Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Mini-Review Article

Rapidly Evolving SARS-CoV-2: A Brief Review Regarding the Variants and their Effects on Vaccine Efficacies

Author(s): Shahid Nawaz, Sara Janiad*, Aiman Fatima, Maira Saleem, Urooj Fatima and Asad Ali

Volume 24, Issue 4, 2024

Published on: 03 January, 2024

Article ID: e030124225219 Pages: 9

DOI: 10.2174/0118715265271109231129112515

Price: $65

Abstract

Since the commencement of Corona Virus Disease 2019 (COVID-19) pandemic, which has resulted in millions of mortalities globally, the efforts to minimize the damages have equally been up to the task. One of those efforts includes the mass vaccine development initiative targeting the deadly Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). So far, vaccines have tremendously decreased the rate of transmission and infection in most parts of the world. However, the repeated resurgence of different types of mutated versions of the virus, also known as variants, has somehow created uncertainties about the efficacies of different types of vaccines. This review discusses some of the interesting SARS-CoV-2 features, including general structure, genomics, and mechanisms of variants development and their consequent immune escape. This review also focuses very briefly on antigenic drift, shift, and vaccine-developing platforms.

Graphical Abstract

[1]
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[2]
Vanden Eynde JJ. COVID-19: A brief overview of the discovery clinical trial. Pharmaceuticals 2020; 13(4): 65.
[http://dx.doi.org/10.3390/ph13040065] [PMID: 32290348]
[3]
Gorbalenya AE, Baker SC, Baric RS, et al. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 2020; 5(4): 536-44.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[4]
Naming the coronavirus disease (COVID-19) and the virus that causes it. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the- (Accessed on: June 13, 2021).
[5]
Nhamo G, Chikodzi D, Kunene HP, Mashula N. COVID-19 vaccines and treatments nationalism: Challenges for low-income countries and the attainment of the SDGs. Glob Public Health 2021; 16(3): 319-39.
[http://dx.doi.org/10.1080/17441692.2020.1860249] [PMID: 33317389]
[6]
Hein W, Paschke A. Access to COVID-19 vaccines and medicines-a Global Public Good Zur Verfügung Gestellt in Kooperation Mit/provided in cooperation with: GIGA German Institute of Global and Area Studies Vaccines and Medicines - a Global Public Good. (GIGA Focus Global, 4). GIGA German Institute of Global and Area Studies- Leibniz-Institut Für Globale Und Regionale Studien. Available from: https://Nbn-Resolving.Org/Urn:Nbn:De (Accessed on: June 13, 2021).
[7]
Pfefferbaum B, North CS. Mental health and the covid-19 pandemic. N Engl J Med 2020; 383(6): 510-2.
[http://dx.doi.org/10.1056/NEJMp2008017] [PMID: 32283003]
[8]
Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Biomed 2020; 91(1): 157-60.
[9]
COVID-19 vaccine tracker and landscape. Available from: https://www.who.int/publications/m/item/draft-landscape-of- (Accessed on: June 14, 2021)
[10]
Tracking SARS-CoV-2 variants Available from: https://www.who. int/en/activities/tracking-SARS-CoV-2-variants/?fbclid=IwAR3hxfEG9A7qfk1uZq7s0aMzQ_5M1LQzHFycEZHVbr (Accessed on: September 30, 2021)
[11]
Vasireddy D, Vanaparthy R, Mohan G, Malayala SV, Atluri P. Review of COVID-19 variants and COVID-19 vaccine efficacy: What the clinician should know? J Clin Med Res 2021; 13(6): 317-25.
[http://dx.doi.org/10.14740/jocmr4518] [PMID: 34267839]
[12]
Ashique S, Sandhu NK. “Ayurvedic System”: A new possible safe and effective way to get rid of this critical COVID-19 pandemic situation- a review. Curr Tradit Med 2022; 8(1): e130421192818.
[http://dx.doi.org/10.2174/2215083807666210413113113]
[13]
Klein S, Cortese M, Winter SL, et al. SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nat Commun 2020; 11(1): 5885.
[http://dx.doi.org/10.1038/s41467-020-19619-7] [PMID: 33208793]
[14]
Emma B. CoVariants: SARS-CoV-2 Mutations and Variants of Interest. 2021. Available from https://covariants.org/
[15]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[16]
Nawaz S. COVID-19, SARS -CoV-2, Origin, transmission and treatment aspects, a brief review. Infect Disord Drug Targets 2021; 21(5): e270421186673.
[http://dx.doi.org/10.2174/1871526520666201006163641] [PMID: 33023459]
[17]
Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med 2020; 26(4): 450-2.
[http://dx.doi.org/10.1038/s41591-020-0820-9] [PMID: 32284615]
[18]
Goldsmith CS, Miller SE, Martines RB, Bullock HA, Zaki SR. Electron microscopy of SARS-CoV-2: A challenging task. Lancet 2020; 395(10238): e99.
[19]
Mishra SK, Tripathi T. One year update on the COVID-19 pandemic: Where are we now? Acta Trop 2021; 214: 105778.
[http://dx.doi.org/10.1016/j.actatropica.2020.105778] [PMID: 33253656]
[20]
de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: Recent insights into emerging coronaviruses. Nat Rev Microbiol 2016; 14(8): 523-34.
[http://dx.doi.org/10.1038/nrmicro.2016.81] [PMID: 2734495959]
[21]
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17(3): 181-92.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[22]
Awadasseid A, Wu Y, Tanaka Y, Zhang W. Current advances in the development of SARS-CoV-2 vaccines. Int J Biol Sci 2021; 17(1): 8-19.
[http://dx.doi.org/10.7150/ijbs.52569] [PMID: 33390829]
[23]
Huang Y, Yang C, Xu X, Xu W, Liu S. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 2020; 41(9): 1141-9.
[http://dx.doi.org/10.1038/s41401-020-0485-4] [PMID: 32747721]
[24]
Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016; 3(1): 237-61.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[25]
Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun 2020; 525(1): 135-40.
[http://dx.doi.org/10.1016/j.bbrc.2020.02.071] [PMID: 32081428]
[26]
Sharma O, Sultan AA, Ding H, Triggle CR. A review of the progress and challenges of developing a vaccine for COVID-19. Front Immunol 2020; 11: 585354.
[http://dx.doi.org/10.3389/fimmu.2020.585354] [PMID: 33163000]
[27]
Tortorici MA, Veesler D. Structural insights into coronavirus entry. Adv Virus Res 2019; 105: 93-116.
[http://dx.doi.org/10.1016/bs.aivir.2019.08.002]
[28]
Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science 2020; 369(6501): 330-3.
[http://dx.doi.org/10.1126/science.abb9983] [PMID: 32366695]
[29]
Kumar S, Maurya VK, Prasad AK, Bhatt MLB, Saxena SK. Structural, glycosylation and antigenic variation between 2019 novel coronavirus (2019-nCoV) and SARS coronavirus (SARS-CoV). Virusdisease 2020; 31(1): 13-21.
[http://dx.doi.org/10.1007/s13337-020-00571-5] [PMID: 32206694]
[30]
Wrobel AG, Benton DJ, Xu P, et al. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat Struct Mol Biol 2020; 27(8): 763-7.
[http://dx.doi.org/10.1038/s41594-020-0468-7] [PMID: 32647346]
[31]
Benton DJ, Wrobel AG, Xu P, et al. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature 2020; 588(7837): 327-30.
[http://dx.doi.org/10.1038/s41586-020-2772-0] [PMID: 32942285]
[32]
Europe PMC. Available from: https://europepmc.org/article/PMC/PMC7 (Accessed on: April 22, 2021).
[33]
Michieli AG. #Genomic characterization of a novel #SARS-CoV-2 #lineage from #Rio de Janeiro, #Brazil (J Virol., abstract). 2021. Available from: https://etidioh.wordpress. com/2021/03/02/genomic-characterization-of-a-novel sars-cov-2-lineage-from-rio-de-janeiro-brazil-j-virol-ab stract/ (Accessed on: April 24, 2021)
[34]
SARS-CoV-2 Variant Classifications and Definitions. Available from: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html
[35]
How the flu virus can change: "Drift" and "Shift". Cent ers for Disease Control and Prevention. 2019. Available from: https://www.cdc. gov/flu/about/viruses/change.htm (Accessed on: April 23, 2021).
[36]
Galloway SE, Paul P, MacCannell DR, et al. Emergence of SARS-CoV-2 B.1.1.7 Lineage - United States, December 29, 2020-January 12, 2021. MMWR Morb Mortal Wkly Rep 2021; 70(3): 95-9.
[http://dx.doi.org/10.15585/mmwr.mm7003e2] [PMID: 33476315]
[37]
Davies NG, Jarvis CI, Edmunds WJ, Jewell NP, Diaz-Ordaz K, Keogh RH. Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature 2021; 593(7858): 270-4.
[http://dx.doi.org/10.1038/s41586-021-03426-1] [PMID: 33723411]
[39]
US COVID-19 Cases Caused by Variants. Centers for Disease Control and Prevention. Available from: https://www.cdc.gov/coronavirus/2019-ncov/transmission/variant-cases.html (Accessed on: April 24, 2021).
[40]
Aine.otoole. Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2. Virological. Available from:. https://virological.org/t/tracking-the-international-spread of-sars-cov-2-lineages-b-1-1-7-and-b-1-351-501y-v2/592
[41]
Planas D, Bruel T, Grzelak L, et al. Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nat Med 2021; 27(5): 917-24.
[http://dx.doi.org/10.1038/s41591-021-01318-5] [PMID: 33772244]
[42]
Vasireddy D, Atluri P, Malayala SV, Vanaparthy R, Mohan G. Review of COVID-19 vaccines approved in the United States of America for emergency use. J Clin Med Res 2021; 13(4): 204-13.
[http://dx.doi.org/10.14740/jocmr4490] [PMID: 34007358]
[43]
Rita Rubin MA. COVID-19 Vaccines vs. Variants—Determining How Much Immunity Is Enough JAMA 2021; 325(13): 1241-3.
[44]
Update on SARS-CoV-2 Variants. GVN. 2021. Available from: https://gvn.org/update-on-sars-cov-2-variants-020521/ (Accessed on: April 2).
[45]
Coronavirus mutations and variants: what does it mean? SRHD 2021. Available from: https://srhd.org/news/2021/coronavirus-mutationsand-variants-what-does-it-mean.Published (Accessed on: April 24, 2021)
[46]
Aleem A, Akbar SAB, Slenker AK. Emerging variants of SARS-CoV-2 And novel therapeutics against coronavirus (COVID-19).In: StatPearls. Treasure Island, FL: StatPearls Publishing 2022.
[47]
Callaway E. Multitude of coronavirus variants found in the US - but the threat is unclear. Nature News. 2021. Available from: https://www.nature.com/articles/d41586-021-00564-4 (Accessed on: May 3, 2021)
[48]
Zhang W, Davis BD, Chen SS, Sincuir MJM, Plummer JT, Vail E. Emergence of a novel SARS-CoV-2 variant in Southern California. JAMA 2021; 325(13): 1324-6.
[http://dx.doi.org/10.1001/jama.2021.1612] [PMID: 33571356]
[49]
Coronavirus: ‘Double mutant’ COVID variant found in India. BBC News. 2021. Available from: https://www.bbc.com/news/world-asiaindia-56507988 (Accessed on: June 10, 2021).
[50]
Service TN. COVAXIN works against double mutant; reduces hospitalisation, shows Phase 3 interim data. Tribuneindia News Service. Available from: https://www.tribuneindia.com/news/nation/covaxin-works-against-double-mutant-shows78-100-efficacy-against-severe-covid-phase-3-interimdata-242191 (Accessed on: April 24, 2021).
[51]
Mahase E. Covid-19: Novavax vaccine efficacy is 86% against UK variant and 60% against South African variant. BMJ 2021; 372(296): n296.
[http://dx.doi.org/10.1136/bmj.n296] [PMID: 33526412]
[52]
World Health Organization. EG.5 initial risk evaluation. 2023. Available from: www.who.int/docs/default-source/coronaviruse/09082023eg.5_ire_final.pdf
[53]
Mahase E. What do we know about XBB.1.5 and should we be worried? BMJ 2023; 380: 153.
[http://dx.doi.org/10.1136/bmj.p153]
[54]
Looi MK. What do we know about the Arcturus XBB.1.16 subvariant? BMJ 2023; 381: 1074.
[http://dx.doi.org/10.1136/bmj.p1074]
[55]
Centers for Disease Control and Prevention Monitoring variant proportions 2023. Available from: https://covid.cdc.gov/covid-data-tracker/#variant-proportions
[57]
Science Brief: Emerging SARS-CoV-2 Variants. Centers for Disease Control and Prevention. Available from: https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/scientificbrief-emerging-variants.html (Accessed on: May 3, 2021).
[58]
Keshavarz M, Mirzaei H, Salemi M, et al. Influenza vaccine: Where are we and where do we go? Rev Med Virol 2019; 29(1): e2014.
[http://dx.doi.org/10.1002/rmv.2014] [PMID: 30408280]
[59]
Bandyopadhyay AS, Garon J, Seib K, Orenstein WA. Polio vaccination: Past, present and future. Future Microbiol 2015; 10(5): 791-808.
[http://dx.doi.org/10.2217/fmb.15.19] [PMID: 25824845]
[60]
Liu MA. A comparison of plasmid DNA and mRNA as vaccine technologies. Vaccines 2019; 7(2): 37.
[http://dx.doi.org/10.3390/vaccines7020037] [PMID: 31022829]
[61]
Sandbrink JB, Shattock RJ. RNA vaccines: A suitable platform for tackling emerging pandemics? Front Immunol 2020; 11: 608460.
[http://dx.doi.org/10.3389/fimmu.2020.608460] [PMID: 33414790]
[62]
Hassine IH, Gharbi J, Hamrita B, Almalki MA, Rodríguez JF, Ben M’hadheb M. Characterization of Coxsackievirus B4 virus-like particles VLP produced by the recombinant baculovirus-insect cell system expressing the major capsid protein. Mol Biol Rep 2020; 47(4): 2835-43.
[http://dx.doi.org/10.1007/s11033-020-05333-6] [PMID: 32240468]
[63]
Schillie S, Harris A, Link-Gelles R, Romero J, Ward J, Nelson N. Recommendations of the Advisory Committee on Immunization Practices for use of a hepatitis b vaccine with a novel adjuvant. MMWR Morb Mortal Wkly Rep 2018; 67(15): 455-8.
[http://dx.doi.org/10.15585/mmwr.mm6715a5] [PMID: 29672472]
[64]
Hensley SE, Das SR, Bailey AL, et al. Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift. Science 2009; 326(5953): 734-6.
[http://dx.doi.org/10.1126/science.1178258] [PMID: 19900932]
[65]
Starr TN, Greaney AJ, Hilton SK, et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 2020; 182(5): 1295-1310.e20.
[http://dx.doi.org/10.1016/j.cell.2020.08.012] [PMID: 32841599]
[66]
Silver ZA. Discovery of O-linked carbohydrate on HIV-1 envelope and its role in shielding against one category of broadly neutralizing antibodies. Cell Rep 2020; 30: 1862-1869.e1864..
[67]
Das SR, Hensley SE, David A, et al. Fitness costs limit influenza A virus hemagglutinin glycosylation as an immune evasion strategy. Proc Natl Acad Sci 2011; 108(51): E1417-22.
[http://dx.doi.org/10.1073/pnas.1108754108] [PMID: 22106257]
[68]
Andreano E. SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.12.28.424451]
[69]
McCarthy KR, Rennick LJ, Nambulli S, et al. Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape. Science 2021; 371(6534): 1139-42.
[http://dx.doi.org/10.1126/science.abf6950] [PMID: 33536258]
[70]
McCallum M, De Marco A, Lempp FA, et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell 2021; 184(9): 2332-2347.e16.
[http://dx.doi.org/10.1016/j.cell.2021.03.028] [PMID: 33761326]
[71]
Wang Z, Schmidt F, Weisblum Y, et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 2021; 592(7855): 616-22.
[http://dx.doi.org/10.1038/s41586-021-03324-6] [PMID: 33567448]
[72]
Xie X. Neutralization of N501Y mutant SARS-CoV-2 by BNT162b2 vaccine-elicited sera. bioRxiv 2021.
[http://dx.doi.org/10.1101/2021.01.07.425740]
[73]
Collier DA, De Marco A, Ferreira IATM, et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature 2021; 593(7857): 136-41.
[http://dx.doi.org/10.1038/s41586-021-03412-7] [PMID: 33706364]
[74]
West AP, Barnes CO, Yang Z, Bjorkman PJ. SARS-CoV-2 lineage B.1.526 emerging in the New York region detected by software utility created to query the spike mutational landscape. bioRxiv 2021.
[http://dx.doi.org/10.1101/2021.02.14.431043]
[75]
Faulkner N. Reduced antibody cross-reactivity following infection with B.1.1.7 than with parental SARS-CoV-2 strains. bioRxiv 2021.
[http://dx.doi.org/10.1101/2021.03.01.433314]
[76]
Huang B. Neutralization of SARS-CoV-2 VOC 501Y. bioRxiv 2021.
[http://dx.doi.org/10.1101/2021.02.01.429069]
[77]
Sapkal GN. Neutralization of UK-variant VUI-202012/01 with COVAXIN vaccinated human serum. bioRxiv 2021.
[http://dx.doi.org/10.1101/2021.01.26.426986]
[78]
Wu K. mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. bioRxiv 2021.
[http://dx.doi.org/10.1101/2021.01.25.427948]
[79]
Garcia-Beltran WF, Evan CL, Kerri SD. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 2021; 184(9): 2372-2383.e9.
[80]
Emary KRW, Tanya G, Parvinder KA. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): An exploratory analysis of a randomised controlled trial. Lancet 2021; 397(10282): 1351-62.
[81]
Zhou W, Wang W. Fast-spreading SARS-CoV-2 variants: Challenges to and new design strategies of COVID-19 vaccines. Sig Transduct Target Ther 2021; 6: 226.
[http://dx.doi.org/10.1038/s41392-021-00644-x]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy