Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Review Article

Improved Detection of Veterinary Drug Residues: Advancing Analytical Techniques to Ensure Food Safety

Author(s): Li Fu*, Jiangwei Zhu and Qingwei Zhou

Volume 19, Issue 10, 2023

Published on: 14 December, 2023

Page: [745 - 758] Pages: 14

DOI: 10.2174/0115734129281427231123063958

Price: $65

Abstract

Veterinary drug residues in foods pose risks to consumers and promote antimicrobial resistance. Effective detection methods are needed to monitor and control residues. Recent advancements in analytical techniques for veterinary drug residue detection were reviewed. Key sample preparation methods, including QuEChERS, SPE, ASE, and LLE, were summarized. Instrumental analysis techniques including LC-MS/MS, GC-MS, immunoassays, CE and biosensors were examined. Recent trends and future directions were identified.

LC-MS/MS and GC-MS provide the highest sensitivity and specificity for veterinary drug residue analysis. However, selectivity remains a challenge, particularly for complex matrices like meat and liver. Multi-residue methods now cover over 100 analytes, but analyzing new and legacy drugs lacking established methods is difficult. Increased sensitivity has been achieved through UHPLC and high resolution MS, but detection limits below 1 μg/kg often remain elusive. sSimplified onsite tests are gaining interest.

More selective extraction strategies, data-driven multi-residue methods, microflow LC, and integrated analytical platforms may help address current challenges. Continued advances in sample preparation, instrumentation, data processing, and validation will be needed to fully realize the potential of veterinary drug residue detection and ensure food safety.

Graphical Abstract

[1]
Yue, X.; Li, Y.; Xu, S.; Li, J.; Li, M.; Jiang, L.; Jie, M.; Bai, Y. A portable smartphone-assisted ratiometric fluorescence sensor for intelligent and visual detection of malachite green. Food Chem., 2022, 371, 131164.
[http://dx.doi.org/10.1016/j.foodchem.2021.131164] [PMID: 34600369]
[2]
Li, X.; Wang, J.; Yi, C.; Jiang, L.; Wu, J.; Chen, X.; Shen, X.; Sun, Y.; Lei, H. A smartphone-based quantitative detection device integrated with latex microsphere immunochromatography for on-site detection of zearalenone in cereals and feed. Sens. Actuators B Chem., 2019, 290, 170-179.
[http://dx.doi.org/10.1016/j.snb.2019.03.108]
[3]
Song, S.H.; Gao, Z.F.; Guo, X.; Chen, G.H. Aptamer-based detection methodology studies in food safety. Food Anal. Methods, 2019, 12(4), 966-990.
[http://dx.doi.org/10.1007/s12161-019-01437-3]
[4]
Wang, Z.; Xianyu, Y.; Zhang, Z.; Guo, A.; Li, X.; Dong, Y.; Chen, Y. Background signal-free magnetic bioassay for food-borne pathogen and residue of veterinary drug via Mn(VII)/Mn(II) interconversion. ACS Sens., 2019, 4(10), 2771-2777.
[http://dx.doi.org/10.1021/acssensors.9b01349] [PMID: 31593439]
[5]
Wang, B.; Liu, J.H.; Yu, J.; Lv, J.; Dong, C.; Li, J.R. Broad spectrum detection of veterinary drugs with a highly stable metal-organic framework. J. Hazard. Mater., 2020, 382, 121018.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121018] [PMID: 31446354]
[6]
Ahmed, S.; Ning, J.; Peng, D.; Chen, T.; Ahmad, I.; Ali, A.; Lei, Z. Abu bakr Shabbir, M.; Cheng, G.; Yuan, Z. Current advances in immunoassays for the detection of antibiotics residues: A review. Food Agric. Immunol., 2020, 31(1), 268-290.
[http://dx.doi.org/10.1080/09540105.2019.1707171]
[7]
Kurjogi, M.; Issa Mohammad, Y.H.; Alghamdi, S.; Abdelrahman, M.; Satapute, P.; Jogaiah, S. Detection and determination of stability of the antibiotic residues in cow’s milk. PLoS One, 2019, 14(10), e0223475.
[http://dx.doi.org/10.1371/journal.pone.0223475] [PMID: 31600289]
[8]
Du, B.; Wen, F.; Guo, X.; Zheng, N.; Zhang, Y.; Li, S.; Zhao, S.; Liu, H.; Meng, L.; Xu, Q.; Li, M.; Li, F.; Wang, J. Evaluation of an ELISA-based visualization microarray chip technique for the detection of veterinary antibiotics in milk. Food Control, 2019, 106, 106713.
[http://dx.doi.org/10.1016/j.foodcont.2019.106713]
[9]
Turnipseed, S.B.; Storey, J.M.; Wu, I.L.; Andersen, W.C.; Madson, M.R. Extended liquid chromatography high resolution mass spectrometry screening method for veterinary drug, pesticide and human pharmaceutical residues in aquaculture fish. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2019, 36(10), 1501-1514.
[http://dx.doi.org/10.1080/19440049.2019.1637945] [PMID: 31361192]
[10]
Chen, J.; Huang, M.; Kong, L. Flexible Ag/nanocellulose fibers SERS substrate and its applications for in-situ hazardous residues detection on food. Appl. Surf. Sci., 2020, 533, 147454.
[http://dx.doi.org/10.1016/j.apsusc.2020.147454]
[11]
Hu, M.; Hu, X.; Zhang, Y.; Teng, M.; Deng, R.; Xing, G.; Tao, J.; Xu, G.; Chen, J.; Zhang, Y.; Zhang, G. Label-free electrochemical immunosensor based on AuNPs/Zn/Ni-ZIF-8-800@graphene composites for sensitive detection of monensin in milk. Sens. Actuators B Chem., 2019, 288, 571-578.
[http://dx.doi.org/10.1016/j.snb.2019.03.014]
[12]
Wang, C.; Li, X.; Yu, F.; Wang, Y.; Ye, D.; Hu, X.; Zhou, L.; Du, J.; Xia, X. Multi-class analysis of veterinary drugs in eggs using dispersive-solid phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem., 2021, 334, 127598.
[http://dx.doi.org/10.1016/j.foodchem.2020.127598] [PMID: 32707363]
[13]
Hua, Z.; Yu, T.; Liu, D.; Xianyu, Y. Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosens. Bioelectron., 2021, 179, 113076.
[http://dx.doi.org/10.1016/j.bios.2021.113076] [PMID: 33601132]
[14]
Casado, J.; Brigden, K.; Santillo, D.; Johnston, P. Screening of pesticides and veterinary drugs in small streams in the European Union by liquid chromatography high resolution mass spectrometry. Sci. Total Environ., 2019, 670, 1204-1225.
[http://dx.doi.org/10.1016/j.scitotenv.2019.03.207] [PMID: 31018436]
[15]
Sakthivel, R.; He, J.H.; Chung, R.J. Self-templating hydrothermal synthesis of carbon-confined double-shelled Ni/NiO hollow microspheres for diphenylamine detection in fruit samples. J. Hazard. Mater., 2022, 424(Pt A), 127378.
[http://dx.doi.org/10.1016/j.jhazmat.2021.127378] [PMID: 34879572]
[16]
Huang, Z.; Xiong, Z.; Chen, Y.; Hu, S.; Lai, W. Sensitive and matrix-tolerant lateral flow immunoassay based on fluorescent magnetic nanobeads for the detection of clenbuterol in swine urine. J. Agric. Food Chem., 2019, 67(10), 3028-3036.
[http://dx.doi.org/10.1021/acs.jafc.8b06449] [PMID: 30793901]
[17]
De Paepe, E.; Wauters, J.; Van Der Borght, M.; Claes, J.; Huysman, S.; Croubels, S.; Vanhaecke, L. Ultra-high-performance liquid chromatography coupled to quadrupole orbitrap high-resolution mass spectrometry for multi-residue screening of pesticides, (veterinary) drugs and mycotoxins in edible insects. Food Chem., 2019, 293, 187-196.
[http://dx.doi.org/10.1016/j.foodchem.2019.04.082] [PMID: 31151600]
[18]
Khatibi, S.A.; Hamidi, S.; Siahi-Shadbad, M.R. Application of liquid-liquid extraction for the determination of antibiotics in the foodstuff: Recent trends and developments. Crit. Rev. Anal. Chem., 2022, 52(2), 327-342.
[http://dx.doi.org/10.1080/10408347.2020.1798211] [PMID: 32748637]
[19]
Imamoglu, H.; Oktem Olgun, E. Analysis of veterinary drug and pesticide residues using the ethyl acetate multiclass/multiresidue method in milk by liquid chromatography-tandem mass spectrometry. J. Anal. Methods Chem., 2016, 2016, 1-17.
[http://dx.doi.org/10.1155/2016/2170165] [PMID: 27293962]
[20]
Li, J.; Ren, X.; Diao, Y.; Chen, Y.; Wang, Q.; Jin, W.; Zhou, P.; Fan, Q.; Zhang, Y.; Liu, H. Multiclass analysis of 25 veterinary drugs in milk by ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem., 2018, 257, 259-264.
[http://dx.doi.org/10.1016/j.foodchem.2018.02.144] [PMID: 29622208]
[21]
Potdar, R.P.; Shirolkar, M.M.; Verma, A.J.; More, P.S.; Kulkarni, A. Determination of soil nutrients (NPK) using optical methods: A mini review. J. Plant Nutr., 2021, 44(12), 1826-1839.
[http://dx.doi.org/10.1080/01904167.2021.1884702]
[22]
Liu, H.; Jin, P.; Zhu, F.; Nie, L.; Qiu, H. A review on the use of ionic liquids in preparation of molecularly imprinted polymers for applications in solid-phase extraction. Trends Analyt. Chem., 2021, 134, 116132.
[http://dx.doi.org/10.1016/j.trac.2020.116132]
[23]
Milanetti, E.; Carlucci, G.; Olimpieri, P.P.; Palumbo, P.; Carlucci, M.; Ferrone, V. Correlation analysis based on the hydropathy properties of non-steroidal anti-inflammatory drugs in solid-phase extraction (SPE) and reversed-phase high performance liquid chromatography (HPLC) with photodiode array detection and their applications to biological samples. J. Chromatogr. A, 2019, 1605, 360351.
[http://dx.doi.org/10.1016/j.chroma.2019.07.005] [PMID: 31307791]
[24]
Luo, D.; Guan, J.; Dong, H.; Chen, J.; Liang, M.; Zhou, C.; Xian, Y.; Xu, X. Simultaneous determination of twelve mycotoxins in edible oil, soy sauce and bean sauce by PRiME HLB solid phase extraction combined with HPLC-Orbitrap HRMS. Front. Nutr., 2022, 9, 1001671.
[http://dx.doi.org/10.3389/fnut.2022.1001671] [PMID: 36245528]
[25]
Wang, D.; Chen, X.; Feng, J.; Sun, M. Recent advances of ordered mesoporous silica materials for solid-phase extraction. J. Chromatogr. A, 2022, 1675, 463157.
[http://dx.doi.org/10.1016/j.chroma.2022.463157] [PMID: 35623192]
[26]
Wang, Q.; Wang, C.; Wang, J.; Liu, W.; Hao, L.; Zhou, J.; Wang, Z.; Wu, Q. Sensitive determination of phenylurea herbicides in soybean milk and tomato samples by a novel hypercrosslinked polymer based solid-phase extraction coupled with high performance liquid chromatography. Food Chem., 2020, 317, 126410.
[http://dx.doi.org/10.1016/j.foodchem.2020.126410] [PMID: 32070844]
[27]
Zhao, W.; Zuo, H.; Guo, Y.; Liu, K.; Wang, S.; He, L.; Jiang, X.; Xiang, G.; Zhang, S. Porous covalent triazine-terphenyl polymer as hydrophilic–lipophilic balanced sorbent for solid phase extraction of tetracyclines in animal derived foods. Talanta, 2019, 201, 426-432.
[http://dx.doi.org/10.1016/j.talanta.2019.04.010] [PMID: 31122445]
[28]
Choi, S.Y.; Kang, H.S. Multi-residue determination of sulfonamides, dapsone, ormethoprim, and trimethoprim in fish and shrimp using dispersive solid phase extraction with LC–MS/MS. Food Anal. Methods, 2021, 14(6), 1256-1268.
[http://dx.doi.org/10.1007/s12161-021-01965-x]
[29]
Moyo, B.; Tavengwa, N.T. Critical review of solid phase extraction for multiresidue clean-up and pre-concentration of antibiotics from livestock and poultry manure. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2022, 39(2), 229-241.
[http://dx.doi.org/10.1080/19440049.2021.1989497] [PMID: 34732110]
[30]
Melekhin, A.O.; Tolmacheva, V.V.; Goncharov, N.O.; Apyari, V.V.; Dmitrienko, S.G.; Shubina, E.G.; Grudev, A.I. Multi-class, multi-residue determination of 132 veterinary drugs in milk by magnetic solid-phase extraction based on magnetic hypercrosslinked polystyrene prior to their determination by high-performance liquid chromatography – tandem mass spectrometry. Food Chem., 2022, 387, 132866.
[http://dx.doi.org/10.1016/j.foodchem.2022.132866] [PMID: 35397265]
[31]
Ügdüler, S.; Van Geem, K.M.; Roosen, M.; Delbeke, E.I.P.; De Meester, S. Challenges and opportunities of solvent-based additive extraction methods for plastic recycling. Waste Manag., 2020, 104, 148-182.
[http://dx.doi.org/10.1016/j.wasman.2020.01.003] [PMID: 31978833]
[32]
Chen, G.; Fang, C.; Ran, C.; Tan, Y.; Yu, Q.; Kan, J. Comparison of different extraction methods for polysaccharides from bamboo shoots (Chimonobambusa quadrangularis) processing by-products. Int. J. Biol. Macromol., 2019, 130, 903-914.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.038] [PMID: 30849468]
[33]
Wang, B.; Xie, X.; Zhao, X.; Xie, K.; Diao, Z.; Zhang, G.; Zhang, T.; Dai, G. Development of an accelerated solvent extraction-ultra-performance liquid chromatography-fluorescence detection method for quantitative analysis of thiamphenicol, florfenicol and florfenicol amine in poultry eggs. Molecules, 2019, 24(9), 1830.
[http://dx.doi.org/10.3390/molecules24091830] [PMID: 31086021]
[34]
Wang, M.; Zhou, J.; Collado, M.C.; Barba, F.J. Accelerated solvent extraction and pulsed electric fields for valorization of rainbow trout (Oncorhynchus mykiss) and Sole (Dover sole) By-Products: Protein Content, molecular weight distribution and antioxidant potential of the extracts. Mar. Drugs, 2021, 19(4), 207.
[http://dx.doi.org/10.3390/md19040207] [PMID: 33916965]
[35]
Tao, Y.; Yu, G.; Chen, D.; Pan, Y.; Liu, Z.; Wei, H.; Peng, D.; Huang, L.; Wang, Y.; Yuan, Z. Determination of 17 macrolide antibiotics and avermectins residues in meat with accelerated solvent extraction by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 897, 64-71.
[http://dx.doi.org/10.1016/j.jchromb.2012.04.011] [PMID: 22542398]
[36]
Wang, B.; Wang, Y.; Xie, X.; Diao, Z.; Xie, K.; Zhang, G.; Zhang, T.; Dai, G. Quantitative analysis of spectinomycin and lincomycin in poultry eggs by accelerated solvent extraction coupled with gas chromatography tandem mass spectrometry. Foods, 2020, 9(5), 651.
[http://dx.doi.org/10.3390/foods9050651] [PMID: 32443634]
[37]
Saito, K.; Sjödin, A.; Sandau, C.D.; Davis, M.D.; Nakazawa, H.; Matsuki, Y.; Patterson, D.G., Jr Development of a accelerated solvent extraction and gel permeation chromatography analytical method for measuring persistent organohalogen compounds in adipose and organ tissue analysis. Chemosphere, 2004, 57(5), 373-381.
[http://dx.doi.org/10.1016/j.chemosphere.2004.04.050] [PMID: 15331264]
[38]
González-Curbelo, M.Á.; Socas-Rodríguez, B.; Herrera-Herrera, A.V.; González-Sálamo, J.; Hernández-Borges, J.; Rodríguez-Delgado, M.Á. Evolution and applications of the QuEChERS method. Trends Analyt. Chem., 2015, 71, 169-185.
[http://dx.doi.org/10.1016/j.trac.2015.04.012]
[39]
Tuzimski, T.; Szubartowski, S. Method development for selected bisphenols analysis in sweetened condensed milk from a can and breast milk samples by HPLC–DAD and HPLC-QqQ-MS: Comparison of sorbents (Z-SEP, Z-SEP Plus, PSA, C18, Chitin and EMR-Lipid) for Clean-Up of QuEChERS extract. Molecules, 2019, 24(11), 2093.
[http://dx.doi.org/10.3390/molecules24112093] [PMID: 31159388]
[40]
Liu, H.Y.; Lin, S.L.; Fuh, M.R. Determination of chloramphenicol, thiamphenicol and florfenicol in milk and honey using modified QuEChERS extraction coupled with polymeric monolith-based capillary liquid chromatography tandem mass spectrometry. Talanta, 2016, 150, 233-239.
[http://dx.doi.org/10.1016/j.talanta.2015.12.045] [PMID: 26838404]
[41]
Garcia, C.V.; Gotah, A. Application of QuEChERS for determining xenobiotics in foods of animal origin. J. Anal. Methods Chem., 2017, 2017, 1-13.
[http://dx.doi.org/10.1155/2017/2603067] [PMID: 29435383]
[42]
Lei, H.; Guo, J.; Lv, Z.; Zhu, X.; Xue, X.; Wu, L.; Cao, W. Simultaneous determination of nitroimidazoles and quinolones in honey by modified QuEChERS and LC-MS/MS analysis. Int. J. Anal. Chem., 2018, 2018, 1-12.
[http://dx.doi.org/10.1155/2018/4271385] [PMID: 29511378]
[43]
Martinello, M.; Borin, A.; Stella, R.; Bovo, D.; Biancotto, G.; Gallina, A.; Mutinelli, F. Development and validation of a QuEChERS method coupled to liquid chromatography and high resolution mass spectrometry to determine pyrrolizidine and tropane alkaloids in honey. Food Chem., 2017, 234, 295-302.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.186] [PMID: 28551239]
[44]
Śniegocki, T.; Sell, B.; Giergiel, M.; Posyniak, A. QuEChERS and HPLC-MS/MS combination for the determination of chloramphenicol in twenty two different matrices. Molecules, 2019, 24(3), 384.
[http://dx.doi.org/10.3390/molecules24030384] [PMID: 30678224]
[45]
Guironnet, A.; Wiest, L.; Vulliet, E. Improvement of the QuEChERS extraction step by matrix-dispersion effect and application on beta-lactams analysis in wastewater sludge by LC-MS/MS. Talanta, 2022, 237, 122923.
[http://dx.doi.org/10.1016/j.talanta.2021.122923] [PMID: 34736660]
[46]
Xu, X.; Xu, X.; Han, M.; Qiu, S.; Hou, X. Development of a modified QuEChERS method based on magnetic multiwalled carbon nano-tubes for the simultaneous determination of veterinary drugs, pesticides and mycotoxins in eggs by UPLC-MS/MS. Food Chem., 2019, 276, 419-426.
[http://dx.doi.org/10.1016/j.foodchem.2018.10.051] [PMID: 30409614]
[47]
Geis-Asteggiante, L.; Lehotay, S.J.; Lightfield, A.R.; Dutko, T.; Ng, C.; Bluhm, L. Ruggedness testing and validation of a practical analytical method for >100 veterinary drug residues in bovine muscle by ultrahigh performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A, 2012, 1258, 43-54.
[http://dx.doi.org/10.1016/j.chroma.2012.08.020] [PMID: 22944383]
[48]
Gholami, H.; Arabi, M.; Ghaedi, M.; Ostovan, A.; Bagheri, A.R. Column packing elimination in matrix solid phase dispersion by using water compatible magnetic molecularly imprinted polymer for recognition of melamine from milk samples. J. Chromatogr. A, 2019, 1594, 13-22.
[http://dx.doi.org/10.1016/j.chroma.2019.02.015] [PMID: 30765129]
[49]
Lončarić, A.; Matanović, K.; Ferrer, P.; Kovač, T.; Šarkanj, B.; Skendrović Babojelić, M.; Lores, M. Peel of traditional apple varieties as a great source of bioactive compounds: Extraction by micro-matrix solid-phase dispersion. Foods, 2020, 9(1), 80.
[http://dx.doi.org/10.3390/foods9010080] [PMID: 31940769]
[50]
Wang, G.N.; Zhang, L.; Song, Y.P.; Liu, J.X.; Wang, J.P. Application of molecularly imprinted polymer based matrix solid phase dispersion for determination of fluoroquinolones, tetracyclines and sulfonamides in meat. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1065-1066, 104-111.
[http://dx.doi.org/10.1016/j.jchromb.2017.09.034] [PMID: 28961484]
[51]
Shao, B.; Han, H.; Tu, X.; Huang, L. Analysis of alkylphenol and bisphenol A in eggs and milk by matrix solid phase dispersion extraction and liquid chromatography with tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 850(1-2), 412-416.
[http://dx.doi.org/10.1016/j.jchromb.2006.12.033] [PMID: 17270504]
[52]
Shen, Q.; Jin, R.; Xue, J.; Lu, Y.; Dai, Z. Analysis of trace levels of sulfonamides in fish tissue using micro-scale pipette tip-matrix solid-phase dispersion and fast liquid chromatography tandem mass spectrometry. Food Chem., 2016, 194, 508-515.
[http://dx.doi.org/10.1016/j.foodchem.2015.08.050] [PMID: 26471586]
[53]
Bogialli, S.; D’Ascenzo, G.; Di Corcia, A.; Laganà, A.; Tramontana, G. Simple assay for monitoring seven quinolone antibacterials in eggs: Extraction with hot water and liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A, 2009, 1216(5), 794-800.
[http://dx.doi.org/10.1016/j.chroma.2008.11.070] [PMID: 19095237]
[54]
Buszewski, B.; Noga, S. Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal. Bioanal. Chem., 2012, 402(1), 231-247.
[http://dx.doi.org/10.1007/s00216-011-5308-5] [PMID: 21879300]
[55]
Jandera, P. Stationary and mobile phases in hydrophilic interaction chromatography: A review. Anal. Chim. Acta, 2011, 692(1-2), 1-25.
[http://dx.doi.org/10.1016/j.aca.2011.02.047] [PMID: 21501708]
[56]
Shen, A.; Guo, Z.; Cai, X.; Xue, X.; Liang, X. Preparation and chromatographic evaluation of a cysteine-bonded zwitterionic hydrophilic interaction liquid chromatography stationary phase. J. Chromatogr. A, 2012, 1228, 175-182.
[http://dx.doi.org/10.1016/j.chroma.2011.10.086] [PMID: 22099229]
[57]
Hao, Z.; Xiao, B.; Weng, N. Impact of column temperature and mobile phase components on selectivity of hydrophilic interaction chromatography (HILIC). J. Sep. Sci., 2008, 31(9), 1449-1464.
[http://dx.doi.org/10.1002/jssc.200700624] [PMID: 18435508]
[58]
Sun, L.; Chen, L.; Sun, X.; Du, X.; Yue, Y.; He, D.; Xu, H.; Zeng, Q.; Wang, H.; Ding, L. Analysis of sulfonamides in environmental water samples based on magnetic mixed hemimicelles solid-phase extraction coupled with HPLC–UV detection. Chemosphere, 2009, 77(10), 1306-1312.
[http://dx.doi.org/10.1016/j.chemosphere.2009.09.049] [PMID: 19836824]
[59]
Turiel, E.; Martín-Esteban, A.; Tadeo, J.L. Multiresidue analysis of quinolones and fluoroquinolones in soil by ultrasonic-assisted extraction in small columns and HPLC-UV. Anal. Chim. Acta, 2006, 562(1), 30-35.
[http://dx.doi.org/10.1016/j.aca.2006.01.054] [PMID: 17723415]
[60]
Tang, H.; Wang, Y.; Li, S.; Wu, J.; Gao, Z.; Zhou, H. Development and application of magnetic solid phase extraction in tandem with liquid–liquid extraction method for determination of four tetracyclines by HPLC with UV detection. J. Food Sci. Technol., 2020, 57(8), 2884-2893.
[http://dx.doi.org/10.1007/s13197-020-04320-w] [PMID: 32624594]
[61]
Fang, G.Z.; He, J.X.; Wang, S. Multiwalled carbon nanotubes as sorbent for on-line coupling of solid-phase extraction to high-performance liquid chromatography for simultaneous determination of 10 sulfonamides in eggs and pork. J. Chromatogr. A, 2006, 1127(1-2), 12-17.
[http://dx.doi.org/10.1016/j.chroma.2006.06.024] [PMID: 16820156]
[62]
He, K.; Blaney, L. Systematic optimization of an SPE with HPLCFLD method for fluoroquinolone detection in wastewater. J. Hazard. Mater., 2015, 282, 96-105.
[http://dx.doi.org/10.1016/j.jhazmat.2014.08.027] [PMID: 25200119]
[63]
Osiński, Z.; Patyra, E.; Kwiatek, K. HPLC-FLD-based method for the detection of sulfonamides in organic fertilizers collected from Poland. Molecules, 2022, 27(6), 2031.
[http://dx.doi.org/10.3390/molecules27062031] [PMID: 35335395]
[64]
Li, W.T.; Xu, Z.X.; Li, A.M.; Wu, W.; Zhou, Q.; Wang, J.N. HPLC/HPSEC-FLD with multi-excitation/emission scan for EEM interpretation and dissolved organic matter analysis. Water Res., 2013, 47(3), 1246-1256.
[http://dx.doi.org/10.1016/j.watres.2012.11.040] [PMID: 23260178]
[65]
Guan, F.; He, Z.; Tang, Y.; Gao, P.; Chen, L.; Guo, Y.; Xie, K. An ultrahigh-performance liquid chromatography-fluorescence detection (UHPLC-FLD) method for simultaneous determination of albendazole and its three metabolites in poultry eggs. J. Food Compos. Anal., 2023, 115, 104959.
[http://dx.doi.org/10.1016/j.jfca.2022.104959]
[66]
Mainero Rocca, L.; Gentili, A.; Pérez-Fernández, V.; Tomai, P. Veterinary drugs residues: A review of the latest analytical research on sample preparation and LC-MS based methods. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2017, 34(5), 1-19.
[http://dx.doi.org/10.1080/19440049.2017.1298846] [PMID: 28278127]
[67]
Furey, A.; Moriarty, M.; Bane, V.; Kinsella, B.; Lehane, M. Ion suppression; A critical review on causes, evaluation, prevention and applications. Talanta, 2013, 115, 104-122.
[http://dx.doi.org/10.1016/j.talanta.2013.03.048] [PMID: 24054567]
[68]
Kaal, E.; Janssen, H.G. Extending the molecular application range of gas chromatography. J. Chromatogr. A, 2008, 1184(1-2), 43-60.
[http://dx.doi.org/10.1016/j.chroma.2007.11.114] [PMID: 18177657]
[69]
Shen, H.Y.; Jiang, H.L. Screening, determination and confirmation of chloramphenicol in seafood, meat and honey using ELISA, HPLC–UVD, GC–ECD, GC–MS–EI–SIM and GCMS–NCI–SIM methods. Anal. Chim. Acta, 2005, 535(1-2), 33-41.
[http://dx.doi.org/10.1016/j.aca.2004.12.027]
[70]
Wang, J.H. Determination of three nitroimidazole residues in poultry meat by gas chromatography with nitrogen-phosphorus detection. J. Chromatogr. A, 2001, 918(2), 435-438.
[http://dx.doi.org/10.1016/S0021-9673(01)00779-8] [PMID: 11407591]
[71]
Tripathi, A.; Suriyamoorthy, P.; Rawson, A. Nitrofuran residues in animal sourced food: Sample extraction and identification methodsa review. Food Chemistry Advances, 2023, 3, 100396.
[http://dx.doi.org/10.1016/j.focha.2023.100396]
[72]
Silva, J.R.; Silva, L.T.; Druzian, J.I. Optimization and intralaboratory validation of a method for analyzing chloramphenicol residues in goat milk by gas chromatography with electron capture detection (GC/DCE). Quim. Nova, 2010, 33(1), 90-96.
[http://dx.doi.org/10.1590/S0100-40422010000100017]
[73]
Franje, C.A.; Chang, S.K.; Shyu, C.L.; Davis, J.L.; Lee, Y.W.; Lee, R.J.; Chang, C.C.; Chou, C.C. Differential heat stability of amphenicols characterized by structural degradation, mass spectrometry and antimicrobial activity. J. Pharm. Biomed. Anal., 2010, 53(4), 869-877.
[http://dx.doi.org/10.1016/j.jpba.2010.06.013] [PMID: 20619994]
[74]
Portolés, T.; Rosales, L.E.; Sancho, J.V.; Santos, F.J.; Moyano, E. Gas chromatography–tandem mass spectrometry with atmospheric pressure chemical ionization for fluorotelomer alcohols and perfluorinated sulfonamides determination. J. Chromatogr. A, 2015, 1413, 107-116.
[http://dx.doi.org/10.1016/j.chroma.2015.08.016] [PMID: 26298605]
[75]
Pietro, W.J.; Woźniak, A.; Pasik, K.; Cybulski, W.; Krasucka, D. Amphenicols stability in medicated feed-development and validation of liquid chromatography method. Bull. Vet. Inst. Pulawy, 2014, 58(4), 621-629.
[http://dx.doi.org/10.2478/bvip-2014-0095]
[76]
Krone, N.; Hughes, B.A.; Lavery, G.G.; Stewart, P.M.; Arlt, W.; Shackleton, C.H.L. Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS). J. Steroid Biochem. Mol. Biol., 2010, 121(3-5), 496-504.
[http://dx.doi.org/10.1016/j.jsbmb.2010.04.010] [PMID: 20417277]
[77]
Chang, G.R.; Chen, H.S.; Lin, F.Y. Analysis of banned veterinary drugs and herbicide residues in shellfish by liquid chromatography-tandem mass spectrometry (LC/MS/MS) and gas chromatography-tandem mass spectrometry (GC/MS/MS). Mar. Pollut. Bull., 2016, 113(1-2), 579-584.
[http://dx.doi.org/10.1016/j.marpolbul.2016.08.080] [PMID: 27612928]
[78]
Wang, C.; Gardinali, P.R. Comparison of multiple API techniques for the simultaneous detection of microconstituents in water by on‐line SPELC-MS/MS. J. Mass Spectrom., 2012, 47(10), 1255-1268.
[http://dx.doi.org/10.1002/jms.3051] [PMID: 23019157]
[79]
Jank, L.; Martins, M.T.; Arsand, J.B.; Campos Motta, T.M.; Hoff, R.B.; Barreto, F.; Pizzolato, T.M. High-throughput method for macrolides and lincosamides antibiotics residues analysis in milk and muscle using a simple liquid–liquid extraction technique and liquid chromatography-electrospray–tandem mass spectrometry analysis (LC–MS/MS). Talanta, 2015, 144, 686-695.
[http://dx.doi.org/10.1016/j.talanta.2015.06.078] [PMID: 26452878]
[80]
da Silva, M.R.; Mauro Lanças, F. Evaluation of ionic liquids supported on silica as a sorbent for fully automated online solid‐phase extraction with LC–MS determination of sulfonamides in bovine milk samples. J. Sep. Sci., 2018, 41(10), 2237-2244.
[http://dx.doi.org/10.1002/jssc.201701148] [PMID: 29524324]
[81]
Guidi, L.R.; Santos, F.A.; Ribeiro, A.C.S.R.; Fernandes, C.; Silva, L.H.M.; Gloria, M.B.A. Quinolones and tetracyclines in aquaculture fish by a simple and rapid LC-MS/MS method. Food Chem., 2018, 245, 1232-1238.
[http://dx.doi.org/10.1016/j.foodchem.2017.11.094] [PMID: 29287347]
[82]
Wang, R.; Zhang, L.; Zhang, Z.; Tian, Y. Comparison of ESI– and APCI–LC–MS/MS methods: A case study of levonorgestrel in human plasma. J. Pharm. Anal., 2016, 6(6), 356-362.
[http://dx.doi.org/10.1016/j.jpha.2016.03.006] [PMID: 29404004]
[83]
Gallien, S.; Duriez, E.; Domon, B. Selected reaction monitoring applied to proteomics. J. Mass Spectrom., 2011, 46(3), 298-312.
[http://dx.doi.org/10.1002/jms.1895] [PMID: 21394846]
[84]
Lesur, A.; Domon, B. Advances in high‐resolution accurate mass spectrometry application to targeted proteomics. Proteomics, 2015, 15(5-6), 880-890.
[http://dx.doi.org/10.1002/pmic.201400450] [PMID: 25546610]
[85]
Keevil, B.G. Novel liquid chromatography tandem mass spectrometry (LC-MS/MS) methods for measuring steroids. Best Pract. Res. Clin. Endocrinol. Metab., 2013, 27(5), 663-674.
[http://dx.doi.org/10.1016/j.beem.2013.05.015] [PMID: 24094637]
[86]
Stolker, A.A.M.; Brinkman, U.A.T. Analytical strategies for residue analysis of veterinary drugs and growth-promoting agents in food-producing animals—a review. J. Chromatogr. A, 2005, 1067(1-2), 15-53.
[http://dx.doi.org/10.1016/j.chroma.2005.02.037] [PMID: 15844509]
[87]
Kaufmann, A.; Butcher, P.; Maden, K.; Walker, S.; Widmer, M. Development of an improved high resolution mass spectrometry based multi-residue method for veterinary drugs in various food matrices. Anal. Chim. Acta, 2011, 700(1-2), 86-94.
[http://dx.doi.org/10.1016/j.aca.2010.11.034] [PMID: 21742121]
[88]
Amendola, L.; Molaioni, F.; Botrè, F. Detection of beta-blockers in human urine by GC-MS-MS-EI: Perspectives for the antidoping control. J. Pharm. Biomed. Anal., 2000, 23(1), 211-221.
[http://dx.doi.org/10.1016/S0731-7085(00)00271-5] [PMID: 10898172]
[89]
Jadhav, M.R.; Pudale, A.; Raut, P.; Utture, S.; Ahammed Shabeer, T.P.; Banerjee, K. A unified approach for high-throughput quantitative analysis of the residues of multi-class veterinary drugs and pesticides in bovine milk using LC-MS/MS and GC–MS/MS. Food Chem., 2019, 272, 292-305.
[http://dx.doi.org/10.1016/j.foodchem.2018.08.033] [PMID: 30309547]
[90]
Tian, L.; Bayen, S.; Yaylayan, V. Thermal degradation of five veterinary and human pharmaceuticals using pyrolysis-GC/MS. J. Anal. Appl. Pyrolysis, 2017, 127, 120-125.
[http://dx.doi.org/10.1016/j.jaap.2017.08.016]
[91]
Guo, Y.; Xie, X.; Diao, Z.; Wang, Y.; Wang, B.; Xie, K.; Wang, X.; Zhang, P. Detection and determination of spectinomycin and lincomycin in poultry muscles and pork by ASE-SPE-GC–MS/MS. J. Food Compos. Anal., 2021, 101, 103979.
[http://dx.doi.org/10.1016/j.jfca.2021.103979]
[92]
Hao, C. Zhao, X.; Yang, P. GC-MS and HPLC-MS analysis of bioactive pharmaceuticals and personal-care products in environmental matrices. Trends Analyt. Chem., 2007, 26(6), 569-580.
[http://dx.doi.org/10.1016/j.trac.2007.02.011]
[93]
Meyer, G.M.J.; Maurer, H.H. Qualitative metabolism assessment and toxicological detection of xylazine, a veterinary tranquilizer and drug of abuse, in rat and human urine using GC–MS, LC–MS n, and LC–HR-MS n. Anal. Bioanal. Chem., 2013, 405(30), 9779-9789.
[http://dx.doi.org/10.1007/s00216-013-7419-7] [PMID: 24141317]
[94]
Stettin, D.; Poulin, R.X.; Pohnert, G. Metabolomics benefits from orbitrap GC–MS—comparison of low- and high-resolution GC–MS. Metabolites, 2020, 10(4), 143.
[http://dx.doi.org/10.3390/metabo10040143] [PMID: 32260407]
[95]
Chiang, J.; Huang, S. Determination of haloethers in water with dynamic hollow fiber liquid-phase microextraction using GC-FID and GC-ECD. Talanta, 2007, 71(2), 882-886.
[http://dx.doi.org/10.1016/j.talanta.2006.05.065] [PMID: 19071389]
[96]
Cooper, J.; Delahaut, P.; Fodey, T.L.; Elliott, C.T. Development of a rapid screening test for veterinary sedatives and the beta-blocker carazolol in porcine kidney by ELISA. Analyst., 2004, 129(2), 169-174.
[http://dx.doi.org/10.1039/b311709j] [PMID: 14752562]
[97]
Chughtai, M.I.; Maqbool, U.; Iqbal, M.; Shah, M.S.; Fodey, T. Development of in-house ELISA for detection of chloramphenicol in bovine milk with subsequent confirmatory analysis by LC-MS/MS. J. Environ. Sci. Health B, 2017, 52(12), 871-879.
[http://dx.doi.org/10.1080/03601234.2017.1361771] [PMID: 28922623]
[98]
Burkin, M.A.; Galvidis, I.A. Development of a competitive indirect ELISA for the determination of lincomycin in milk, eggs, and honey. J. Agric. Food Chem., 2010, 58(18), 9893-9898.
[http://dx.doi.org/10.1021/jf101731h] [PMID: 20718433]
[99]
Di Nardo, F.; Chiarello, M.; Cavalera, S.; Baggiani, C.; Anfossi, L. Ten years of lateral flow immunoassay technique applications: Trends, challenges and future perspectives. Sensors., 2021, 21(15), 5185.
[http://dx.doi.org/10.3390/s21155185] [PMID: 34372422]
[100]
Wang, J.; Wang, Q.; Zheng, Y.; Peng, T.; Yao, K.; Xie, S.; Zhang, X.; Xia, X.; Li, J.; Jiang, H. Development of a quantitative fluorescence-based lateral flow immunoassay for determination of chloramphenicol, thiamphenicol and florfenicol in milk. Food Agric. Immunol., 2018, 29(1), 56-66.
[http://dx.doi.org/10.1080/09540105.2017.1359498]
[101]
Wood, L.; Ducroq, D.H.; Fraser, H.L.; Gillingwater, S.; Evans, C.; Pickett, A.J.; Rees, D.W.; John, R.; Turkes, A. Measurement of urinary free cortisol by tandem mass spectrometry and comparison with results obtained by gas chromatography-mass spectrometry and two commercial immunoassays. Ann. Clin. Biochem., 2008, 45(4), 380-388.
[http://dx.doi.org/10.1258/acb.2007.007119] [PMID: 18583623]
[102]
Fanali, S.; Chankvetadze, B. Some thoughts about enantioseparations in capillary electrophoresis. Electrophoresis, 2019, 40(18-19), 2420-2437.
[http://dx.doi.org/10.1002/elps.201900144] [PMID: 31081552]
[103]
Kelani, K.M.; Naguib, I.A.; Talaat, W.; Nassar, A.M.W. Validated green high performance liquid chromatographic and capillary electrophoretic methods for estimation of dinitolmide in presence of its acid-degradation product. Sustain. Chem. Pharm., 2023, 36, 101231.
[http://dx.doi.org/10.1016/j.scp.2023.101231]
[104]
Nguyen, T.A.H.; Pham, T.N.M.; Le, T.B.; Le, D.C.; Tran, T.T.P.; Nguyen, T.Q.H.; Nguyen, T.K.T.; Hauser, P.C.; Mai, T.D. Cost-effective capillary electrophoresis with contactless conductivity detection for quality control of beta-lactam antibiotics. J. Chromatogr. A, 2019, 1605, 360356.
[http://dx.doi.org/10.1016/j.chroma.2019.07.010] [PMID: 31327480]
[105]
Zou, X.M.; Zhou, J.W.; Song, S.H.; Chen, G.H. Screening of oligonucleotide aptamers and application in detection of pesticide and veterinary drug residues. Chin. J. Anal. Chem., 2019, 47(4), 488-499.
[http://dx.doi.org/10.1016/S1872-2040(19)61153-9]
[106]
Hancu, G.; Toncean, A.; Podar, D.; Sarkany, A.; Drăguț, C.; Barabás, E. Simultaneous determination of anthelmintic drugs by capillary electrophoresis using cyclodextrins as buffer additives. SN Applied Sciences, 2019, 1(5), 478.
[http://dx.doi.org/10.1007/s42452-019-0505-5]
[107]
Rahman, M.M.; Lee, D.J.; Jo, A.; Yun, S.H.; Eun, J.B. Im, M.H.; Shim, J.H.; Abd El-Aty, A.M. Onsite/on‐field analysis of pesticide and veterinary drug residues by a state‐of‐art technology: A review. J. Sep. Sci., 2021, 44(11), 2310-2327.
[http://dx.doi.org/10.1002/jssc.202001105] [PMID: 33773036]
[108]
Peng, Y.P.; He, Y.W.; Shen, Y.F.; Liang, A.M.; Zhang, X.B.; Liu, Y.J.; Lin, J.H.; Wang, J.P.; Li, Y.B.; Fu, Y.C. Fluorescence nanobiosensor for simultaneous detection of multiple veterinary drugs in chicken samples. J. Anal. Test., 2022, 6(2), 77-88.
[http://dx.doi.org/10.1007/s41664-021-00199-4]
[109]
Xie, M.; Chen, Z.; Zhao, F.; Lin, Y.; Zheng, S.; Han, S. Selection and application of ssDNA aptamers for fluorescence biosensing detection of malachite green. Foods, 2022, 11(6), 801.
[http://dx.doi.org/10.3390/foods11060801] [PMID: 35327224]
[110]
Singh, B.; Bhat, A.; Dutta, L.; Pati, K.R.; Korpan, Y.; Dahiya, I. Electrochemical biosensors for the detection of antibiotics in milk: Recent trends and future perspectives. Biosensors., 2023, 13(9), 867.
[http://dx.doi.org/10.3390/bios13090867] [PMID: 37754101]
[111]
Saisahas, K.; Soleh, A.; Promsuwan, K.; Phonchai, A.; Mohamed Sadiq, N.S.; Teoh, W.K.; Chang, K.H.; Lim Abdullah, A.F.; Limbut, W. A portable electrochemical sensor for detection of the veterinary drug xylazine in beverage samples. J. Pharm. Biomed. Anal., 2021, 198, 113958.
[http://dx.doi.org/10.1016/j.jpba.2021.113958] [PMID: 33662759]
[112]
Li, G.; Li, H.; Zhai, J.; Guo, J.; Li, Q.; Wang, C.F.; Chen, S. Microfluidic fluorescent platform for rapid and visual detection of veterinary drugs. RSC Advances, 2022, 12(14), 8485-8491.
[http://dx.doi.org/10.1039/D2RA00626J] [PMID: 35424796]
[113]
Wang, X.; Wang, K.; Xu, Z.; Yang, S.; Zhao, Y. Development and validation of a multi-residue analytical method for veterinarian and human pharmaceuticals in livestock urine and blood using UHPLCQTOF. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2021, 1167, 122564.
[http://dx.doi.org/10.1016/j.jchromb.2021.122564] [PMID: 33578280]
[114]
Xia, X.; Xu, Y.; Ke, R.; Zhang, H.; Zou, M.; Yang, W.; Li, Q. A highly sensitive europium nanoparticle-based lateral flow immunoassay for detection of chloramphenicol residue. Anal. Bioanal. Chem., 2013, 405(23), 7541-7544.
[http://dx.doi.org/10.1007/s00216-013-7210-9] [PMID: 23934393]
[115]
Tejada-Casado, C.; Moreno-González, D.; del Olmo-Iruela, M.; García-Campaña, A.M.; Lara, F.J. Coupling sweeping-micellar electrokinetic chromatography with tandem mass spectrometry for the therapeutic monitoring of benzimidazoles in animal urine by dilute and shoot. Talanta, 2017, 175, 542-549.
[http://dx.doi.org/10.1016/j.talanta.2017.07.080] [PMID: 28842031]
[116]
Haddad, T.; Kümmerer, K. Characterization of photo-transformation products of the antibiotic drug Ciprofloxacin with liquid chromatography–tandem mass spectrometry in combination with accurate mass determination using an LTQ-Orbitrap. Chemosphere, 2014, 115, 40-46.
[http://dx.doi.org/10.1016/j.chemosphere.2014.02.013] [PMID: 24630245]
[117]
Peng, J.; Wang, Y.; Liu, L.; Kuang, H.; Li, A.; Xu, C. Multiplex lateral flow immunoassay for five antibiotics detection based on gold nanoparticle aggregations. RSC Advances, 2016, 6(10), 7798-7805.
[http://dx.doi.org/10.1039/C5RA22583C]
[118]
Nilghaz, A.; Lu, X. Detection of antibiotic residues in pork using paper-based microfluidic device coupled with filtration and concentration. Anal. Chim. Acta, 2019, 1046, 163-169.
[http://dx.doi.org/10.1016/j.aca.2018.09.041] [PMID: 30482295]
[119]
Shan, Y.; Feng, Y.; Li, J.; Yi, W.; Ge, M.; Huang, H.; Yan, K.; Wang, S.; Liu, F. Rapid on-site PEDV detection using homogeneous fluorescence resonance energy transfer-based ELISA. Sens. Actuators B Chem., 2023, 378, 133138.
[http://dx.doi.org/10.1016/j.snb.2022.133138]
[120]
Yang, N.; Xie, L.L.; Pan, C.; Yuan, M.F.; Tao, Z.H.; Mao, H.P. A novel on‐chip solution enabling rapid analysis of melamine and chloramphenicol in milk by smartphones. J. Food Process Eng., 2019, 42(2), e12976.
[http://dx.doi.org/10.1111/jfpe.12976]
[121]
Zhang, X.; Wang, L.; Li, X.; Li, X. AuNP aggregation-induced quantitative colorimetric aptasensing of sulfadimethoxine with a smartphone. Chin. Chem. Lett., 2022, 33(6), 3078-3082.
[http://dx.doi.org/10.1016/j.cclet.2021.09.061]
[122]
Kaufmann, A.; Butcher, P.; Maden, K.; Walker, S.; Widmer, M. Assessment and validation of the p-QuEChERS sample preparation methodology for the analysis of >200 veterinary drugs in various animal-based food matrices. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2023, 40(3), 356-372.
[http://dx.doi.org/10.1080/19440049.2023.2171142] [PMID: 36705590]
[123]
Sui, X.; Feng, C.; Chen, Y.; Sultana, N.; Ankeny, M.; Vinueza, N.R. Detection of reactive dyes from dyed fabrics after soil degradation via QuEChERS extraction and mass spectrometry. Anal. Methods, 2020, 12(2), 179-187.
[http://dx.doi.org/10.1039/C9AY01603A]
[124]
Kaufmann, A.; Butcher, P.; Maden, K.; Walker, S.; Widmer, M. Using in silico fragmentation to improve routine residue screening in complex matrices. J. Am. Soc. Mass Spectrom., 2017, 28(12), 2705-2715.
[http://dx.doi.org/10.1007/s13361-017-1800-2] [PMID: 28900836]
[125]
Zad, N.; Tell, L.A.; Ampadi Ramachandran, R.; Xu, X.; Riviere, J.E.; Baynes, R.; Lin, Z.; Maunsell, F.; Davis, J.; Jaberi-Douraki, M. Development of machine learning algorithms to estimate maximum residue limits for veterinary medicines. Food Chem. Toxicol., 2023, 179, 113920.
[http://dx.doi.org/10.1016/j.fct.2023.113920] [PMID: 37506867]

© 2024 Bentham Science Publishers | Privacy Policy