Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Antioxidant Activity and Antitumor Potential of Hedyotis chrysotricha Extract in Human Colorectal Cancer and Breast Cancer Cell Lines

Author(s): Jing Zhang, Shannuo Li, Qianqian Lv, Jiahui Lin, Ying Xiao, Jiajie Liang, Tianwan Zhang, Lili Zeng, Peiting Guo and Hong Ji*

Volume 14, Issue 4, 2024

Published on: 04 January, 2024

Article ID: e040124225267 Pages: 10

DOI: 10.2174/0122103155275580231124052950

Price: $65

Abstract

Background: Cancer is a serious disease severely endangering human health and life in the world in the world, and conventional anticancer drugs have frequently suffered from severe side effects and resistance. Therefore, developing novel and effective therapeutic strategies is urgently needed. As a Chinese herbal medicine with important medical values, Hedyotis chrysotricha has been suggested to be useful for the treatment of many diseases, especially cancer.

Objective: Our aim was to investigate the antioxidant and antitumor activities of the phytochemical extracts of H. chrysotricha.

Methods: 2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay was applied to determine antioxidant property. 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide assay, wound healing assay, transwell matrix assay, flow cytometry and cell morphology were established to observe anti-proliferative, anti-migration, anti-invasion and apoptosis induction effects. The intracellular reactive oxygen species generation was detected by reactive oxygen species detection assay.

Results: The ethyl acetate fraction showed promising antioxidant activity with IC50 of 98.67±0.49 μg/ml, and petroleum ether fraction exhibited the most potent antiproliferative effect on various human cancer cell lines, especially MDA-MB-231 (IC50 = 8.90±1.23 μg/ml) and HCT-116 (IC50 = 9.69±3.69 μg/ml) cancer cells. Further investigation revealed that the petroleum ether fraction suppressed the proliferation, migration and invasion of the cancer cells significantly. Additionally, it promoted cell apoptosis by increasing reactive oxygen species levels.

Conclusion: H. chrysotricha extract possessed excellent antioxidant and antitumor activities. Therefore, it could be useful as a source of antioxidants and compounds for cancer therapy.

Graphical Abstract

[1]
Gaidai, O.; Yan, P.; Xing, Y. Future world cancer death rate prediction. Sci. Rep., 2023, 13(1), 303-312.
[http://dx.doi.org/10.1038/s41598-023-27547-x] [PMID: 36609490]
[2]
Sedeta, E.; Sung, H.; Laversanne, M.; Bray, F.; Jemal, A. Recent mortality patterns and time trends for the major cancers in 47 countries worldwide. Cancer Epidemiol. Biomarkers Prev., 2023, 32(7), 894-905.
[http://dx.doi.org/10.1158/1055-9965.EPI-22-1133] [PMID: 37195435]
[3]
Pizzato, M.; La Vecchia, C.; Malvezzi, M.; Levi, F.; Boffetta, P.; Negri, E.; Dalmartello, M. Cancer mortality and predictions for 2022 in selected Australasian countries, Russia, and Ukraine with a focus on colorectal cancer. Eur. J. Cancer Prev., 2023, 32(1), 18-29.
[http://dx.doi.org/10.1097/CEJ.0000000000000762] [PMID: 35822596]
[4]
Kaur, K.; Rath, G.; Chandra, S.; Singh, R.; Goyal, A.K. Chemotherapy with si-RNA and anticancer drugs. Curr. Drug Deliv., 2018, 15(3), 300-311.
[http://dx.doi.org/10.2174/1567201814666170518141440] [PMID: 28521675]
[5]
Zhou, Z.; Li, M. Targeted therapies for cancer. BMC Med., 2022, 20(1), 90-93.
[http://dx.doi.org/10.1186/s12916-022-02287-3] [PMID: 35272686]
[6]
Tan, B.L.; Norhaizan, M.E. Curcumin combination chemotherapy: The implication and efficacy in cancer. Molecules, 2019, 24(14), 2527-2548.
[http://dx.doi.org/10.3390/molecules24142527] [PMID: 31295906]
[7]
Liu, B.; Ezeogu, L.; Zellmer, L.; Yu, B.; Xu, N.; Joshua Liao, D. Protecting the normal in order to better kill the cancer. Cancer Med., 2015, 4(9), 1394-1403.
[http://dx.doi.org/10.1002/cam4.488] [PMID: 26177855]
[8]
Ben-Arye, E.; Samuels, N.; Goldstein, L.H.; Mutafoglu, K.; Omran, S.; Schiff, E.; Charalambous, H.; Dweikat, T.; Ghrayeb, I.; Bar-Sela, G.; Turker, I.; Hassan, A.; Hassan, E.; Saad, B.; Nimri, O.; Kebudi, R.; Silbermann, M. Potential risks associated with traditional herbal medicine use in cancer care: A study of Middle Eastern oncology health care professionals. Cancer, 2016, 122(4), 598-610.
[http://dx.doi.org/10.1002/cncr.29796] [PMID: 26599199]
[9]
Cao, W.; Chen, H.D.; Yu, Y.W.; Li, N.; Chen, W.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J., 2021, 134(7), 783-791.
[http://dx.doi.org/10.1097/CM9.0000000000001474] [PMID: 33734139]
[10]
Naeem, A.; Hu, P.; Yang, M.; Zhang, J.; Liu, Y.; Zhu, W.; Zheng, Q. Natural products as anticancer agents: Current status and future per-spectives. Molecules, 2022, 27(23), 8367-8431.
[http://dx.doi.org/10.3390/molecules27238367] [PMID: 36500466]
[11]
Buyel, J.F. Plants as sources of natural and recombinant anti-cancer agents. Biotechnol. Adv., 2018, 36(2), 506-520.
[http://dx.doi.org/10.1016/j.biotechadv.2018.02.002] [PMID: 29408560]
[12]
Michalkova, R.; Mirossay, L.; Kello, M.; Mojzisova, G.; Baloghova, J.; Podracka, A.; Mojzis, J. Anticancer potential of natural chalcones: in vitro and in vivo evidence. Int. J. Mol. Sci., 2023, 24(12), 10354-10403.
[http://dx.doi.org/10.3390/ijms241210354] [PMID: 37373500]
[13]
Gogoi, U.; Pathak, K.; Saikia, R.; Pathak, M.P.; Paul, T.; Khan, S.A.; Das, A. Recent advances on natural and non-natural xanthones as potential anticancer agents: A review. Med. Chem., 2023, 19(8), 757-784.
[http://dx.doi.org/10.2174/1573406419666221226093311] [PMID: 36573047]
[14]
Gordaliza, M. Natural products as leads to anticancer drugs. Clin. Transl. Oncol., 2007, 9(12), 767-776.
[http://dx.doi.org/10.1007/s12094-007-0138-9] [PMID: 18158980]
[15]
Hashem, S.; Ali, T.A.; Akhtar, S.; Nisar, S.; Sageena, G.; Ali, S.; Al-Mannai, S.; Therachiyil, L.; Mir, R.; Elfaki, I.; Mir, M.M.; Jamal, F.; Masoodi, T.; Uddin, S.; Singh, M.; Haris, M.; Macha, M.; Bhat, A.A. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed. Pharmacother., 2022, 150(12), 113054-113066.
[http://dx.doi.org/10.1016/j.biopha.2022.113054] [PMID: 35658225]
[16]
Küpeli Akkol, E.; Genç, Y.; Karpuz, B.; Sobarzo-Sánchez, E.; Capasso, R. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers, 2020, 12(7), 1959-1984.
[http://dx.doi.org/10.3390/cancers12071959] [PMID: 32707666]
[17]
Abdou, R.; Mojally, M.; Attia, H.G.; Dawoud, M. Cubic nanoparticles as potential carriers for a natural anticancer drug: development, in vitro and in vivo characterization. Drug Deliv. Transl. Res., 2023, 13(10), 2463-2474.
[http://dx.doi.org/10.1007/s13346-023-01325-8] [PMID: 37010791]
[18]
Saini, N.; Sirohi, R.A.A.; Saini, N.; Wadhwa, P.; Kaur, P.; Sharma, V.; Singh, G.; Singh, I.; Sahu, S.K. Marine derived natural products as anticancer agents. Med. Chem., 2023, 19(6), 538-555.
[http://dx.doi.org/10.2174/1573406419666221202144044] [PMID: 36476429]
[19]
Deng, L.J.; Qi, M.; Li, N.; Lei, Y.H.; Zhang, D.M.; Chen, J.X. Natural products and their derivatives: Promising modulators of tumor im-munotherapy. J. Leukoc. Biol., 2020, 108(2), 493-508.
[http://dx.doi.org/10.1002/JLB.3MR0320-444R] [PMID: 32678943]
[20]
Yuan, S.; Gopal, J.V.; Ren, S.; Chen, L.; Liu, L.; Gao, Z. Anticancer fungal natural products: Mechanisms of action and biosynthesis. Eur. J. Med. Chem., 2020, 202, 112502-112530.
[http://dx.doi.org/10.1016/j.ejmech.2020.112502] [PMID: 32652407]
[21]
Varghese, R.; Dalvi, Y.B. Natural products as anticancer agents. Curr. Drug Targets, 2021, 22(11), 1272-1287.
[http://dx.doi.org/10.2174/1389450121999201230204526] [PMID: 33390130]
[22]
Lobert, S.; Vulevic, B.; Correia, J.J. Interaction of vinca alkaloids with tubulin: A comparison of vinblastine, vincristine, and vinorelbine. Biochemistry, 1996, 35(21), 6806-6814.
[http://dx.doi.org/10.1021/bi953037i] [PMID: 8639632]
[23]
Metts, J.L.; Trucco, M.; Weiser, D.A.; Thompson, P.; Sandler, E.; Smith, T.; Crimella, J.; Sansil, S.; Thapa, R.; Fridley, B.L.; Llosa, N.; Badgett, T.; Gorlick, R.; Reed, D.; Gill, J. A phase I trial of metformin in combination with vincristine, irinotecan, and temozolomide in children with relapsed or refractory solid and central nervous system tumors: A report from the national pediatric cancer foundation. Cancer Med., 2023, 12(4), 4270-4281.
[http://dx.doi.org/10.1002/cam4.5297] [PMID: 36151773]
[24]
Mujib, A.; Fatima, S.; Malik, M.Q. Cryo-derived plants through embryogenesis showed same levels of vinblastine and vincristine (anti-cancer) in Catharanthus roseus and had normal genome size. Sci. Rep., 2022, 12(1), 16635-16648.
[http://dx.doi.org/10.1038/s41598-022-20993-z] [PMID: 36198853]
[25]
Rai, V.; Tandon, P.K.; Khatoon, S. Effect of chromium on antioxidant potential of Catharanthus roseus varieties and production of their anticancer alkaloids: Vincristine and vinblastine. BioMed Res. Int., 2014, 2014, 1-10.
[http://dx.doi.org/10.1155/2014/934182] [PMID: 24734252]
[26]
Dhyani, P.; Quispe, C.; Sharma, E.; Bahukhandi, A.; Sati, P.; Attri, D.C.; Szopa, A.; Sharifi-Rad, J.; Docea, A.O.; Mardare, I.; Calina, D.; Cho, W.C. Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int., 2022, 22(1), 206-226.
[http://dx.doi.org/10.1186/s12935-022-02624-9] [PMID: 35655306]
[27]
Stähelin, H.F.; von Wartburg, A. The chemical and biological route from podophyllotoxin glucoside to etoposide: Ninth Cain memorial Award lecture. Cancer Res., 1991, 51(1), 5-15.
[PMID: 1988106]
[28]
Motyka, S.; Jafernik, K.; Ekiert, H.; Sharifi-Rad, J.; Calina, D.; Al-Omari, B.; Szopa, A.; Cho, W.C. Podophyllotoxin and its derivatives: Potential anticancer agents of natural origin in cancer chemotherapy. Biomed. Pharmacother., 2023, 158, 114145-114163.
[http://dx.doi.org/10.1016/j.biopha.2022.114145] [PMID: 36586242]
[29]
Ivanova, D.; Nedialkov, P.; Tashev, A.; Kokanova-Nedialkova, Z.; Olech, M.; Nowak, R.; Boyadzhieva, S.; Angelov, G.; Yankov, D. Anti-cancer podophyllotoxin recovery from juniper leaves at atmospheric and high pressure using eco-friendly solvents. Plants, 2023, 12(7), 1526-1543.
[http://dx.doi.org/10.3390/plants12071526] [PMID: 37050153]
[30]
Lin, H.; Ai, D.; Liu, Q.; Wang, X.; Gao, J.; Chen, Q.; Ruan, L.; Tao, Y.; Gao, J.; Wang, L. Modified podophyllotoxin phenoxyacetamide phenylacetate derivatives: Tubulin/AKT1 dual-targeting and potential anticancer agents for human NSCLC. J. Nat. Prod., 2023, 86(7), 1844-1854.
[http://dx.doi.org/10.1021/acs.jnatprod.3c00384] [PMID: 37395092]
[31]
Xu, Y.; He, Z.; Chen, L.; Wang, H. Podophyllotoxin derivatives targeting tubulin: An update (2017–2022). Drug Discov. Today, 2023, 28(8), 103640-103651.
[http://dx.doi.org/10.1016/j.drudis.2023.103640] [PMID: 37236524]
[32]
Hoessel, R.; Leclerc, S.; Endicott, J.A.; Nobel, M.E.M.; Lawrie, A.; Tunnah, P.; Leost, M.; Damiens, E.; Marie, D.; Marko, D.; Nieder-berger, E.; Tang, W.; Eisenbrand, G.; Meijer, L. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat. Cell Biol., 1999, 1(1), 60-67.
[http://dx.doi.org/10.1038/9035] [PMID: 10559866]
[33]
Wang, H.; Wang, Z.; Wei, C.; Wang, J.; Xu, Y.; Bai, G.; Yao, Q.; Zhang, L.; Chen, Y. Anticancer potential of indirubins in medicinal chemistry: Biological activity, structural modification, and structure-activity relationship. Eur. J. Med. Chem., 2021, 223, 113652-113682.
[http://dx.doi.org/10.1016/j.ejmech.2021.113652] [PMID: 34161865]
[34]
Wang, Y.; Hoi, P.; Chan, J.; Lee, S. New perspective on the dual functions of indirubins in cancer therapy and neuroprotection. Anticancer. Agents Med. Chem., 2014, 14(9), 1213-1219.
[http://dx.doi.org/10.2174/1871520614666140825112924] [PMID: 25175685]
[35]
Yang, L.; Li, X.; Huang, W.; Rao, X.; Lai, Y. Pharmacological properties of indirubin and its derivatives. Biomed. Pharmacother., 2022, 151, 113112-1131124.
[http://dx.doi.org/10.1016/j.biopha.2022.113112] [PMID: 35598366]
[36]
Rebl, H.; Sawade, M.; Hein, M.; Bergemann, C.; Wende, M.; Lalk, M.; Langer, P.; Emmert, S.; Nebe, B. Synergistic effect of plasma-activated medium and novel indirubin derivatives on human skin cancer cells by activation of the AhR pathway. Sci. Rep., 2022, 12(1), 2528-2543.
[http://dx.doi.org/10.1038/s41598-022-06523-x] [PMID: 35169210]
[37]
Fulda, S. Modulation of apoptosis by natural products for cancer therapy. Planta Med., 2010, 76(11), 1075-1079.
[http://dx.doi.org/10.1055/s-0030-1249961] [PMID: 20486070]
[38]
Lewandowska, H.; Kalinowska, M.; Lewandowski, W.; Stępkowski, T.M.; Brzóska, K. The role of natural polyphenols in cell signaling and cytoprotection against cancer development. J. Nutr. Biochem., 2016, 32, 1-19.
[http://dx.doi.org/10.1016/j.jnutbio.2015.11.006] [PMID: 27142731]
[39]
Khalifa, S.A.M.; Elias, N.; Farag, M.A.; Chen, L.; Saeed, A.; Hegazy, M.E.F.; Moustafa, M.S.; Abd El-Wahed, A.; Al-Mousawi, S.M.; Musharraf, S.G.; Chang, F.R.; Iwasaki, A.; Suenaga, K.; Alajlani, M.; Göransson, U.; El-Seedi, H.R. Marine natural products: A source of novel anticancer drugs. Mar. Drugs, 2019, 17(9), 491.
[http://dx.doi.org/10.3390/md17090491] [PMID: 31443597]
[40]
Kashyap, D.; Tuli, H.S.; Yerer, M.B.; Sharma, A.; Sak, K.; Srivastava, S.; Pandey, A.; Garg, V.K.; Sethi, G.; Bishayee, A. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Semin. Cancer Biol., 2021, 69, 5-23.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.014] [PMID: 31421264]
[41]
Bagherniya, M.; Mahdavi, A.; Shokri-Mashhadi, N.; Banach, M.; Von Haehling, S.; Johnston, T.P.; Sahebkar, A. The beneficial therapeutic effects of plant derived natural products for the treatment of sarcopenia. J. Cachexia Sarcopenia Muscle, 2022, 13(6), 2772-2790.
[http://dx.doi.org/10.1002/jcsm.13057] [PMID: 35961944]
[42]
Institute of Botany. Jiangsu Province and Chinese Academy of Sciences., Institute of Materia Medica., Chinese Academy of Medical Sciences & Peking Union Medical College; Kunming Institute of Botany., Chinese Academy of Sciences., Xin Hua Ben Cao Gang Yao; Shanghai Science and Technology Press: Shanghai, 1991, pp. 442-445.
[43]
Fang, Z.; Yang, Y.; Zhou, G. [Isolation and identification of chemical constituents from Hedyotis chrysotricha (Palib.) Merr]. Zhongguo Zhongyao Zazhi, 1992, 17(2), 98-100, 127.
[PMID: 1418534]
[44]
Li, X.; Zhang, W.; Qin, Y.; Xing, X. Essential oil from Hedyotis chrysotricha: Chemical composition, cytotoxic, antibacterial properties and synergistic effects with streptomycin. Rec. Nat. Prod., 2022, 16(4), 376-381.
[45]
Ye, M.; Su, J.J.; Liu, S.T.; Cao, L.; Xiong, J.; Zhao, Y.; Fan, H.; Yang, G.X.; Xia, G.; Hu, J.F. (24 S)-Ergostane-3β,5α,6β-triol from Hedyotis chrysotricha with inhibitory activity on migration of SK-HEP-1 human hepatocarcinoma cells. Nat. Prod. Res., 2013, 27(12), 1136-1140.
[http://dx.doi.org/10.1080/14786419.2012.715290] [PMID: 22889249]
[46]
Peng, J.N.; Feng, X.Z.; Li, G.Y.; Liang, X.T. [Chemical investigation of genus Hedyotis. II. Isolation and identification of iridoids from Hedyotis chrysotricha]. Yao Xue Xue Bao, 1997, 32(12), 908-913.
[PMID: 11596187]
[47]
Peng, J.N.; Feng, X.Z.; Liang, X.T. Two new iridoids from hedyotis chrysotricha. J. Nat. Prod., 1999, 62(4), 611-612.
[http://dx.doi.org/10.1021/np980238p] [PMID: 10217721]
[48]
Jiang-Nan, P.; Xiao-Zhang, F.; Qi-Tai, Z.; Xiao-Tian, L. A β-carboline alkaloid from Hedyotis chrysotricha. Phytochemistry, 1997, 46(6), 1119-1121.
[http://dx.doi.org/10.1016/S0031-9422(97)00353-1]
[49]
Molyneux, P. The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant. Songklanakarin J. Sci. Technol., 2004, 26(2), 211-219.
[50]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[51]
Stovbun, S.V.; Vedenkin, A.S.; Mikhaleva, M.G.; Bukhvostov, A.A.; Kuznetsov, D.A. Radiation-chemical biotechnology for producing ultrashort (50-100n) single-chain polydeoxyribonucleotides with anticancer activity. Bull. Exp. Biol. Med., 2021, 171(1), 74-76.
[http://dx.doi.org/10.1007/s10517-021-05175-7] [PMID: 34050411]
[52]
Grada, A.; Otero-Vinas, M.; Prieto-Castrillo, F.; Obagi, Z.; Falanga, V. Research techniques made simple: Analysis of collective cell migration using the wound healing assay. J. Invest. Dermatol., 2017, 137(2), e11-e16.
[http://dx.doi.org/10.1016/j.jid.2016.11.020] [PMID: 28110712]
[53]
Marshall, J. Transwell(®) invasion assays. Methods Mol. Biol., 2011, 769, 97-110.
[http://dx.doi.org/10.1007/978-1-61779-207-6_8] [PMID: 21748672]
[54]
Yu, D.; Zha, Y.; Zhong, Z.; Ruan, Y.; Li, Z.; Sun, L.; Hou, S. Improved detection of reactive oxygen species by DCFH-DA: New insight into self-amplification of fluorescence signal by light irradiation. Sens. Actuators B Chem., 2021, 339, 129878-129887.
[http://dx.doi.org/10.1016/j.snb.2021.129878]
[55]
Mondal, S.; Singh, S. Flow cytometry-based measurement of reactive oxygen species in cyanobacteria. Bio Protoc., 2022, 12(10), e4417.
[http://dx.doi.org/10.21769/BioProtoc.4417] [PMID: 35813020]
[56]
Ogunwobi, O.O.; Mahmood, F.; Akingboye, A. Biomarkers in colorectal cancer: Current research and future prospects. Int. J. Mol. Sci., 2020, 21(15), 5311.
[http://dx.doi.org/10.3390/ijms21155311] [PMID: 32726923]
[57]
Song, G. Signal pathways in cancer. Int. J. Mol. Sci., 2023, 24(9), 8260-8263.
[http://dx.doi.org/10.3390/ijms24098260] [PMID: 37175967]
[58]
Dobruch, J.; Oszczudłowski, M. Bladder Cancer: Current challenges and future directions. Medicina, 2021, 57(8), 749-759.
[http://dx.doi.org/10.3390/medicina57080749] [PMID: 34440955]
[59]
Zugazagoitia, J.; Guedes, C.; Ponce, S.; Ferrer, I.; Molina-Pinelo, S.; Paz-Ares, L. Current challenges in cancer treatment. Clin. Ther., 2016, 38(7), 1551-1566.
[http://dx.doi.org/10.1016/j.clinthera.2016.03.026] [PMID: 27158009]
[60]
Zhang, W.; Li, S.; Li, C.; Li, T.; Huang, Y. Remodeling tumor microenvironment with natural products to overcome drug resistance. Front. Immunol., 2022, 13, 1051998-1052020.
[http://dx.doi.org/10.3389/fimmu.2022.1051998] [PMID: 36439106]
[61]
Liu, Y.; Yang, S.; Wang, K.; Lu, J.; Bao, X.; Wang, R.; Qiu, Y.; Wang, T.; Yu, H. Cellular senescence and cancer: Focusing on traditional Chinese medicine and natural products. Cell Prolif., 2020, 53(10), e12894.
[http://dx.doi.org/10.1111/cpr.12894] [PMID: 32881115]
[62]
Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[63]
Liu, Z.; Semenza, G.L.; Zhang, H. Hypoxia-inducible factor 1 and breast cancer metastasis. J. Zhejiang Univ. Sci. B, 2015, 16(1), 32-43.
[http://dx.doi.org/10.1631/jzus.B1400221] [PMID: 25559953]
[64]
Riihimäki, M.; Hemminki, A.; Fallah, M.; Thomsen, H.; Sundquist, K.; Sundquist, J.; Hemminki, K. Metastatic sites and survival in lung cancer. Lung Cancer, 2014, 86(1), 78-84.
[http://dx.doi.org/10.1016/j.lungcan.2014.07.020] [PMID: 25130083]
[65]
Chen, W.; Hoffmann, A.D.; Liu, H.; Liu, X. Organotropism: New insights into molecular mechanisms of breast cancer metastasis. NPJ Precis. Oncol., 2018, 2(1), 4-16.
[http://dx.doi.org/10.1038/s41698-018-0047-0] [PMID: 29872722]
[66]
Pavese, J.M.; Farmer, R.L.; Bergan, R.C. Inhibition of cancer cell invasion and metastasis by genistein. Cancer Metastasis Rev., 2010, 29(3), 465-482.
[http://dx.doi.org/10.1007/s10555-010-9238-z] [PMID: 20730632]
[67]
Riihimäki, M.; Hemminki, A.; Sundquist, J.; Hemminki, K. Patterns of metastasis in colon and rectal cancer. Sci. Rep., 2016, 6(1), 29765-29774.
[http://dx.doi.org/10.1038/srep29765] [PMID: 27416752]
[68]
Babaei, G.; Aziz, S.G.G.; Jaghi, N.Z.Z. EMT, cancer stem cells and autophagy; The three main axes of metastasis. Biomed. Pharmacother., 2021, 133, 110909-110920.
[http://dx.doi.org/10.1016/j.biopha.2020.110909] [PMID: 33227701]
[69]
Ryan, C.; Stoltzfus, K.C.; Horn, S.; Chen, H.; Louie, A.V.; Lehrer, E.J.; Trifiletti, D.M.; Fox, E.J.; Abraham, J.A.; Zaorsky, N.G. Epidemiology of bone metastases. Bone, 2022, 158, 115783-115792.
[http://dx.doi.org/10.1016/j.bone.2020.115783] [PMID: 33276151]
[70]
Aggarwal, V.; Tuli, H.; Varol, A.; Thakral, F.; Yerer, M.; Sak, K.; Varol, M.; Jain, A.; Khan, M.; Sethi, G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules, 2019, 9(11), 735-761.
[http://dx.doi.org/10.3390/biom9110735] [PMID: 31766246]
[71]
Yang, H.; Villani, R.M.; Wang, H.; Simpson, M.J.; Roberts, M.S.; Tang, M.; Liang, X. The role of cellular reactive oxygen species in cancer chemotherapy. J. Exp. Clin. Cancer Res., 2018, 37(1), 266-267.
[http://dx.doi.org/10.1186/s13046-018-0909-x] [PMID: 30382874]
[72]
Dong, L.; He, J.; Luo, L.; Wang, K. Targeting the interplay of autophagy and ROS for cancer therapy: An updated overview on phytochemicals. Pharmaceuticals, 2023, 16(1), 92-117.
[http://dx.doi.org/10.3390/ph16010092] [PMID: 36678588]
[73]
Cheung, E.C.; Vousden, K.H. The role of ROS in tumour development and progression. Nat. Rev. Cancer, 2022, 22(5), 280-297.
[http://dx.doi.org/10.1038/s41568-021-00435-0] [PMID: 35102280]
[74]
Sosa, V.; Moliné, T.; Somoza, R.; Paciucci, R.; Kondoh, H. LLeonart, M.E. Oxidative stress and cancer: An overview. Ageing Res. Rev., 2013, 12(1), 376-390.
[http://dx.doi.org/10.1016/j.arr.2012.10.004] [PMID: 23123177]
[75]
Jelic, M.; Mandic, A.; Maricic, S.; Srdjenovic, B. Oxidative stress and its role in cancer. J. Cancer Res. Ther., 2021, 17(1), 22-28.
[http://dx.doi.org/10.4103/jcrt.JCRT_862_16] [PMID: 33723127]
[76]
Ahmad, R.; Ali, A.M.; Israf, D.A.; Ismail, N.H.; Shaari, K.; Lajis, N.H. Antioxidant, radical-scavenging, anti-inflammatory, cytotoxic and antibacterial activities of methanolic extracts of some Hedyotis species. Life Sci., 2005, 76(17), 1953-1964.
[http://dx.doi.org/10.1016/j.lfs.2004.08.039] [PMID: 15707878]
[77]
Han, X.; Zhang, X.; Wang, Q.; Wang, L.; Yu, S. Antitumor potential of Hedyotis diffusa Willd: A systematic review of bioactive constitu-ents and underlying molecular mechanisms. Biomed. Pharmacother., 2020, 130, 110735-110747.
[http://dx.doi.org/10.1016/j.biopha.2020.110735] [PMID: 34321173]
[78]
Wang, C.; Zhou, X.; Wang, Y.; Wei, D.; Deng, C.; Xu, X.; Xin, P.; Sun, S. The antitumor constituents from Hedyotis diffusa willd. Molecules, 2017, 22(12), 2101-2111.
[http://dx.doi.org/10.3390/molecules22122101] [PMID: 29189741]
[79]
Chen, R.; He, J.; Tong, X.; Tang, L.; Liu, M. The Hedyotis diffusa willd. (Rubiaceae): A review on phytochemistry, pharmacology, quality control and pharmacokinetics. Molecules, 2016, 21(6), 710-740.
[http://dx.doi.org/10.3390/molecules21060710] [PMID: 27248992]
[80]
Wu, C.; Luo, H.; Ma, W.; Ren, X.; Lu, C.; Li, N.; Wang, Z. Polysaccharides isolated from Hedyotis diffusa inhibits the aggressive phenotypes of laryngeal squamous carcinoma cells via inhibition of Bcl-2, MMP-2, and μPA. Gene, 2017, 637, 124-129.
[http://dx.doi.org/10.1016/j.gene.2017.09.041] [PMID: 28942036]
[81]
Hung, H.Y.; Cheng, K.C.; Kuo, P.C.; Chen, I.T.; Li, Y.C.; Hwang, T.L.; Lam, S.H.; Wu, T.S. Chemical constituents of Hedyotis diffusa and their anti-inflammatory bioactivities. Antioxidants, 2022, 11(2), 335-350.
[http://dx.doi.org/10.3390/antiox11020335] [PMID: 35204218]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy