertis S, Bonferoni MC, Elviri L, Sandri G, Caramella C, Bettini R. Advances in oral controlled drug delivery: the role of drug–polymer and interpolymer non-covalent interactions. Expert Opin Drug Deliv 2015; 12(3): 441-53.
[http://dx.doi.org/10.1517/17425247.2015.966685] [PMID: 25267345]
[88]
Maderuelo C, Zarzuelo A, Lanao JM. Critical factors in the release of drugs from sustained release hydrophilic matrices. J Control Release 2011; 154(1): 2-19.
[http://dx.doi.org/10.1016/j.jconrel.2011.04.002] [PMID: 21497624]
[89]
Komersová A, Svoboda R, Skalická B, et al. Matrix tablets based on chitosan–carrageenan polyelectrolyte complex: Unique matrices for drug targeting in the intestine. Pharmaceuticals 2022; 15(8): 980.
[http://dx.doi.org/10.3390/ph15080980] [PMID: 36015128]
[90]
Sun X, Liu C, Omer AM, Yang LY, Ouyang X. Dual-layered pH-sensitive alginate/chitosan/kappa-carrageenan microbeads for colon-targeted release of 5-fluorouracil. Int J Biol Macromol 2019; 132: 487-94.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.225] [PMID: 30940590]
[91]
Kos P, Pavli M, Baumgartner S, Kogej K. Release mechanism of doxazosin from carrageenan matrix tablets: Effect of ionic strength and addition of sodium dodecyl sulphate. Int J Pharm 2017; 529(1-2): 557-67.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.067] [PMID: 28648579]
[92]
Pavli M, Vrečer F, Baumgartner S. Matrix tablets based on carrageenans with dual controlled release of doxazosin mesylate. Int J Pharm 2010; 400(1-2): 15-23.
[http://dx.doi.org/10.1016/j.ijpharm.2010.08.021] [PMID: 20727957]
[93]
Leong KH, Chung LY, Noordin MI, Onuki Y, Morishita M, Takayama K. Lectin-functionalized carboxymethylated kappa-carrageenan microparticles for oral insulin delivery. Carbohydr Polym 2011; 86(2): 555-65.
[http://dx.doi.org/10.1016/j.carbpol.2011.04.070]
[94]
Dai WG, Dong LC, Song YQ. Nanosizing of a drug/carrageenan complex to increase solubility and dissolution rate. Int J Pharm 2007; 342(1-2): 201-7.
[http://dx.doi.org/10.1016/j.ijpharm.2007.04.032] [PMID: 17560055]
[95]
Nanaki S, Karavas E, Kalantzi L, Bikiaris D. Miscibility study of carrageenan blends and evaluation of their effectiveness as sustained release carriers. Carbohydr Polym 2010; 79(4): 1157-67.
[http://dx.doi.org/10.1016/j.carbpol.2009.10.067]
[96]
Zia KM, Tabasum S, Nasif M, et al. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int J Biol Macromol 2017; 96: 282-301.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.095] [PMID: 27914965]
[97]
Mawazi SM, Al-Mahmood SMA, Chatterjee B, Hadi HA, Doolaanea AA. Carbamazepine gel formulation as a sustained release epilepsy medication for pediatric use. Pharmaceutics 2019; 11(10): 488.
[http://dx.doi.org/10.3390/pharmaceutics11100488] [PMID: 31547112]
[98]
Salis A. Polysaccharides as Drug Delivery Systems for different Administration Routes
[99]
Noreen S, Pervaiz F, Ashames A, et al. Optimization of novel naproxen-loaded chitosan/carrageenan nanocarrier-based gel for topical delivery: Ex vivo, histopathological, and in vivo evaluation. Pharmaceuticals 2021; 14(6): 557.
[http://dx.doi.org/10.3390/ph14060557] [PMID: 34207951]
[100]
Kaur R, Sharma A, Puri V, Singh I. Preparation and characterization of biocomposite films of carrageenan/locust bean gum/montmorrillonite for transdermal delivery of curcumin. Bioimpacts 2018; 9(1): 37-43.
[http://dx.doi.org/10.15171/bi.2019.05] [PMID: 30788258]
[101]
Tasende MG, Manríquez-Hernández JA. Carrageenan properties and applications: A review. Carrageenans Sources Extr Methods. Mol Struct Bioact Prop Heal Eff 2016; 2016: 17-49.
[102]
Shafie MH, Kamal ML, Zulkiflee FF, et al. Application of Carrageenan extract from red seaweed (Rhodophyta) in cosmetic products: A review. J Indian Chem Soc 2022; 99(9): 100613.
[http://dx.doi.org/10.1016/j.jics.2022.100613]
[103]
Buck CB, Thompson CD, Roberts JN, Müller M, Lowy DR, Schiller JT. Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog 2006; 2(7): 0671-80.https://www.annmariegianni.com/carrageenan-in-skin-care/
[104]
Valenta C, Schultz K. Influence of carrageenan on the rheology and skin permeation of microemulsion formulations. J Control Release 2004; 95(2): 257-65.
[http://dx.doi.org/10.1016/j.jconrel.2003.11.020] [PMID: 14980774]
[105]
Fahmy HM, Aly AA, Sayed SM, Abou-Okeil A. K‐carrageenan/Na‐alginate wound dressing with sustainable drug delivery properties. Polym Adv Technol 2021; 32(4): 1793-801.
[http://dx.doi.org/10.1002/pat.5218]
[106]
Cargill launches eco-friendly kappa carrageenan texturizer for gelling and solid formulations [Internet]. Available at: https://www.personalcareinsights.com/news/cargill-launches-eco-friendly kappa-carrageenan-texturizer-for-gelling-and-solid-formu lations.html
[107]
Priyan Shanura Fernando I, Kim KN, Kim D, Jeon YJ. Algal polysaccharides: potential bioactive substances for cosmeceutical applications. Crit Rev Biotechnol 2019; 39(1): 99-113.
[http://dx.doi.org/10.1080/07388551.2018.1503995] [PMID: 31690134]
[108]
Mohiuddin AK. Skin care creams: formulation and use. Dermatol Clin Res 2019; 5(1): 238-71.
[109]
Gianni BA. Should You Worry About Carrageenan in Your Skin Care. 2022; 1-8.
[110]
Jayaramudu T, Raghavendra GM, Varaprasad K, Sadiku R, Ramam K, Raju KM. Iota-Carrageenan-based biodegradable Ag0 nanocomposite hydrogels for the inactivation of bacteria. Carbohydr Polym 2013; 95(1): 188-94.
[http://dx.doi.org/10.1016/j.carbpol.2013.02.075] [PMID: 23618258]
[111]
Pereira L. Seaweeds as source of bioactive substances and skin care therapy-cosmeceuticals, algotheraphy, and thalassotherapy. Cosmetics 2018; 5(4): 68.
[http://dx.doi.org/10.3390/cosmetics5040068]
[112]
Wang W, Wang SX, Guan HS. The antiviral activities and mechanisms of marine polysaccharides: An overview. Mar Drugs 2012; 10(12): 2795-816.
[http://dx.doi.org/10.3390/md10122795] [PMID: 23235364]
[113]
Leibbrandt A, Meier C, König-Schuster M, et al. Iota-carrageenan is a potent inhibitor of influenza A virus infection. PLoS One 2010; 5(12): e14320.
[http://dx.doi.org/10.1371/journal.pone.0014320] [PMID: 21179403]
[114]
Hebar A, Koller C, Seifert JM, et al. Non-clinical safety evaluation of intranasal iota-carrageenan. PLoS One 2015; 10(4): e0122911.
[http://dx.doi.org/10.1371/journal.pone.0122911] [PMID: 25875737]
[115]
Shao Q, Guo Q, Xu W, Li Z, Zhao T. Specific inhibitory effect of κ-carrageenan polysaccharide on swine pandemic 2009 h1n1 influenza virus. PLoS One 2015; 10(5): e0126577.
[http://dx.doi.org/10.1371/journal.pone.0126577] [PMID: 25969984]
[116]
Schütz D, Conzelmann C, Fois G, et al. Carrageenan-containing over-the-counter nasal and oral sprays inhibit SARS-CoV-2 infection of airway epithelial cultures. Am J Physiol Lung Cell Mol Physiol 2021; 320(5): L750-6.
[http://dx.doi.org/10.1152/ajplung.00552.2020] [PMID: 33561380]
[117]
Chiu YH, Chan YL, Tsai LW, Li TL, Wu CJ. Prevention of human enterovirus 71 infection by kappa carrageenan. Antiviral Res 2012; 95(2): 128-34.
[http://dx.doi.org/10.1016/j.antiviral.2012.05.009] [PMID: 22643729]
[118]
Alavi S, Mortazavi SA. Freeze-dried k-carrageenan/chitosan polyelectrolyte complex-based insert: A novel intranasal delivery system for sumatriptan succinate. Iran J Pharm Res 2018; 17(4): 1172-81.
[PMID: 30568677]
[119]
Eccles R, Winther B, Johnston SL, Robinson P, Trampisch M, Koelsch S. Efficacy and safety of iota-carrageenan nasal spray versus placebo in early treatment of the common cold in adults: the ICICC trial. Respir Res 2015; 16(1): 121.
[http://dx.doi.org/10.1186/s12931-015-0281-8] [PMID: 26438038]
[120]
Morokutti-Kurz M, König-Schuster M, Koller C, et al. The intranasal application of zanamivir and carrageenan is synergistically active against influenza a virus in the murine model. PLoS One 2015; 10(6): e0128794.
[http://dx.doi.org/10.1371/journal.pone.0128794] [PMID: 26053018]
[121]
Kianfar F, Antonijevic M, Chowdhry B, Boateng JS. Lyophilized wafers comprising carrageenan and pluronic acid for buccal drug delivery using model soluble and insoluble drugs. Colloids Surf B Biointerfaces 2013; 103: 99-106.
[http://dx.doi.org/10.1016/j.colsurfb.2012.10.006] [PMID: 23201725]
[122]
Pawar HV, Boateng JS, Ayensu I, Tetteh J. Multifunctional medicated lyophilised wafer dressing for effective chronic wound healing. J Pharm Sci 2014; 103(6): 1720-33.
[http://dx.doi.org/10.1002/jps.23968] [PMID: 24700434]
[123]
Zaveri T, Hayes J, Ziegler G. Release of tenofovir from carrageenan-based vaginal suppositories. Pharmaceutics 2014; 6(3): 366-77.
[http://dx.doi.org/10.3390/pharmaceutics6030366] [PMID: 24999606]
[124]
Zaveri T, Running CA, Surapaneni L, Ziegler GR, Hayes JE. Innovative sensory methods to access acceptability of mixed polymer semisoft ovules for microbicide applications. Drug Deliv Transl Res 2016; 6(5): 551-64.
[http://dx.doi.org/10.1007/s13346-016-0309-8] [PMID: 27357703]
[125]
Mendis E, Kim SK. Present and future prospects of seaweeds in developing functional foods. Adv Food Nutr Res 2011; 64: 1-15.
[http://dx.doi.org/10.1016/B978-0-12-387669-0.00001-6] [PMID: 22054934]
[126]
Sedayu BB, Cran MJ, Bigger SW. A Review of Property Enhancement Techniques for Carrageenan-based Films and Coatings. Carbohydr Polym 2019; 216: 287-302.
[http://dx.doi.org/10.1016/j.carbpol.2019.04.021] [PMID: 31047069]
[127]
Oun AA, Rhim JW. Carrageenan-based hydrogels and films: Effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties. Food Hydrocoll 2017; 67: 45-53.
[http://dx.doi.org/10.1016/j.foodhyd.2016.12.040]
[128]
Boateng JS, Pawar HV, Tetteh J. Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing. Int J Pharm 2013; 441(1-2): 181-91.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.045] [PMID: 23228898]
[129]
Shojaee-Aliabadi S, Hosseini H, Mohammadifar MA, et al. Characterization of κ-carrageenan films incorporated plant essential oils with improved antimicrobial activity. Carbohydr Polym 2014; 101(1): 582-91.https://pubmed.ncbi.nlm.nih.gov/24299814/
[http://dx.doi.org/10.1016/j.carbpol.2013.09.070] [PMID: 24299814]
[130]
Gu J, Yang S, Ho EA. Biodegradable Film for the Targeted Delivery of siRNA-Loaded Nanoparticles to Vaginal Immune Cells. Mol Pharm 2015; 12(8): 2889-903.https://pubmed.ncbi.nlm.nih.gov/26099315/
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00073] [PMID: 26099315]
[131]
Balasubramanian R, Kim SS, Lee J. Novel synergistic transparent k-Carrageenan/Xanthan gum/Gellan gum hydrogel film: Mechanical, thermal and water barrier properties. Int J Biol Macromol 2018; 118(Pt A): 561-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.110] [PMID: 29949745]
[132]
Fouda MMG, El-Aassar MR, El Fawal GF, Hafez EE, Masry SHD, Abdel-Megeed A. k-Carrageenan/poly vinyl pyrollidone/polyethylene glycol/silver nanoparticles film for biomedical application. Int J Biol Macromol 2015; 74: 179-84.https://pubmed.ncbi.nlm.nih.gov/25498349/
[http://dx.doi.org/10.1016/j.ijbiomac.2014.11.040] [PMID: 25498349]
[133]
Yu HC, Zhang H, Ren K, et al. Ultrathin κ-carrageenan/chitosan hydrogel films with high toughness and antiadhesion property. ACS Appl Mater Interfaces 2018; 10(10): 9002-9.
[http://dx.doi.org/10.1021/acsami.7b18343] [PMID: 29457455]
[134]
Jaiswal L, Shankar S, Rhim JW. Carrageenan-based functional hydrogel film reinforced with sulfur nanoparticles and grapefruit seed extract for wound healing application. Carbohydr Polym 2019; 224: 115191.
[http://dx.doi.org/10.1016/j.carbpol.2019.115191] [PMID: 31472875]
[135]
Pagarete A, Ramos AS, Puntervoll P, Allen MJ, Verdelho V. Antiviral potential of algal metabolites—a comprehensive review. Mar Drugs 2021; 19(2): 94.
[http://dx.doi.org/10.3390/md19020094] [PMID: 33562153]
[136]
Shi Q, Wang A, Lu Z, Qin C, Hu J, Yin J. Overview on the antiviral activities and mechanisms of marine polysaccharides from seaweeds. Carbohydr Res 2017; 453-454: 1-9.
[http://dx.doi.org/10.1016/j.carres.2017.10.020] [PMID: 29102716]
[137]
Beck MA. Antioxidants and viral infections: host immune response and viral pathogenicity 2001.
[http://dx.doi.org/10.1080/07315724.2001.10719172]
[138]
Wei Q, Fu G, Wang K, et al. Advances in research on antiviral activities of sulfated polysaccharides from seaweeds. Pharmaceuticals 2022; 15(5): 581.
[http://dx.doi.org/10.3390/ph15050581] [PMID: 35631407]
[139]
Purohit P, Bhatt A, Mittal RK, Abdellattif MH, Farghaly TA. Polymer grafting and its chemical reactions. Front Bioeng Biotechnol 2023; 10: 1044927.
[http://dx.doi.org/10.3389/fbioe.2022.1044927] [PMID: 36714621]
[140]
147. Clinical trial status title, Evaluating the Efficacy and Safety of Iota-Carrageenan Eye Drops (NCX-4240) against Placebo in Patients With Adenoviral Conjunctivitis available at: https://clinicaltrials.gov/study/NCT03009799?term=carrageenan&rank=6
[141]
148. Clinical trial status title, Effect of no Carrageenan Diet on Glucose Tolerance in Prediabetes available at: https://clinicaltrials.gov/study/NCT02720393?term=carrageenan&rank=7
[142]
149. Clinical trial status title, Impact of Carrageenan-Elimination Diet on Ulcerative Colitis Disease Activity available at: https://clinicaltrials.gov/study/NCT01065571?term=carrageenan&rank=8
[143]
150. Clinical trial status title, Carrageenan for the Prevention of Oral HPV Infection: a Feasibility, Randomized Clinical Trial, available at: https://clinicaltrials.gov/study/NCT05746988?term=carrageenan&rank=9
[144]
151. Clinical trial status title,Efficacy and Safety Evaluation of Inhaleen Inhalation in Hospitalized COVID-19 Patients, available at: https://clinicaltrials.gov/study/NCT04793984?term=carrageenan&limit=25&page=1&rank=17
[145]
Clinical trial status title, The Effects of Hydrogels Differing in Their Lubricity on Appetite Control, Satiety, Subsequent Food Intake and Salivary Biomarkers, available at: https://clinicaltrials.gov/study/NCT04240795?term=carrageenan&limit=25&start=2019-01-01_2023-08-16&rank=12
[146]
Mittal RK, Purohit P. Quinoline-3-carboxylic acids: A step toward highly selective antiproliferative agent. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 2021; Sep 1;21(3): 1708-6.
[http://dx.doi.org/10.2174/1871520620999201124214112]
[147]
Mittal RK, Purohit P. Quinoline-3-carboxylate derivatives: A new hope as an antiproliferative agent. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 2020; Nov 1;20(16): 1981-91.
[http://dx.doi.org/10.2174/1871520620666200619175906]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy