Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

The Optical and Structural Properties of Cu Nanoparticles: Graphene Prepared by Pulsed Laser Ablation in Deionized Water

Author(s): Ehsan Motallebi Aghkonbad, Akbar Jafari* and Maryam Motallebi Aghgonbad

Volume 14, Issue 1, 2024

Published on: 09 January, 2024

Article ID: e090124225412 Pages: 12

DOI: 10.2174/0122106812276636231228043816

Price: $65

Abstract

Background: In this paper, graphene and copper oxide nanoparticles and graphene-based copper oxide nanoparticles have been produced by means of a pulsed laser ablation process (PLA) in a deionized water solution.

Methods: The composition ratio of materials has been investigated in the structure of the prepared materials and their optical properties. The absorbance of the samples was obtained by the UV-VIS single beam spectrophotometer in the wavelength range of 290 to 800 nm. Spectroscopic ellipsometry method was used to investigate the linear optical properties of the samples including the real and imaginary parts of refractive index and dielectric function of the samples. The preferred model in the dielectric function modeling was Tauc-Lorentz. Also, the energy band gap of the samples has been calculated using Tauc relation. In addition, the nonlinear optical properties of graphene based copper oxide have been studied by Z-scan technique. Structure of the samples was studied using TEM image.

Results: The most and the least absorbance at 532 nm wavelength, and also band gap energy belong to 1.4 ml Gr-0.6 ml Cu and copper oxide, respectively.

Conclusion: The band gap energies of the samples were calculated between 3.30 eV and 3.43 eV. The real and imaginary parts of the complex refractive index were obtained in the order of 10-8cm2/W and 10-5cm/W. The results for nonlinear properties show that these samples are suitable for all-optical switching devices.

Graphical Abstract

[1]
Liu, J.; Zhorabek, F.; Dai, X.; Huang, J.; Chau, Y. Minimalist design of an intrinsically disordered protein-mimicking scaffold for an artificial membraneless organelle. ACS Cent. Sci., 2022, 8(4), 493-500.
[http://dx.doi.org/10.1021/acscentsci.1c01021] [PMID: 35505868]
[2]
Liu, J.; Zhang, T.; Liu, X.; Lam, J.W.Y.; Tang, B.Z.; Chau, Y. Molecular logic operations from complex coacervation with aggregation-induced emission characteristics. Mater. Horiz., 2022, 9(9), 2443-2449.
[http://dx.doi.org/10.1039/D2MH00537A] [PMID: 35856292]
[3]
Singh, S.C.; Gopal, R. Zinc nanoparticles in solution by laser ablation technique. Bull. Mater. Sci., 2007, 30(3), 291-293.
[http://dx.doi.org/10.1007/s12034-007-0048-z]
[4]
Castellano-Soria, A.; López-Sánchez, J.; Granados-Miralles, C.; Varela, M.; Navarro, E.; González, C.; Marín, P. Novel one-pot sol-gel synthesis route of Fe3C/few-layered graphene core/shell nanoparticles embedded in a carbon matrix. J. Alloys Compd., 2022, 902, 163662.
[http://dx.doi.org/10.1016/j.jallcom.2022.163662]
[5]
Giampiccolo, A.; Tobaldi, D.M.; Leonardi, S.G.; Murdoch, B.J.; Seabra, M.P.; Ansell, M.P.; Neri, G.; Ball, R.J. Sol gel graphene/TiO2 nanoparticles for the photocatalytic-assisted sensing and abatement of NO2. Appl. Catal. B, 2019, 243, 183-194.
[http://dx.doi.org/10.1016/j.apcatb.2018.10.032]
[6]
Fang, L.; He, Q.Q.; Zhou, M.J.; Zhao, J.P.; Hu, J.M. Electrochemically assisted deposition of sol–gel films on graphene nanosheets, electrochemistry communications. Electrochem. Commun., 2019, 109, 106609.
[7]
Al-luhaibi, A.A.; Sendi, R.K. Synthesis, potential of hydrogen activity, biological and chemical stability of zinc oxide nanoparticle preparation by sol–gel: A review. J. Radiat. Res. Appl. Sci., 2022, 15(3), 238-254.
[http://dx.doi.org/10.1016/j.jrras.2022.07.008]
[8]
Aghkonbad, E.M.; Sedghi, H.; Aghgonbad, M.M. Optical characterization of al-doped zno films via sol-gel method using spectroscopic ellipsometry. Nanosci. Nanotechnol. Asia, 2020, 10(5), 642-648.
[http://dx.doi.org/10.2174/2210681209666190328221704]
[9]
Aghkonbad, E.M.; Aghgonbad, M.M.; Sedghi, H. A study on effect of sol aging time on optical properties of ZnO thin films: Spectroscopic ellipsometry method. Micro Nanosyst., 2019, 11(2), 100-108.
[http://dx.doi.org/10.2174/1876402911666190313155304]
[10]
Trusova, E.A.; Kotsareva, K.V.; Kirichenko, A.N.; Abramchuk, S.S.; Ashmarin, A.A.; Perezhogin, I.A. Synthesis of graphene-based nanostructures by the combined method comprising sol-gel and sonochemistry techniques. Diamond Related Materials, 2018, 85, 23-36.
[http://dx.doi.org/10.1016/j.diamond.2018.03.020]
[11]
Antunez, P.R.; Ledezma, C.Z.; Bajo, F.S.; Lopez, J.C.M.; Anglaret, E.; Florez, V.M. Sol–gel method and reactive sps for novel alumina–graphene ceramic composites J. Eur. Ceram., 2023, 43, 1064-1077.
[12]
Handayani, M.; Nafi’ah, N.; Nugroho, A.; Rasyida, A.; Prasetyo, A.B.; Febriana, E.; Sulistiyono, E.; Firdiyono, F. The development of graphene/silica hybrid composites: A review for their applications and challenges. Crystals, 2021, 11(11), 1337.
[http://dx.doi.org/10.3390/cryst11111337]
[13]
Sahoo, S.; Sahoo, G.; Jeong, S.M.; Rout, C.S. A review on supercapacitors based on plasma enhanced chemical vapor deposited vertical graphene arrays. J. Energy Storage, 2022, 53, 105212.
[http://dx.doi.org/10.1016/j.est.2022.105212]
[14]
Li, S. Salt-assisted chemical vapor deposition of two-dimensional transition metal dichalcogenides. iScience, 2021, 24(11), 103229.
[http://dx.doi.org/10.1016/j.isci.2021.103229] [PMID: 34712925]
[15]
Ali, M.; Abdul-Rashid, S.; Hamidon, M.N.; Yasin, F.M. The growth kinetics of multilayer graphene grown on Al2O3 substrate by chemical vapour deposition. Procedia Eng., 2016, 148, 1295-1302.
[http://dx.doi.org/10.1016/j.proeng.2016.06.533]
[16]
Wu, Y.; Wang, S.; Komvopoulos, K. A review of graphene synthesis by indirect and direct deposition methods. J. Mater. Res., 2020, 35(1), 76-89.
[http://dx.doi.org/10.1557/jmr.2019.377]
[17]
Alipour, M. Tribological performance of self-lubricating cast Al-5Cu-1Mg nanocomposite reinforced with graphene nano sheets. Iran. J. Mater. Sci. Eng, 2023, 20, 1-12.
[18]
Narula, U. Tan, Cher Ming Engineering a PVD based graphene synthesis method IEEE nanotechnology materials and devices conference; NMDC, 2016.
[19]
Santos-Cruz, D.; Mayén-Hernández, S.A.; de Moure-Flores, F.; Campos-Álvarez, J.; Pal, M.; Santos-Cruz, J. CuOX thin films by direct oxidation of Cu films deposited by physical vapor deposition. Results Phys., 2017, 7, 4140-4144.
[http://dx.doi.org/10.1016/j.rinp.2017.10.022]
[20]
Abdelghani, J.I.; El-Sheikh, A.H. AL-Hashimi, N.N. Application of physical vapor deposition technology for practical utilization of nano-size copper oxide for lead uptake from solution: Kinetics, equilibrium, and recycling studies. Environ. Sci. Pollut. Res. Int., 2023, 30(20), 58783-58795.
[http://dx.doi.org/10.1007/s11356-023-26591-4] [PMID: 36997786]
[21]
Grapperhaus, M.J.; Krivokapic, Z.; Kushner, M.J. Design issues in ionized metal physical vapor deposition of copper. J. Appl. Phys., 1998, 83(1), 35-43.
[http://dx.doi.org/10.1063/1.366698]
[22]
Zhou, R.; Yin, Y.; Long, D.; Cui, J.; Yan, H.; Liu, W.; Pan, J.H. PVP-assisted laser ablation growth of Ag nanocubes anchored on reduced graphene oxide (rGO) for efficient photocatalytic CO2 reduction. Prog. Nat. Sci., 2019, 29(6), 660-666.
[http://dx.doi.org/10.1016/j.pnsc.2019.11.001]
[23]
Ahmed, M.K.; Menazea, A.A.; Mansourd, S.F. Al-Wafi, Reem Differentiation between cellulose acetate and polyvinyl alcohol nanofibrous scaffolds containing magnetite nanoparticles/graphene oxide via pulsed laser ablation technique for tissue engineering applications. J. Mater. Sci. Technol., 2020, 9, 11629-11640.
[24]
Alshammari, F.H. Physical characterization and dielectric properties of chitosan incorporated by zinc oxide and graphene oxide nanoparticles prepared via laser ablation route. J. Mater. Res. Technol., 2022, 20, 740-747.
[http://dx.doi.org/10.1016/j.jmrt.2022.07.046]
[25]
Kim, M.; Osone, S.; Kim, T.; Higashi, H.; Seto, T. Synthesis of nanoparticles by laser ablation: A review. Kona Powder Particle J., 2017, 34(0), 80-90.
[http://dx.doi.org/10.14356/kona.2017009]
[26]
Mohammed, M.T.; Diwan, A.A.; Saleh, S.M.; Salih, B.A. Fabrication of copper nanoparticles by pulse laser ablation. Kufa. J. Eng., 2019, 10, 1-11.
[27]
Zhu, C.; Dong, X.; Mei, X.; Gao, M.; Wang, K.; Zhao, D. General fabrication of metal oxide nanoparticles modified graphene for supercapacitors by laser ablation. Appl. Surf. Sci., 2021, 568, 150978.
[http://dx.doi.org/10.1016/j.apsusc.2021.150978]
[28]
Fernández-Arias, M.; Boutinguiza, M.; Del Val, J.; Covarrubias, C.; Bastias, F.; Gómez, L.; Maureira, M.; Arias-González, F.; Riveiro, A.; Pou, J. Copper nanoparticles obtained by laser ablation in liquids as bactericidal agent for dental applications. Appl. Surf. Sci., 2020, 507, 145032.
[http://dx.doi.org/10.1016/j.apsusc.2019.145032]
[29]
Hameed, R.; Khashan, K.S.; Sulaiman, G.M. Preparation and characterization of graphene sheet prepared by laser ablation in liquid. Mater. Today Proc., 2020, 20, 535-539.
[http://dx.doi.org/10.1016/j.matpr.2019.09.185]
[30]
Vaghri, E.; Khalaj, Z.; Dorranian, D. Investigating the effects of different liquid environments on the characteristics of multilayer graphene and graphene oxide nanosheets synthesized by green laser ablation method. Diamond Related Materials, 2020, 103, 107697.
[http://dx.doi.org/10.1016/j.diamond.2020.107697]
[31]
Sosa, I.O.; Noguez, C.; Barrera, R.G. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B, 2003, 107(26), 6269-6275.
[http://dx.doi.org/10.1021/jp0274076]
[32]
Kawamura, G.; Nogami, M.; Matsuda, A. Shape-controlled metal nanoparticles and their assemblies with optical functionalities In; J. Nanomater, 2013, p. 17.
[33]
Das, S.; Sudhagar, P.; Kang, Y.S.; Choi, W. Graphene synthesis and application for solar cells. J. Mater. Res., 2014, 29(3), 299-319.
[http://dx.doi.org/10.1557/jmr.2013.297]
[34]
Adil, S.F.; Khan, M.; Kalpana, D. Graphene-based nanomaterials for solar cells; Multifunctional Photocatalytic Materials for Energy, 2018, pp. 127-152.
[35]
Reczulska, M.C.; Niedzielska, A. Jędrzejczak, A. Graphene as a material for solar cells applications. Adv. Mater. Sci., 2015, 15, 67-81.
[36]
Yao, Y.; Ping, J. Recent advances in graphene-based freestanding paper-like materials for sensing applications. Trends Analyt. Chem., 2018, 105, 75-88.
[http://dx.doi.org/10.1016/j.trac.2018.04.014]
[37]
Shin, D.H.; Kim, H.; Kim, S.H.; Cheong, H.; Steeneken, P.G.; Joo, C.; Lee, S.W. Graphene nano-electromechanical mass sensor with high resolution at room temperature. iScience, 2023, 26(2), 105958.
[http://dx.doi.org/10.1016/j.isci.2023.105958] [PMID: 36718371]
[38]
Han, S.; Zhou, S.; Mei, L.; Guo, M.; Zhang, H.; Li, Q.; Zhang, S.; Niu, Y.; Zhuang, Y.; Geng, W.; Bi, K.; Chou, X. Nanoelectromechanical temperature sensor based on piezoresistive properties of suspended graphene film. Nanomaterials, 2023, 13(6), 1103.
[http://dx.doi.org/10.3390/nano13061103] [PMID: 36985997]
[39]
Lee, Y.; Ahn, J.H. Graphene-based transparent conductive films. Nano, 2013, 8(3), 1330001.
[http://dx.doi.org/10.1142/S1793292013300016]
[40]
Liu, L.; Cheng, Y.; Zhang, X.; Shan, Y.; Zhang, X.; Wang, W.; Li, D. Graphene-based transparent conductive films with enhanced transmittance and conductivity by introducing antireflection nanostructure. Surf. Coat. Tech., 2017, 325, 611-616.
[http://dx.doi.org/10.1016/j.surfcoat.2017.06.072]
[41]
Ma, Y.; Zhi, L. Graphene-based transparent conductive films: Material systems, preparation and applications. Small Methods, 2019, 3(1), 1800199.
[http://dx.doi.org/10.1002/smtd.201800199]
[42]
Dasari Shareena, T.P.; McShan, D.; Dasmahapatra, A.K.; Tchounwou, P.B. A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Lett., 2018, 10(3), 53.
[http://dx.doi.org/10.1007/s40820-018-0206-4] [PMID: 30079344]
[43]
Priyadarsini, S.; Mohanty, S.; Mukherjee, S.; Basu, S.; Mishra, M. Graphene and graphene oxide as nanomaterials for medicine and biology application. J. Nanostructure Chem., 2018, 8(2), 123-137.
[http://dx.doi.org/10.1007/s40097-018-0265-6]
[44]
Pati, M.K.; Pattojoshi, P.; Roy, G.S. Synthesis of graphene-based nanocomposite and investigations of its thermal and electrical properties. J. Nanotechnol., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/5135420]
[45]
Bulushev, D.A.; Yuranov, I. Noble metal nanoparticles on carbon fibers, dekker encyclopedia of nanoscience and nanotechnology, Second Edition; Taylor and Francis: New York, 2009, pp. 3195-3205.
[46]
Frueh, J.; Reiter, G.; Möhwald, H.; He, Q.; Krastev, R. Novel controllable auxetic effect of linearly elongated supported polyelectrolyte multilayers with amorphous structure. Phys. Chem. Chem. Phys., 2013, 15(2), 483-488.
[http://dx.doi.org/10.1039/C2CP43302H] [PMID: 23172557]
[47]
Synowicki, R.A. Suppression of backside reflections from transparent substrates, physica status solidi (C). Current Topics in Solid State Physics, 2008, 5, 1085-1088.
[48]
Gilliot, M.; Hadjadj, A.; Stchakovsky, M. Spectroscopic ellipsometry data inversion using constrained splines and application to characterization of ZnO with various morphologies. Appl. Surf. Sci., 2017, 421, 453-459.
[http://dx.doi.org/10.1016/j.apsusc.2016.09.106]
[49]
Gençyılmaz, O.; Atay, F.; Akyüz, I. Deposition and ellipsometric characterization of transparent conductive Al-doped ZnO for solar cell application. Journal of Clean Energy Technologies, 2015, 4(2), 90-94.
[http://dx.doi.org/10.7763/JOCET.2016.V4.259]
[50]
Mendoza-Galván, A.; Trejo-Cruz, C.; Lee, J.; Bhattacharyya, D.; Metson, J.; Evans, P.J.; Pal, U. Effect of metal-ion doping on the optical properties of nanocrystalline ZnO thin films. J. Appl. Phys., 2006, 99(1), 014306.
[http://dx.doi.org/10.1063/1.2158503]
[51]
Jellison, G.E., Jr; Modine, F.A.; Doshi, P.; Rohatgi, A. Spectroscopic ellipsometry characterization of thin-film silicon nitride. Thin Solid Films, 1998, 313-314, 193-197.
[http://dx.doi.org/10.1016/S0040-6090(97)00816-X]
[52]
Peters, S. Spectra ray and application tutorial, spectroscopic ellipsometry – theory and application; SENTECH, 2009, pp. 1-32.
[53]
Fujiwara, H. Spectroscopic ellipsometery principles and applications; National Institute of Advanced Industrial Science and Technology: Ibaraki, Japan, 2007.
[http://dx.doi.org/10.1002/9780470060193]
[54]
Yakuphanoglu, F.; Cukurovali, A. Yilmaz, İ. Single-oscillator model and determination of optical constants of some optical thin film materials. Physica B, 2004, 353(3-4), 210-216.
[http://dx.doi.org/10.1016/j.physb.2004.09.097]
[55]
Liu, P.; Longo, P.; Zaslavsky, A.; Pacifici, D. Optical bandgap of single- and multi-layered amorphous germanium ultra-thin films. J. Appl. Phys., 2016, 119(1), 014304.
[http://dx.doi.org/10.1063/1.4939296]
[56]
Lee, H.; Zhang, X.; Hwang, J.; Park, J. Morphological influence of solution-processed zinc oxide films on electrical characteristics of thin-film transistors. Materials, 2016, 9(10), 851.
[http://dx.doi.org/10.3390/ma9100851] [PMID: 28773973]
[57]
Chaitra, U.; Kekuda, D.; Mohan Rao, K. Effect of annealing temperature on the evolution of structural, microstructural, and optical properties of spin coated ZnO thin films. Ceram. Int., 2017, 43(9), 7115-7122.
[http://dx.doi.org/10.1016/j.ceramint.2017.02.144]
[58]
Mahdavi, R.; Talesh, S.S.A. Sol-gel synthesis, structural and enhanced photocatalytic performance of Al doped ZnO nanoparticles. Adv. Powder Technol., 2017, 28(5), 1418-1425.
[http://dx.doi.org/10.1016/j.apt.2017.03.014]
[59]
Nagayasamy, N.; Gandhimathination, S.; Veerasamy, V. The effect of ZnO thin film and its structural and optical properties prepared by sol-gel spin coating method. Open J. Met., 2013, 3(2), 8-11.
[http://dx.doi.org/10.4236/ojmetal.2013.32A2002]
[60]
Mahroug, A.; Boudjadar, S.; Hamrit, S.; Guerbous, L. Structural, optical and photocurrent properties of undoped and Al-doped ZnO thin films deposited by sol–gel spin coating technique. Mater. Lett., 2014, 134, 248-251.
[http://dx.doi.org/10.1016/j.matlet.2014.07.099]
[61]
Srinatha, N.; Raghu, P.; Mahesh, H.M.; Angadi, B. Spin-coated Al-doped ZnO thin films for optical applications: Structural, micro-structural, optical and luminescence studies. J. Alloys Compd., 2017, 722, 888-895.
[http://dx.doi.org/10.1016/j.jallcom.2017.06.182]
[62]
Gao, X-Y.; Chen, C.; Zhang, S. Optical properties of aluminum-doped zinc oxide films deposited by direct-current pulse magnetron reactive sputtering. Chin. Phys. B, 2014, 23(3), 030701.
[http://dx.doi.org/10.1088/1674-1056/23/3/030701]
[63]
Janicek, P.; Niang, K.M.; Mistrik, J.; Palka, K.; Flewitt, A.J. Spectroscopic ellipsometry characterization of ZnO:Sn thin films with various Sn composition deposited by remote-plasma reactive sputtering. Appl. Surf. Sci., 2017, 421, 557-564.
[http://dx.doi.org/10.1016/j.apsusc.2016.10.169]
[64]
González-Leal, J.M. The Wemple–DiDomenico model as a tool to probe the building blocks conforming a glass. Phys. Status Solidi, B Basic Res., 2013, 250(5), 1044-1051. [b].
[http://dx.doi.org/10.1002/pssb.201248487]
[65]
Petkova, P.; Nedelchev, L.; Nazarova, D.; Boubaker, K.; Mimouni, R.; Vasilev, P.; Alexieva, G.; Bachvarova, D. Single oscillator model of undoped and co-doped ZnO thin films. Optik, 2017, 139, 217-221.
[http://dx.doi.org/10.1016/j.ijleo.2017.03.089]
[66]
Bakry, A. Dispersion and Fundamental Absorption Edge Analysis of Doped a-Si:H Thin Films I: p-type. Egypt. J. Sol., 2008, 31, 191-204.
[67]
Khan, W.; Khan, Z.A.; Saad, A.A.; Shervani, S.; Saleem, A.; Naqvi, A.H. Synthesis and characterization of al doped zno nanoparticles. Int. J. Mod. Phys. Conf. Ser., 2013, 22, 630-636.
[http://dx.doi.org/10.1142/S2010194513010775]
[68]
Jain, A.; Johari, M.; Jain, A.; Pandey, P.K.; Agrawal, R. Modification in optical properties of zno thin film by annealing. Int. J. Innov. Res. Sci. Eng. Technol., 2013, 2, 3144-3148.
[69]
Sheik-bahae, M.; Said, A.A.; Van Stryland, E.W. High-sensitivity, single-beam n_2 measurements. Opt. Lett., 1989, 14(17), 955-957.
[http://dx.doi.org/10.1364/OL.14.000955] [PMID: 19753023]
[70]
Sheik-Bahae, M.; Said, A.A.; Wei, T.H.; Hagan, D.J.; Van Stryland, E.W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron., 1990, 26(4), 760-769.
[http://dx.doi.org/10.1109/3.53394]
[71]
Gomes, A.S.L.; Maldonado, M.; Menezes, L. de S.; Acioli, L.H.; de Araújo, C.B.; Dysart, J.; Doyle, D.; Johns, P.; Naciri, N.; Charipar, N.; Fontana, J. Linear and third-order nonlinear optical properties of self-assembled plasmonic gold metasurfaces. Nanophotonics, 2020, 9, 1-16.
[http://dx.doi.org/10.1515/nanoph-2019-0521]
[72]
Zheng, X.; Zhang, Y.; Chen, R.; Cheng, X.; Xu, Z.; Jiang, T. Z-scan measurement of the nonlinear refractive index of monolayer WS_2. Opt. Express, 2015, 23(12), 15616-15623.
[http://dx.doi.org/10.1364/OE.23.015616] [PMID: 26193541]
[73]
Zidan, M.D.; Alsous, M.B.; Allaf, A.W.; Allahham, A. AL-Zier, A.; Rihawi, H. Z-scan measurements of the third order optical nonlinearity of C60 doped poly (Ethylacetylenecarboxylate) under CW regime. Optik, 2016, 127, 2566-2569.
[http://dx.doi.org/10.1016/j.ijleo.2015.11.226]
[74]
Nadafan, M.; Parishani, M.; Dehghani, Z.; Anvari, J.Z.; Malekfar, R. Third-order nonlinear optical properties of NiFe2O4 nanoparticles by Z-scan technique. Optik (Stuttg.), 2017, 144, 672-678.
[http://dx.doi.org/10.1016/j.ijleo.2017.06.128]
[75]
Motiei, H.; Jafari, A.; Naderali, R. Third-order nonlinear optical properties of organic azo dyes by using strength of nonlinearity parameter and Z-scan technique. Opt. Laser Technol., 2017, 88, 68-74.
[http://dx.doi.org/10.1016/j.optlastec.2016.09.011]
[76]
Jafari, A.; Naderali, R.; Motiei, H. The effect of doping acid on the third-order nonlinearity of carboxymethyl cellulose by the Z-scan technique. Opt. Mater., 2017, 64, 345-350.
[http://dx.doi.org/10.1016/j.optmat.2016.12.043]
[77]
Sreeja, V.G.; Anila, E.I. Studies on the effect of reduced graphene oxide on nonlinear absorption and optical limiting properties of potassium doped zinc oxide thin film by Z - scan technique. Thin Solid Films, 2019, 685, 161-167.
[http://dx.doi.org/10.1016/j.tsf.2019.06.015]
[78]
Jafari, A.; Zeynizadeh, B. Darvishi, Shiba Study of linear and nonlinear optical properties of nickel immobilized on acid-activated montmorillonite and copper ferrite nanocomposites. J. Mol. Liq., 2018, 253, 119-126.
[79]
Ganeev, R.A.; Ryasnyansky, A.I.; Baba, M.; Suzuki, M.; Ishizawa, N.; Turu, M.; Sakakibara, S.; Kuroda, H. Nonlinear refraction in CS2. Appl. Phys. B, 2004, 78(3-4), 433-438.
[http://dx.doi.org/10.1007/s00340-003-1389-y]
[80]
Li, G.; Ren, Q.; Wang, X.; Li, T.; Yang, H.; Chen, J.; Zhang, J. Study on the third-order nonlinear optical properties of four dmit complexes by Z-scan technique. Appl. Phys., A Mater. Sci. Process., 2011, 104(4), 1099-1103.
[http://dx.doi.org/10.1007/s00339-011-6378-0]
[81]
Stegeman, G.I.; Wright, E.M.; Finlayson, N.; Zanoni, R.; Seaton, C.T. Third order nonlinear integrated optics. J. Lightwave Technol., 1988, 6(6), 953-970.
[http://dx.doi.org/10.1109/50.4087]
[82]
Mohammadikish, M.; Ahmadvand-Akradi, A. Synthesis and optical band gap determination of CuO nanoparticles from salen-based infinite coordination polymer nanospheres. Mater. Res. Express, 2019, 6(4), 045013.
[http://dx.doi.org/10.1088/2053-1591/aaf8e3]
[83]
Hashim, H.; Shariffudin, S.S.; Saad, P.S.M.; Ridah, H.A.M. Electrical and optical properties of copper oxide thin films by sol-gel technique. IOP Conf. Series: Materials Science and Engineering, 2015, 99, p. 012032.
[84]
Koshy, J.; George, K.C. Annealing effects on crystallite size and band gap of CuO nanoparticles. Int. J. Nanosci. Nanotechnol., 2015, 6, 1-8.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy