[1]
Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 2015, 14(2), 111-129.
[2]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[3]
Wilson, M.R.; Zha, L.; Balskus, E.P. Natural product discovery from the human microbiome. J. Biol. Chem., 2017, 292(21), 8546-8552.
[4]
Zhu, F.; Shi, Z.; Qin, C.; Tao, L.; Liu, X.; Xu, F.; Zhang, L.; Song, Y.; Liu, X.; Zhang, J.; Han, B.; Zhang, P.; Chen, Y. Therapeutic target database update 2012: A resource for facilitating target-oriented drug discovery. Nucleic Acids Res., 2012, 40(Database issue), D1128-D1136.
[5]
Patridge, E.; Gareiss, P.; Kinch, M.S.; Hoyer, D. An analysis of FDA-approved drugs: Natural products and their derivatives. Drug Discov. Today, 2016, 21(2), 204-207.
[6]
Yang, H.; Qin, C.; Li, Y.; Tao, L.; Zhou, J.; Yu, C.; Xu, F.; Chen, Z.; Zhu, F.; Chen, Y. Therapeutic target database update 2016: Enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res., 2016, 44(D1), D1069-D1074.
[7]
Tao, L.; Zhu, F.; Qin, C.; Zhang, C.; Xu, F.; Tan, C.; Jiang, Y.; Chen, Y. Nature’s contribution to today’s pharmacopeia. Nat. Biotechnol., 2014, 32(10), 979-980.
[8]
Zhu, F.; Han, B.; Kumar, P.; Liu, X.; Ma, X.; Wei, X.; Huang, L.; Guo, Y.; Han, L.; Zheng, C.; Chen, Y. Update of TTD: Therapeutic Target Database. Nucleic Acids Res., 2010, 38(Database issue), D787-D791.
[9]
Mullard, A. FDA drug approvals. Nat. Rev. Drug Discov., 2013, 12(2), 87-90.
[10]
Mullard, A. FDA drug approvals. Nat. Rev. Drug Discov., 2014, 13(2), 85-89.
[11]
Mullard, A. FDA drug approvals. Nat. Rev. Drug Discov., 2015, 14(2), 77-81.
[12]
Mullard, A. FDA drug approvals. Nat. Rev. Drug Discov., 2016, 15(2), 73-76.
[13]
Mullard, A. FDA drug approvals. Nat. Rev. Drug Discov., 2017, 16(2), 73-76.
[14]
Lambert, M.; Wolfender, J.L.; Staerk, D.; Christensen, S.B.; Hostettmann, K.; Jaroszewski, J.W. Identification of natural products using HPLC-SPE combined with CapNMR. Anal. Chem., 2007, 79(2), 727-735.
[15]
Hoffmann, T.; Krug, D.; Huttel, S.; Muller, R. Improving natural products identification through targeted LC-MS/MS in an untargeted secondary metabolomics workflow. Anal. Chem., 2014, 86(21), 10780-10788.
[16]
Schmid, I.I.; Sattler, I.I.; Grabley, S.; Thiericke, R. Natural products in high throughput screening: Automated high-quality sample preparation. J. Biomol. Screen., 1999, 4(1), 15-25.
[17]
Bugni, T.S.; Richards, B.; Bhoite, L.; Cimbora, D.; Harper, M.K.; Ireland, C.M. Marine natural product libraries for high-throughput screening and rapid drug discovery. J. Nat. Prod., 2008, 71(6), 1095-1098.
[18]
Smith, A.J.; Hancock, M.K.; Bi, K.; Andrews, J.; Harrison, P.; Vaughan, T.J. Feasibility of implementing cell-based pathway reporter assays in early high-throughput screening assay cascades for antibody drug discovery. J. Biomol. Screen., 2012, 17(6), 713-726.
[19]
Yang, F.; Fu, T.; Zhang, X.; Hu, J.; Xue, W.; Zheng, G.; Li, B.; Li, Y.; Yao, X.; Zhu, F. Comparison of computational model and X-ray crystal structure of human serotonin transporter: Potential application for the pharmacology of human monoamine transporters. Mol. Simul., 2017, 43, 1-10.
[20]
Koffas, M.; Roberge, C.; Lee, K.; Stephanopoulos, G. Metabolic engineering. Annu. Rev. Biomed. Eng., 1999, 1, 535-557.
[21]
Miralpeix, B.; Rischer, H.; Hakkinen, S.T.; Ritala, A.; Seppanen-Laakso, T.; Oksman-Caldentey, K.M.; Capell, T.; Christou, P. Metabolic engineering of plant secondary products: Which way forward? Curr. Pharm. Des., 2013, 19(31), 5622-5639.
[22]
Li, B.; Tang, J.; Yang, Q.; Li, S.; Cui, X.; Li, Y.; Chen, Y.; Xue, W.; Li, X.; Zhu, F. NOREVA: Normalization and evaluation of
MS-based metabolomics data Nucleic Acids Res., 2017, 45(Web
Server issue), W160-W170.
[23]
Li, B.; Tang, J.; Yang, Q.; Cui, X.; Li, S.; Chen, S.; Cao, Q.; Xue, W.; Chen, N.; Zhu, F. Performance evaluation and online realization of data-driven normalization methods used in LC/MS based untargeted metabolomics analysis. Sci. Rep., 2016, 6, 38881.
[24]
Speck-Planche, A.; Cordeiro, M.N. Simultaneous modeling of antimycobacterial activities and ADMET profiles: A chemoinformatic approach to medicinal chemistry. Curr. Top. Med. Chem., 2013, 13(14), 1656-1665.
[25]
Speck-Planche, A.; Cordeiro, M.N. Chemoinformatics for medicinal chemistry: In silico model to enable the discovery of potent and safer anti-cocci agents. Future Med. Chem., 2014, 6(18), 2013-2028.
[26]
Speck-Planche, A.; Cordeiro, M.N. Simultaneous virtual prediction of anti-Escherichia coli activities and ADMET profiles: A chemoinformatic complementary approach for high-throughput screening. ACS Comb. Sci., 2014, 16(2), 78-84.
[27]
Kleandrova, V.V.; Ruso, J.M.; Speck-Planche, A.; Dias Soeiro Cordeiro, M.N. Enabling the discovery and virtual screening of potent and safe antimicrobial peptides. Simultaneous prediction of antibacterial activity and cytotoxicity. ACS Comb. Sci., 2016, 18(8), 490-498.
[28]
Romero-Duran, F.J.; Alonso, N.; Yanez, M.; Caamano, O.; Garcia-Mera, X.; Gonzalez-Diaz, H. Brain-inspired cheminformatics of drug-target brain interactome, synthesis, and assay of TVP1022 derivatives. Neuropharmacology, 2016, 103, 270-278.
[29]
Wang, P.; Fu, T.; Zhang, X.; Yang, F.; Zheng, G.; Xue, W.; Chen, Y.; Yao, X.; Zhu, F. Differentiating physicochemical properties between NDRIs and sNRIs clinically important for the treatment of ADHD. Biochim. Biophys. Acta, 2017, 1861, 2766-2777.
[30]
Rao, H.; Zhu, F.; Yang, G.; Li, Z.; Chen, Y. Update of PROFEAT:
a web server for computing structural and physicochemical features
of proteins and peptides from amino acid sequence Nucleic Acids
Res, 2011, 39(Web Server issue), W385-W390.
[31]
Mitchell, W. Natural products from synthetic biology. Curr. Opin. Chem. Biol., 2011, 15(4), 505-515.
[32]
Seyedsayamdost, M.R.; Clardy, J. Natural products and synthetic biology. ACS Synth. Biol., 2014, 3(10), 745-747.
[33]
Wang, P.; Zhang, X.; Fu, T.; Li, S.; Li, B.; Xue, W.; Yao, X.; Chen, Y.; Zhu, F. Differentiating physicochemical properties between addictive and nonaddictive ADHD drugs revealed by molecular dynamics simulation studies. ACS Chem. Neurosci., 2017, 8(6), 1416-1428.
[34]
Xue, W.; Wang, P.; Li, B.; Li, Y.; Xu, X.; Yang, F.; Yao, X.; Chen, Y.; Xu, F.; Zhu, F. Identification of the inhibitory mechanism of FDA approved selective serotonin reuptake inhibitors: An insight from molecular dynamics simulation study. Phys. Chem. Chem. Phys., 2016, 18(4), 3260-3271.
[35]
Li, J.; Vederas, J.C. Drug discovery and natural products: End of an era or an endless frontier? Science, 2009, 325(5937), 161-165.
[36]
Li, Y.; Wang, P.; Li, X.; Yu, C.; Yang, H.; Zhou, J.; Xue, W.; Tan, J.; Zhu, F. The human kinome targeted by FDA approved multi-target drugs and combination products: A comparative study from the drug-target interaction network perspective. PLoS One, 2016, 11(11), e0165737.
[37]
Xu, J.; Wang, P.; Yang, H.; Zhou, J.; Li, Y.; Li, X.; Xue, W.; Yu, C.; Tian, Y.; Zhu, F. Comparison of FDA approved kinase targets to clinical trial ones: Insights from their system profiles and drug-target interaction networks. BioMed Res. Int., 2016, 2016, 2509385.
[38]
Rehan, M. An anti-cancer drug candidate OSI-027 and its analog as inhibitors of mTOR: Computational insights into the inhibitory mechanisms. J. Cell. Biochem., 2017, 118(12), 4558-4567.
[39]
Li, H.; Ma, Y.; Ma, Y.; Li, Y.; Chen, X.; Dong, W.; Wang, R. The design of novel inhibitors for treating cancer by targeting CDC25B through disruption of CDC25B-CDK2/Cyclin A interaction using computational approaches. Oncotarget, 2017, 8(20), 33225-33240.
[40]
Issa, N.T.; Wathieu, H.; Ojo, A.; Byers, S.W.; Dakshanamurthy, S. Drug metabolism in preclinical drug development: A survey of the discovery process, toxicology, and computational tools. Curr. Drug Metab., 2017, 18(6), 556-565.
[41]
Garcia, I.; Fall, Y.; Gomez, G.; Gonzalez-Diaz, H. First computational chemistry multi-target model for anti-Alzheimer, anti-parasitic, anti-fungi, and anti-bacterial activity of GSK-3 inhibitors in vitro, in vivo, and in different cellular lines. Mol. Divers., 2011, 15(2), 561-567.
[42]
Alonso, N.; Caamano, O.; Romero-Duran, F.J.; Luan, F.; Mn, D.S.C.; Yanez, M.; Gonzalez-Diaz, H.; Garcia-Mera, X. Model for high-throughput screening of multitarget drugs in chemical neurosciences: synthesis, assay, and theoretic study of rasagiline carbamates. ACS Chem. Neurosci., 2013, 4(10), 1393-1403.
[43]
Luan, F.; Cordeiro, M.N.; Alonso, N.; Garcia-Mera, X.; Caamano, O.; Romero-Duran, F.J.; Yanez, M.; Gonzalez-Diaz, H. TOPS-MODE model of multiplexing neuroprotective effects of drugs and experimental-theoretic study of new 1,3-rasagiline derivatives potentially useful in neurodegenerative diseases. Bioorg. Med. Chem., 2013, 21(7), 1870-1879.
[44]
Jia, J.; Zhu, F.; Ma, X.; Cao, Z.; Cao, Z.W.; Li, Y.; Li, Y.; Chen, Y. Mechanisms of drug combinations: Interaction and network perspectives. Nat. Rev. Drug Discov., 2009, 8(2), 111-128.
[45]
Chaudhari, R.; Tan, Z.; Huang, B.; Zhang, S. Computational polypharmacology: A new paradigm for drug discovery. Expert Opin. Drug Discov., 2017, 12(3), 279-291.
[46]
Gayvert, K.M.; Aly, O.; Platt, J.; Bosenberg, M.W.; Stern, D.F.; Elemento, O. A computational approach for identifying synergistic drug combinations. PLOS Comput. Biol., 2017, 13(1), e1005308.
[47]
Speck-Planche, A.; Cordeiro, M.N.D.S. In Bladder Cancer: Risk Factors, Emerging Treatment Strategies and Challenges; Haggerty, S., Ed.; Nova Science Publishers, Inc.: New York, 2014, pp. 71-93.
[48]
Speck-Planche, A.; Cordeiro, M.N.D.S. In Multi-Scale Approaches in Drug Discovery: From Empirical Knowledge to in Silico Experiments and Back; Speck-Planche, A., Ed.; Elsevier: Oxford, UK, 2017, pp. 127-147.
[49]
Kleandrova, V.; Speck-Planche, A. In Multi-Scale Approaches in Drug Discovery: From Empirical Knowledge to in Silico Experiments and Back; Speck-Planche, A., Ed.; Elsevier: Oxford, UK, 2017, pp. 55-81.
[50]
Gras, J. Ingenol mebutate: A new option for actinic keratosis treatment. Drugs Today (Barc), 2013, 49(1), 15-22.
[51]
Monk, B.J.; Dalton, H.; Benjamin, I.; Tanovic, A. Trabectedin as a new chemotherapy option in the treatment of relapsed platinum sensitive ovarian cancer. Curr. Pharm. Des., 2012, 18(25), 3754-3769.
[52]
Lu, S.; Wang, J. Homoharringtonine and omacetaxine for myeloid hematological malignancies. J. Hematol. Oncol., 2014, 7, 2.
[53]
VanderMolen, K.M.; McCulloch, W.; Pearce, C.J.; Oberlies, N.H. Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): A natural product recently approved for cutaneous T-cell lymphoma. J. Antibiot. (Tokyo), 2011, 64(8), 525-531.
[54]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[55]
Beutler, J.A. Natural products as a foundation for drug discovery. Curr. Protocols Pharmacol., 2009, 46(1), 9-11.
[56]
Nierode, G.; Kwon, P.S.; Dordick, J.S.; Kwon, S.J. Cell-based assay design for high-content screening of drug candidates. J. Microbiol. Biotechnol., 2016, 26(2), 213-225.
[57]
Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect., 2001, 109(Suppl. 1), 69-75.
[58]
Pan, L.; Chai, H.B.; Kinghorn, A.D. Discovery of new anticancer agents from higher plants. Front. Biosci. (Schol. Ed.), 2012, 4, 142-156.
[59]
Zhu, F.; Qin, C.; Tao, L.; Liu, X.; Shi, Z.; Ma, X.; Jia, J.; Tan, Y.; Cui, C.; Lin, J.; Tan, C.; Jiang, Y.; Chen, Y. Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting. Proc. Natl. Acad. Sci. USA, 2011, 108(31), 12943-12948.
[60]
Wang, P.; Yang, F.; Yang, H.; Xu, X.; Liu, D.; Xue, W.; Zhu, F. Identification of dual active agents targeting 5-HT1A and SERT by combinatorial virtual screening methods. Biomed. Mater. Eng., 2015, 26(Suppl. 1), S2233-S2239.
[61]
Ronsted, N.; Symonds, M.R.; Birkholm, T.; Christensen, S.B.; Meerow, A.W.; Molander, M.; Molgaard, P.; Petersen, G.; Rasmussen, N.; Van-Staden, J.; Stafford, G.I.; Jager, A.K. Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of Amaryllidaceae. BMC Evol. Biol., 2012, 12, 182.
[62]
Federhen, S. The NCBI Taxonomy database. Nucleic Acids Res., 2012, 40(Database issue), D136-D143.
[63]
Roepke, J.; Salim, V.; Wu, M.; Thamm, A.M.; Murata, J.; Ploss, K.; Boland, W.; De-Luca, V. Vinca drug components accumulate exclusively in leaf exudates of Madagascar periwinkle. Proc. Natl. Acad. Sci. USA, 2010, 107(34), 15287-15292.
[64]
Zhu, F.; Ma, X.; Qin, C.; Tao, L.; Liu, X.; Shi, Z.; Zhang, C.; Tan, C.; Chen, Y.; Jiang, Y. Drug discovery prospect from untapped species: Indications from approved natural product drugs. PLoS One, 2012, 7(7), e39782.
[65]
Zheng, G.; Xue, W.; Wang, P.; Yang, F.; Li, B.; Li, X.
Li, Y.; Yao, X.; Zhu, F. Exploring the Inhibitory mechanism of approved selective norepinephrine reuptake inhibitors and reboxetine enantiomers by molecular dynamics study. Sci. Rep., 2016, 6, 26883.
[66]
Li, Y.; Xu, J.; Tao, L.; Li, X.; Li, S.; Zeng, X.; Chen, S.; Zhang, P.; Qin, C.; Zhang, C.; Chen, Z.; Zhu, F.; Chen, Y. SVM-Prot 2016: A web-server for machine learning prediction of protein functional families from sequence irrespective of similarity. PLoS One, 2016, 11(8), e0155290.
[67]
Gu, J.; Gui, Y.; Chen, L.; Yuan, G.; Lu, H.; Xu, X. Use of natural products as chemical library for drug discovery and network pharmacology. PLoS One, 2013, 8(4), e62839.
[68]
Zhu, F.; Zheng, C.; Han, L.; Xie, B.; Jia, J.; Liu, X.; Tammi, M.T.; Yang, S.; Wei, Y.; Chen, Y. Trends in the exploration of anticancer targets and strategies in enhancing the efficacy of drug targeting. Curr. Mol. Pharmacol., 2008, 1(3), 213-232.
[69]
Zhu, F.; Han, L.; Chen, X.; Lin, H.; Ong, S.; Xie, B.; Zhang, H.; Chen, Y. Homology-free prediction of functional class of proteins and peptides by support vector machines. Curr. Protein Pept. Sci., 2008, 9(1), 70-95.
[70]
Tao, L.; Zhu, F.; Xu, F.; Chen, Z.; Jiang, Y.; Chen, Y. Co-targeting cancer drug escape pathways confers clinical advantage for multi-target anticancer drugs. Pharmacol. Res., 2015, 102, 123-131.
[71]
Letunic, I.; Bork, P. Interactive Tree of Life v2: Online annotation
and display of phylogenetic trees made easy. Nucleic Acids Res, 2011, 39(Web server issue), W475-W478.
[72]
Li, Z.; Han, L.; Xue, Y.; Yap, C.W.; Li, H.; Jiang, L.; Chen, Y. MODEL-molecular descriptor lab: A web-based server for computing structural and physicochemical features of compounds. Biotechnol. Bioeng., 2007, 97(2), 389-396.
[73]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. Pub chem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[74]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[75]
Wager, T.T.; Hou, X.; Verhoest, P.R.; Villalobos, A. Moving beyond rules: The development of a Central Nervous System Multi-Parameter Optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem. Neurosci., 2010, 1(6), 435-449.
[76]
Nissink, J.W. Simple size-independent measure of ligand efficiency. J. Chem. Inf. Model., 2009, 49(6), 1617-1622.
[77]
Kohler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. 1975. J. Immunol., 2005, 174(5), 2453-2455.
[78]
Druker, B.J.; Tamura, S.; Buchdunger, E.; Ohno, S.; Segal, G.M.; Fanning, S.; Zimmermann, J.; Lydon, N.B. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med., 1996, 2(5), 561-566.
[79]
Katz, R. FDA: Evidentiary standards for drug development and approval. NeuroRx, 2004, 1(3), 307-316.
[80]
Kesselheim, A.S.; Wang, B.; Franklin, J.M.; Darrow, J.J. Trends in utilization of FDA expedited drug development and approval programs, 1987-2014: Cohort study. Brit. Med. J., 2015, 351, h4633.
[81]
Zhu, F.; Han, L.; Zheng, C.; Xie, B.; Tammi, M.T.; Yang, S.; Wei, Y.; Chen, Y. What are next generation innovative therapeutic targets? Clues from genetic, structural, physicochemical, and systems profiles of successful targets. J. Pharmacol. Exp. Ther., 2009, 330(1), 304-315.
[82]
Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res., 2017, 45(D1), D353-D361.