Abstract
Background: Cyclodextrins selectively bind with reactants and facilitate chemical reactions through supramolecular catalysis, similar to the mechanisms employed by enzymes. In this paper, β-cyclodextrin was used as a supramolecular catalyst in water as a green, reusable, and ecofriendly solvent system to synthesize spiro-benzimidazoquinazolinones and spiro-benzothiazoloquinazolinones.
Objective: A supramolecular catalyst β-cyclodextrin (β-CD) is used to synthesize spiro- benzimidazoquinazolinones and spiro-benzothiazoloquinazolinones via multicomponent reaction involving the condensation of dimedone, isatin, and 2-aminobenzimidazole/2-aminobenzothiazole.
Methods: In a 50 mL round bottom flask were added the respective mixture of substituted isatin (1 mmol), dimedone (1mmol), and 2-aminobenzimidazole/2-aminobenzothiazole (1 mmol) in water (5 ml) containing β-CD (113 mg, 10 mol. %) was stirred at 60oC for 30 min. The desired product was obtained with excellent yield. After completion of the reaction (monitored by TLC), the reaction mixture was quenched with water and extracted with ethyl acetate (4X5 ml). The combined organic layers were washed with brine solution, dried over anhydrous Na2SO4 and evaporated under reduced pressure. The crude product was purified by silica gel chromatography.
Results: β-cyclodextrin catalyst showed very good efficiency in the synthesis of the desired compounds and can be easily recovered and reused at least five times with minimal deactivation in catalytic activity.
Conclusion: The catalyst demonstrated remarkable effectiveness in producing the target compounds and conducting the reaction with different initial substances, resulting in excellent yields of the products, thereby confirming the broad applicability and versatility of this method.
Graphical Abstract
[http://dx.doi.org/10.1016/j.ceramint.2019.10.005];
(b) Chamani J. Comparison of the conformational stability of the non-native α-helical intermediate of thiol-modified β-lactoglobulin upon interaction with sodium n-alkyl sulfates at two different pH. J Colloid Interface Sci 2006; 299(2): 636-46.
[http://dx.doi.org/10.1016/j.jcis.2006.02.049] [PMID: 16554059];
(c) Moosavi-Movahedi AA, Hakimelahi S, Chamani J, et al. Design, synthesis, and anticancer activity of phosphonic acid diphosphate derivative of adenine-containing butenolide and its water-soluble derivatives of paclitaxel with high antitumor activity. Bioorg Med Chem 2003; 11(20): 4303-13.
[http://dx.doi.org/10.1016/S0968-0896(03)00524-8] [PMID: 13129566];
(d) Zohoorian-Abootorabi T, Sanee H, Iranfar H, Saberi MR, Chamani J. Spectrochim. Acta A Mol. Biomol Spectrosc SPECTROCHIM ACTA A 2012; 88: 177-91.
[http://dx.doi.org/10.1016/j.saa.2011.12.026]
[http://dx.doi.org/10.1021/ar300340k] [PMID: 24246000]
[http://dx.doi.org/10.2174/1871520610909040397] [PMID: 19442041];
(b) Hilton ST, Ho TCT, Pljevaljcic G, Jones K. A new route to spirooxindoles. Org Lett 2000; 2(17): 2639-41.
[http://dx.doi.org/10.1021/ol0061642] [PMID: 10990416]
[http://dx.doi.org/10.1016/j.tetlet.2005.10.015];
(b) Baran, P.S.; Richter, J.M. Enantioselective total syntheses of welwitindolinone A and fischerindoles I and G. J Am Chem Soc 2005; 127(44): 15394-6.
[http://dx.doi.org/10.1021/ja056171r] [PMID: 16262402]
[http://dx.doi.org/10.1039/C6RA05322J]
[http://dx.doi.org/10.1039/c1gc00008j]
[http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094723] [PMID: 18834305]
[http://dx.doi.org/10.2174/1385272033486738];
(b) Connolly DJ, Cusack D, O’Sullivan TP, Guiry PJ. Synthesis of quinazolinones and quinazolines. Tetrahedron 2005; 61(43): 10153-202.
[http://dx.doi.org/10.1016/j.tet.2005.07.010];
(c) Michael JP. Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 1999; 16(6): 697-709.
[http://dx.doi.org/10.1039/a809408j] [PMID: 10641323];
(d) Michael JP. Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 2002; 19(6): 742-60.
[http://dx.doi.org/10.1039/b104971m] [PMID: 12521267];
(e) Michael JP. Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 2003; 20(5): 476-93.
[http://dx.doi.org/10.1039/b208140g] [PMID: 14620843]
[http://dx.doi.org/10.1016/S0223-5234(00)01195-8] [PMID: 11248410]
[http://dx.doi.org/10.1080/14756360500212399];
(b) Shaabani A, Farhangi E, Shaabani S. Iran J Chem Chem Eng 2013; 32(1)
[http://dx.doi.org/10.1021/jm0492094] [PMID: 15857120]
[http://dx.doi.org/10.1007/s00259-007-0705-x]
[http://dx.doi.org/10.1016/j.bmcl.2005.05.077] [PMID: 15955697]
[http://dx.doi.org/10.1016/j.bmc.2009.08.068] [PMID: 19804979]
(b) Jung FH, Pasquet G, Lambert-van der Brempt C, et al. Discovery of novel and potent thiazoloquinazolines as selective Aurora A and B kinase inhibitors. J Med Chem 2006; 49(3): 955-70.
[http://dx.doi.org/10.1021/jm050786h] [PMID: 16451062];
(c) Bekheit MS, Farahat AA, Abdel-Wahab BF. Synthetic routes to thiazoloquinazolines. Chem Heterocycl Compd 2016; 52(10): 766-72.
[http://dx.doi.org/10.1007/s10593-016-1961-0]
[http://dx.doi.org/10.1016/S0096-5332(08)60209-X] [PMID: 13617118]
[http://dx.doi.org/10.1039/C6CY02070D];
(b) Sharma N, Baldi A. Exploring versatile applications of cyclodextrins: An overview. Drug Deliv 2016; 23(3): 729-47.
[http://dx.doi.org/10.3109/10717544.2014.938839]
[PMID: 28406307]
[http://dx.doi.org/10.1002/tcr.201800016] [PMID: 29855139]
[http://dx.doi.org/10.3389/fchem.2021.635507] [PMID: 33681149]
[http://dx.doi.org/10.1021/jo3000095] [PMID: 22448725]
[http://dx.doi.org/10.5012/bkcs.2010.31.8.2329];
(b) Hu YL, Jiang H, Lu M. Efficient and convenient C-3 functionalization of indoles through Ce(OAc)3/TBHP-mediated oxidative C–H bond activation in the presence of β-cyclodextrin. Green Chem 2011; 13(11): 3079.
[http://dx.doi.org/10.1039/c1gc15639j]
[http://dx.doi.org/10.2174/2211544709999200614165508]
[http://dx.doi.org/10.1016/j.crci.2010.04.003];
(b) Bai C, Tian B, Zhao T, Huang Q, Wang Z. Cyclodextrin-catalyzed organic synthesis: Reactions, mechanisms, and applications. Molecules 2017; 22(9): 1475.
[http://dx.doi.org/10.3390/molecules22091475] [PMID: 28880241];
(c) Alrabiah H, Aljohar HI, Bakheit AH, Homoda AM. Mostafa, G. A. H. Drug Des Devel Ther 2019; 2283-93.
[http://dx.doi.org/10.2147/DDDT.S201907] [PMID: 31371922]
[http://dx.doi.org/10.1007/s10311-022-01509-7] [PMID: 36161092]
[http://dx.doi.org/10.1016/j.tetlet.2012.04.140]
[http://dx.doi.org/10.1007/s10562-015-1588-2]
[http://dx.doi.org/10.1080/10610278.2012.761341]
(b) Baranwal J, Kushwaha S, Singh S, Jyoti A. A review on the synthesis and pharmacological activity of heterocyclic compounds. Curr Phys Chem 2023; 13(1): 2-19.
[http://dx.doi.org/10.2174/1877946813666221021144829];
(c) Baranwal J, Singh S, Kushwaha S, Jyoti A. Acemannan from aloe vera extract: A catalyst-free, approach for the access of imidazole-fused nitrogen-bridgehead heterocycles. Lett Org Chem 2023; 20(5): 446-56.
[http://dx.doi.org/10.2174/1570178620666221116093457];
(d) Kushwaha S, Baranwal J, Singh S, Jyoti A. A review on green synthesis of biologically active compounds. Curr Green Chem 2022; 9(3): 174-95.
[http://dx.doi.org/10.2174/2213346110666221213092734];
(e) Kushwaha S, Singh S, Baranwal J, Jyoti A. 5-sulphosalicylic acid: An expeditious organocatalyst for one-pot synthesis of indenopyrazolones and its derivatives. Curr Orgcatalysis 2024; 10(3): 215-24.
(b) Baranwal J, Singh S, Kushwaha S, Jyoti A. Stepping into the World of Technology. Research Culture Society and Publication 2023.;
(c) Kushwaha S, Singh S, Baranwal J, Jyoti A. Stepping into the World of Technology. Research Culture Society and Publication 2023.;
(d) Tufail F, Saquib M, Singh S, et al. Bioorganopromoted green friedländer synthesis: A versatile new malic acid promoted solvent free approach to multisubstituted quinolones. New J Chem 2017; 41: 1618.
[http://dx.doi.org/10.1039/C6NJ03907C];
(e) Tiwari J, Saquib M, Singh S, et al. Visible light promoted synthesis of dihydropyrano[2,3-c]chromenes via a multicomponent-tandem strategy under solvent and catalyst free conditions. Green Chem 2016; 18: 3221.
[http://dx.doi.org/10.1039/C5GC02855H]
[http://dx.doi.org/10.1039/C5NJ01938A];
(b) Tufail F, Saquib M, Singh S, et al. A practical green approach to diversified spirochromene/spiropyran scaffolds via a glucose–water synergy driven organocatalytic system. New J Chem 2018; 42(21): 17279-90.
[http://dx.doi.org/10.1039/C8NJ03028F];
(c) Tufail F, Singh S, Saquib M, Tiwari J, Singh J, Singh J. Catalyst-free, glycerol-assisted facile approach to imidazole-fused nitrogen-bridgehead heterocycles. ChemistrySelect 2017; 2(21): 6082-9.
[http://dx.doi.org/10.1002/slct.201700557];
(d) Tiwari J, Singh S, Tufail F, Jaiswal D, Singh J. Singh. J. Glycerol micellar catalysis: An efficient multicomponent-tandem green synthetic approach to biologically important 2, 4-disubstituted thiazole derivatives. ChemistrySelect 2018; 3(41): 11634-42.
[http://dx.doi.org/10.1002/slct.201802511];
(e) Tiwari J, Singh S, Jaiswal D, Sharma AK, Singh S, Singh J. Singh. J. Supramolecular catalysis: an efficient and sustainable multicomponent approach to the synthesis of novel hexahydro-4h-indazol-4-one derivatives. Curr Catal 2020; 9(2): 92-101.
[http://dx.doi.org/10.2174/2211544709999200614165508]