Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Reassessment of Radiation Exposure From Bone Scintigraphy

Author(s): Handan Tanyildizi-Kökkülünk*, Ahmet Murat Şenişik and Mahmut Yüksel

Volume 24, Issue 11, 2023

Published on: 20 December, 2023

Page: [763 - 769] Pages: 7

DOI: 10.2174/0113892002274982231211102127

Price: $65

Abstract

Aim: This study was aimed to re-determine the radiation dose rate emitted from the patients who underwent bone scintigraphy.

Material and Methods: A mean of 20.87±2.54 mCi 99mTc-MDP was injected into patients. A GM counter was used to measure dose rates in 3 different periods, at intervals of 25, 50, 100, 150, and 200 cm from the patient's anterior for head, thorax, abdomen, and pelvis levels. Measurements were used to determine patient-induced environmental doses and radiation doses to personnel/patient relatives.

Results and Discussion: There were strong correlations between mean dose rate (mRh-1mCi-1) and time at all regions and distances. The received dose for staff was calculated between a range of 0.01-0.02 mSv/mCi per patient. The total dose to be received by the companion was estimated to be between 0.019-0.039 and 0.011-0.022 mSv for public and personal vehicle transportation, respectively. The radiation dose exposed by nurses (4th, 6th, and 8th hours after injection) was found to be 0.012-0.064, 0.006-0.038, and 0.002-0.018 mSv/- patient, respectively.

Conclusion: The fact that the doses of personnel and patient relatives in the study were below the legal limits shows that the study was carried out within a safe range. However, in terms of radiation protection, it is necessary to limit the time spent with the patient as much as possible and increase the distance. Since the dangers of low radiation dosages are unknown, there is a need to inform the patient's relatives and staff about the potential risks.

Graphical Abstract

[1]
Mattar, E.H. Assessment of patient and staff annual effective doses at a nuclear medicine department during bone scans. Open J. Radiol., 2022, 12(4), 155-162.
[http://dx.doi.org/10.4236/ojrad.2022.124016]
[2]
Duatti, A. Review on 99mTc radiopharmaceuticals with emphasis on new advancements Nucl. Med. Biol., 2021, 92, 202-216.
[http://dx.doi.org/10.1016/j.nucmedbio.2020.05.005]
[3]
Papagiannopoulou, D. Technetium-99m radiochemistry for pharmaceutical applications. J. Labelled Comp. Radiopharm., 2017, 60(11), 502-520.
[http://dx.doi.org/10.1002/jlcr.3531] [PMID: 28618064]
[4]
Kniess, T.; Laube, M.; Wüst, F.; Pietzsch, J. Technetium-99m based small molecule radiopharmaceuticals and radiotracers targeting inflammation and infection. Dalton Trans., 2017, 46(42), 14435-14451.
[http://dx.doi.org/10.1039/C7DT01735A] [PMID: 28829079]
[5]
MacPherson, D.S.; Fung, K.; Cook, B.E.; Francesconi, L.C.; Zeglis, B.M. A brief overview of metal complexes as nuclear imaging agents. Dalton Trans., 2019, 48(39), 14547-14565.
[http://dx.doi.org/10.1039/C9DT03039E] [PMID: 31556418]
[6]
Van den Wyngaert, T.; Strobel, K.; Kampen, W.U.; Kuwert, T.; van der Bruggen, W.; Mohan, H.K.; Gnanasegaran, G.; Delgado-Bolton, R.; Weber, W.A.; Beheshti, M.; Langsteger, W.; Giammarile, F.; Mottaghy, F.M.; Paycha, F. The EANM practice guidelines for bone scintigraphy. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(9), 1723-1738.
[http://dx.doi.org/10.1007/s00259-016-3415-4] [PMID: 27262701]
[7]
Çayır, D.; Araz, M.; Akın, Ş.; Karaköse, M.; Çakal, E. Incidental Tc-99m methylene diphosphonate uptake in an active thyroid nodule. Mol. Imaging Radionucl. Ther., 2017, 26(3), 128-130.
[http://dx.doi.org/10.4274/mirt.37167] [PMID: 28976337]
[8]
Alnaaimi, M.; Sulieman, A.; Tamam, N.; Alkhorayef, M.; Alduaij, M.; Mohammedzein, T.; Alomair, O.I.; Alashban, Y.; Salah, H.; Abd-Elghany, A.A.; Omer, H.; Bradley, D.A. Estimation of patient effective doses in PET/CT- 18F-Sodium Fluoride examinations. Appl. Radiat. Isot., 2021, 178, 109965.
[http://dx.doi.org/10.1016/j.apradiso.2021.109965] [PMID: 34688024]
[9]
Mettler, F.A., Jr; Mahesh, M.; Bhargavan-Chatfield, M.; Chambers, C.E.; Elee, J.G.; Frush, D.P.; Miller, D.L.; Royal, H.D.; Milano, M.T.; Spelic, D.C.; Ansari, A.J.; Bolch, W.E.; Guebert, G.M.; Sherrier, R.H.; Smith, J.M.; Vetter, R.J. Patient exposure from radiologic and nuclear medicine procedures in the United States: Procedure volume and effective dose for the period 2006–2016. Radiology, 2020, 295(2), 418-427.
[http://dx.doi.org/10.1148/radiol.2020192256] [PMID: 32181730]
[10]
Alkhorayef, M.; Sulieman, A.; Mohamed-Ahmed, M.; Al-Mohammed, H.I.; Alkhomashi, N.; Sam, A.K.; Bradley, D.A. Staff and ambient radiation dose resulting from therapeutic nuclear medicine procedures. Appl. Radiat. Isot., 2018, 141, 270-274.
[http://dx.doi.org/10.1016/j.apradiso.2018.07.014] [PMID: 30145016]
[11]
Ali, W.M.; Sulieman, A.; Salah, H.; Almohammed, H.I.; Alkhorayef, M.; Bradley, D.A. Short-term retention of 99mTc activity in bone scintigraphy. Radiat. Phys. Chem., 2021, 178, 108907.
[http://dx.doi.org/10.1016/j.radphyschem.2020.108907]
[12]
Ali, W.; Sulieman, A.; Tamam, N.; Boshara, N.; Aldhebaib, A.; Alkhorayef, M.; Khandaker, M.U.; Bradley, D.A. Estimation of patients organ doses and staff exposure during bone scan examination. Radiat. Phys. Chem., 2021, 188, 109693.
[http://dx.doi.org/10.1016/j.radphyschem.2021.109693]
[13]
United Nations UNSCEAR 2010 Report. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation, 2011, Available from: https://www.unscear.org/docs/reports/2010/UNSCEAR_2010_Report_M.pdf
[14]
Şenışık, A.M.; Kökkülünk, H.T.; Yüksel, M. Re-evaluation of patient- sourced radiation doses in PET/CT. Curr. Radiopharm., 2023, 16(2), 163-169.
[http://dx.doi.org/10.2174/1874471016666230102122554] [PMID: 36593536]
[15]
Saeed, M.K.; Almalki, Y. Assessment of the occupational dose and radiogenic risk in diagnostic radiology and nuclear medicine examinations. Int. J. Radiat. Res., 2021, 19(2), 365-372.
[http://dx.doi.org/10.52547/ijrr.19.2.15]
[16]
Suliman, I.I.; Salih, L.H.; Ali, D.M.; Alaamer, A.S.; Al-Rajhi, M.A.; Alkhorayef, M.; Bradley, D.A. Occupational exposure in nuclear medicine and interventional cardiology departments in Sudan: Are they following radiation protection standards? Radiat. Phys. Chem., 2019, 160, 100-104.
[http://dx.doi.org/10.1016/j.radphyschem.2019.03.004]
[17]
Günay, O.; Sarıhan, M.; Yarar, O.; Abuqbeitah, M.; Demir, M.; Sönmezoğlu, K.; Abamor, E.; Kara, Ö.E.; İpek Işıkcı, N.; Aközcan, S.; Kulalı, F.; Öztürk, H.; Yaşar, D.; Gündoğdu, Ö. Determination of radiation dose from patients undergoing Tc-99m Sestamibi nuclear cardiac imaging. Int. J. Environ. Sci. Technol., 2019, 16(9), 5251-5258.
[http://dx.doi.org/10.1007/s13762-019-02262-1]
[18]
Günay, O.; Sarihan, M.; Abamor, E.; Yarar, O. Environmental radiation doses from patients undergoing Tc-99m DMSA cortical renal scintigraphy. Int. J. Comput. Exp. Sci. Eng., 2019, 5(2), 86-93.
[http://dx.doi.org/10.22399/ijcesen.589267]
[19]
Xi, X.Y.; Wang, L.; Hsu, B.; Zhao, Z.Q.; Liu, S.; Fang, W. 99mTc-3SPboroxime: A neutral 99mTc(III) radiotracer with high heart uptake and long myocardial retention. J. Nucl. Cardiol., 2021, 28(6), 2687-2696.
[http://dx.doi.org/10.1007/s12350-020-02087-3] [PMID: 32180138]
[20]
Bambara, L.T.; Kyere, A.K.; Hasford, F.; Sosu, E.K.; Wilson, I.K. Estimation of kidney and bladder radionuclide activity for patients undergoing bone scan. J. Radiat. Res. Appl. Sci., 2015, 8(3), 317-322.
[http://dx.doi.org/10.1016/j.jrras.2015.04.005]
[21]
Marshall, S.K.; Prom-on, P.; Sangkue, S.; Thiangsook, W. Assessment of radiation exposure in a nuclear medicine department during 99mTc-MDP bone scintigraphy. Toxics, 2023, 11(10), 814.
[http://dx.doi.org/10.3390/toxics11100814] [PMID: 37888665]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy