Generic placeholder image

Recent Advances in Computer Science and Communications

Editor-in-Chief

ISSN (Print): 2666-2558
ISSN (Online): 2666-2566

Review Article

Analysis of Statistical and Deep Learning Techniques for Temperature Forecasting

Author(s): Sriram Ganesan Kruthika, Umamaheswari Rajasekaran, Malini Alagarsamy* and Vandana Sharma

Volume 17, Issue 2, 2024

Published on: 12 December, 2023

Article ID: e121223224365 Pages: 17

DOI: 10.2174/0126662558264870231122113715

Price: $65

Abstract

In the field of meteorology, temperature forecasting is a significant task as it has been a key factor in industrial, agricultural, renewable energy, and other sectors. High accuracy in temperature forecasting is needed for decision-making in advance. Since temperature varies over time and has been studied to have non-trivial long-range correlation, non-linear behavior, and seasonal variability, it is important to implement an appropriate methodology to forecast accurately. In this paper, we have reviewed the performance of statistical approaches such as AR and ARIMA with RNN, LSTM, GRU, and LSTM-RNN Deep Learning models. The models were tested for short-term temperature forecasting for a period of 48 hours. Among the statistical models, the AR model showed notable performance with a r2 score of 0.955 for triennial 1 and for the same, the Deep Learning models also performed nearly equal to that of the statistical models and thus hybrid LSTM-RNN model was tested. The hybrid model obtained the highest r2 score of 0.960. The difference in RMSE, MAE and r2 scores are not significantly different for both Statistical and Vanilla Deep Learning approaches. However, the hybrid model provided a better r2 score, and LIME explanations have been generated for the same in order to understand the dependencies over a point forecast. Based on the reviewed results, it can be concluded that for short-term forecasting, both Statistical and Deep Learning models perform nearly equally.

Graphical Abstract

[1]
B.M. Owodiong-Idemeko, K.O. Adubi, and U. Owodiong, "Analysis of the benefits and challenges faced in skill acquisition in the utilization of green energy in the clothing and textiles laboratory in tertiary institutions in lagos state", J. Associ. Voca. and Techn. Educ. Nig, vol. 28, no. 1, 2022.
[2]
Z.A. Elum, and A.S. Momodu, "Climate change mitigation and renewable energy for sustainable development in Nigeria: A discourse approach", Renew. Sustain. Energy Rev., vol. 76, pp. 72-80, 2017.
[http://dx.doi.org/10.1016/j.rser.2017.03.040]
[3]
L.H. Udara Willhelm Abeydeera, J. Wadu Mesthrige, and T.I. Samarasinghalage, "Global research on carbon emissions: A scientometric review", Sustainability, vol. 11, no. 14, p. 3972, 2019.
[http://dx.doi.org/10.3390/su11143972]
[4]
E. Dogan, and F. Seker, "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy", Renew. Energy, vol. 94, pp. 429-439, 2016.
[http://dx.doi.org/10.1016/j.renene.2016.03.078]
[5]
F. Chien, M. Sadiq, M.A. Nawaz, M.S. Hussain, T.D. Tran, and T. Le Thanh, "A step toward reducing air pollution in top Asian economies: The role of green energy, eco-innovation, and environmental taxes", J. Environ. Manage., vol. 297, p. 113420, 2021.
[http://dx.doi.org/10.1016/j.jenvman.2021.113420] [PMID: 34333309]
[6]
G. Mutezo, and J. Mulopo, "A review of Africa’s transition from fossil fuels to renewable energy using circular economy principles", Renew. Sustain. Energy Rev., vol. 137, p. 110609, 2021.
[http://dx.doi.org/10.1016/j.rser.2020.110609]
[7]
M.J. Santofimia-Romero, X. del Toro-García, and J.C. López-López, Artificial intelligence techniques for smart grid applications Green ICT: Trends and Challenges, pp. 41-44, 2011.
[8]
S.A.R. Khan, Y. Zhang, A. Kumar, E. Zavadskas, and D. Streimikiene, "Measuring the impact of renewable energy, public health expenditure, logistics, and environmental performance on sustainable economic growth", Sustain. Dev., vol. 28, no. 4, pp. 833-843, 2020.
[http://dx.doi.org/10.1002/sd.2034]
[9]
I. Dincer, "Renewable energy and sustainable development: a crucial review", Renew. Sustain. Energy Rev., vol. 4, no. 2, pp. 157-175, 2000.
[http://dx.doi.org/10.1016/S1364-0321(99)00011-8]
[10]
S. Keleş, and S. Bilgen, "Renewable energy sources in Turkey for climate change mitigation and energy sustainability", Renew. Sustain. Energy Rev., vol. 16, no. 7, pp. 5199-5206, 2012.
[http://dx.doi.org/10.1016/j.rser.2012.05.026]
[11]
T. Güney, "Renewable energy, non-renewable energy and sustainable development", Int. J. Sustain. Dev. World Ecol., vol. 26, no. 5, pp. 389-397, 2019.
[http://dx.doi.org/10.1080/13504509.2019.1595214]
[12]
J. A. Momoh, "Smart grid design for efficient and flexible power networks operation and control., 2009 15-18 March 2009, Seattle, WA, USA,",
[http://dx.doi.org/10.1109/PSCE.2009.4840074]
[13]
H. Zhou, M. Rao, and K.T. Chuang, "Artificial intelligence approach to energy management and control in the HVAC process: an evaluation, development and discussion", Dev. Chem. Eng. Miner. Process., vol. 1, no. 1, pp. 42-51, 1993.
[http://dx.doi.org/10.1002/apj.5500010105]
[14]
M. De Benedetti, F. Leonardi, F. Messina, C. Santoro, and A. Vasilakos, "Anomaly detection and predictive maintenance for photovoltaic systems", Neurocomputing, vol. 310, pp. 59-68, 2018.
[http://dx.doi.org/10.1016/j.neucom.2018.05.017]
[15]
A. Mellit, and S.A. Kalogirou, "Artificial intelligence techniques for photovoltaic applications: A review", Pror. Energy Combust. Sci., vol. 34, no. 5, pp. 574-632, 2008.
[http://dx.doi.org/10.1016/j.pecs.2008.01.001]
[16]
M.Q. Raza, and A. Khosravi, "A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings", Renew. Sustain. Energy Rev., vol. 50, pp. 1352-1372, 2015.
[http://dx.doi.org/10.1016/j.rser.2015.04.065]
[17]
V.B. Omubo-Pepple, C. Israel-Cookey, and G.I. Alaminokuma, "Effects of temperature, solar flux and relative humidity on the efficient conversion of solar energy to electricity", Eur. J. Sci. Res., vol. 35, no. 2, pp. 173-180, 2009.
[18]
J. Wang, H. Zhong, X. Lai, Q. Xia, Y. Wang, and C. Kang, "Exploring key weather factors from analytical modeling toward improved solar power forecasting", IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 1417-1427, 2019.
[http://dx.doi.org/10.1109/TSG.2017.2766022]
[19]
S.E. Tabrizi, K. Xiao, J. Van Griensven Thé, M. Saad, H. Farghaly, S.X. Yang, and B. Gharabaghi, "Hourly road pavement surface temperature forecasting using deep learning models", J. Hydrol. (Amst.), vol. 603, p. 126877, 2021.
[http://dx.doi.org/10.1016/j.jhydrol.2021.126877]
[20]
Y. Kamarianakis, S.V. Ayuso, E.C. Rodríguez, and M.T. Velasco, "Water temperature forecasting for Spanish rivers by means of nonlinear mixed models", J. Hydrol. Reg. Stud., vol. 5, pp. 226-243, 2016.
[http://dx.doi.org/10.1016/j.ejrh.2016.01.003]
[21]
S.G. Meshram, E. Kahya, C. Meshram, M.A. Ghorbani, B. Ambade, and R. Mirabbasi, "Long-term temperature trend analysis associated with agriculture crops", Theor. Appl. Climatol., vol. 140, no. 3-4, pp. 1139-1159, 2020.
[http://dx.doi.org/10.1007/s00704-020-03137-z]
[22]
S. Li, L. Goel, and P. Wang, "An ensemble approach for short-term load forecasting by extreme learning machine", Appl. Energy, vol. 170, pp. 22-29, 2016.
[http://dx.doi.org/10.1016/j.apenergy.2016.02.114]
[23]
A. Mellit, A. Massi Pavan, E. Ogliari, S. Leva, and V. Lughi, "Advanced methods for photovoltaic output power forecasting: A review", Appl. Sci. (Basel), vol. 10, no. 2, p. 487, 2020.
[http://dx.doi.org/10.3390/app10020487]
[24]
J.Y. Fan, and J.D. McDonald, "A real-time implementation of short-term load forecasting for distribution power systems", IEEE Trans. Power Syst., vol. 9, no. 2, pp. 988-994, 1994.
[http://dx.doi.org/10.1109/59.317646]
[25]
B.R. Bonsal, X. Zhang, L.A. Vincent, and W.D. Hogg, "Characteristics of daily and extreme temperatures over Canada", J. Clim., vol. 14, no. 9, pp. 1959-1976, 2001.
[http://dx.doi.org/10.1175/1520-0442(2001)014<1959:CODAET>2.0.CO;2]
[26]
I. Bartos, and I.M. Jánosi, "Nonlinear correlations of daily temperature records over land", Nonlinear Process. Geophys., vol. 13, no. 5, pp. 571-576, 2006.
[http://dx.doi.org/10.5194/npg-13-571-2006]
[27]
H. Astsatryan, H. Grigoryan, A. Poghosyan, R. Abrahamyan, S. Asmaryan, V. Muradyan, G. Tepanosyan, Y. Guigoz, and G. Giuliani, "Air temperature forecasting using artificial neural network for Ararat valley", Earth Sci. Inform., vol. 14, no. 2, pp. 711-722, 2021.
[http://dx.doi.org/10.1007/s12145-021-00583-9]
[28]
P.A.G. Lanza, and J.M.Z. Cosme, "A short-term temperature forecaster based on a novel radial basis functions neural network", Int. J. Neural Syst., vol. 11, no. 1, pp. 71-77, 2001.
[http://dx.doi.org/10.1142/S0129065701000503] [PMID: 11310555]
[29]
H.S. Hippert, C.E. Pedreira, and R.C. Souza, Combining neural networks and ARIMA models for hourly temperature forecast.
[http://dx.doi.org/10.1109/IJCNN.2000.860807]
[30]
I. Tasadduq, S. Rehman, and K. Bubshait, "Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia", Renew. Energy, vol. 25, no. 4, pp. 545-554, 2002.
[http://dx.doi.org/10.1016/S0960-1481(01)00082-9]
[31]
P. Hewage, M. Trovati, E. Pereira, and A. Behera, "Deep learning-based effective fine-grained weather forecasting model", Pattern Anal. Appl., vol. 24, no. 1, pp. 343-366, 2021.
[http://dx.doi.org/10.1007/s10044-020-00898-1]
[32]
E.A. Nketiah, L. Chenlong, J. Yingchuan, and S.A. Aram, "Recurrent neural network modeling of multivariate time series and its application in temperature forecasting", PLoS One, vol. 18, no. 5, p. e0285713, 2023.
[http://dx.doi.org/10.1371/journal.pone.0285713] [PMID: 37205720]
[33]
M. Imani, "Electrical load-temperature CNN for residential load forecasting", Energy, vol. 227, p. 120480, 2021.
[http://dx.doi.org/10.1016/j.energy.2021.120480]
[34]
K. Goswami, J. Hazarika, and A.N. Patowary, "Monthly temperature prediction based on arima model: A case study in dibrugarh station of assam, India", Int. J. Adv. Res. Comp. Sci, vol. 8, no. 8, 2017.
[35]
K. Pandey, and B. Basu, "Mathematical modeling for short term indoor room temperature forecasting using Box-Jenkins models", J. Model. Manag., vol. 15, no. 3, pp. 1105-1136, 2020.
[http://dx.doi.org/10.1108/JM2-08-2019-0182]
[36]
H. Wang, J. Huang, H. Zhou, L. Zhao, and Y. Yuan, "An integrated variational mode decomposition and arima model to forecast air temperature", Sustainability, vol. 11, no. 15, p. 4018, 2019.
[http://dx.doi.org/10.3390/su11154018]
[37]
D. Kreuzer, M. Munz, and S. Schlüter, "Short-term temperature forecasts using a convolutional neural network — An application to different weather stations in Germany", Mach. Learn. Applicat., vol. 2, p. 100007, 2020.
[http://dx.doi.org/10.1016/j.mlwa.2020.100007]
[38]
A.M. Elshewey, M.Y. Shams, A.M. Elhady, S.M. Shohieb, A.A. Abdelhamid, A. Ibrahim, and Z. Tarek, "A novel WD-SARIMAX model for temperature forecasting using daily delhi climate dataset", Sustainability, vol. 15, no. 1, p. 757, 2022.
[http://dx.doi.org/10.3390/su15010757]
[39]
G. Philipp, D. Song, and J.G. Carbonell, The exploding gradient problem demystified-definition, prevalence, impact, origin, tradeoffs, and solutions.
[40]
A. Rehmer, and A. Kroll, "On the vanishing and exploding gradient problem in Gated Recurrent Units", IFAC-PapersOnLine, vol. 53, no. 2, pp. 1243-1248, 2020.
[http://dx.doi.org/10.1016/j.ifacol.2020.12.1342]
[41]
D. Kumar, H.D. Mathur, S. Bhanot, and R.C. Bansal, "Forecasting of solar and wind power using LSTM RNN for load frequency control in isolated microgrid", Int. J. Model. Simul., vol. 41, no. 4, pp. 311-323, 2021.
[http://dx.doi.org/10.1080/02286203.2020.1767840]
[42]
T.T.H. Le, H. Kim, H. Kang, and H. Kim, "Classification and explanation for intrusion detection system based on ensemble trees and SHAP method", Sensors, vol. 22, no. 3, p. 1154, 2022.
[http://dx.doi.org/10.3390/s22031154] [PMID: 35161899]
[43]
I.U. Ekanayake, D.P.P. Meddage, and U. Rathnayake, "A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations (SHAP)", Case Stud. Cons. Mat., vol. 16, p. e01059, 2022.
[http://dx.doi.org/10.1016/j.cscm.2022.e01059]
[44]
M.S. Kamal, N. Dey, L. Chowdhury, S.I. Hasan, and K.C. Santosh, "Explainable AI for glaucoma prediction analysis to understand risk factors in treatment planning", IEEE Trans. Instrum. Meas., vol. 71, pp. 1-9, 2022.
[http://dx.doi.org/10.1109/TIM.2022.3171613]
[45]
E. Henriksen, U. Halden, M. Kuzlu, and U. Cali, "Electrical Load Forecasting Utilizing an Explainable Artificial Intelligence (XAI) Tool on Norwegian Residential Buildings", In 2022 International Conference on Smart Energy Systems and Technologies (SEST), 2022, pp. 1-61 ieEe,
[http://dx.doi.org/10.1109/SEST53650.2022.9898500]
[46]
Y. Xie, N. Pongsakornsathien, A. Gardi, and R. Sabatini, "Explanation of machine-learning solutions in air-traffic management", Aerospace, vol. 8, no. 8, p. 224, 2021.
[http://dx.doi.org/10.3390/aerospace8080224]
[47]
P.K. Mohanty, D.S. Roy, and K.H.K. Reddy, "Explainable AI for predicting daily household energy usages", In 2022 International Conference on Artificial Intelligence and Data Engineering (AIDE), 2022, pp. 182-186 ieEe,
[http://dx.doi.org/10.1109/AIDE57180.2022.10060217]
[48]
B.H.M. van der Velden, H.J. Kuijf, K.G.A. Gilhuijs, and M.A. Viergever, "Explainable artificial intelligence (XAI) in deep learning-based medical image analysis", Med. Image Anal., vol. 79, p. 102470, 2022.
[http://dx.doi.org/10.1016/j.media.2022.102470] [PMID: 35576821]
[49]
A. Barredo Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, and F. Herrera, "Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI", Inf. Fusion, vol. 58, pp. 82-115, 2020.
[http://dx.doi.org/10.1016/j.inffus.2019.12.012]
[50]
T. Dimri, S. Ahmad, and M. Sharif, "Time series analysis of climate variables using seasonal ARIMA approach", J. Earth Syst. Sci., vol. 129, no. 1, p. 149, 2020.
[http://dx.doi.org/10.1007/s12040-020-01408-x]
[51]
M.K. Alomar, F. Khaleel, M.M. Aljumaily, A. Masood, S.F.M. Razali, M.A. AlSaadi, N. Al-Ansari, and M.M. Hameed, "Data-driven models for atmospheric air temperature forecasting at a continental climate region", PLoS One, vol. 17, no. 11, p. e0277079, 2022.
[http://dx.doi.org/10.1371/journal.pone.0277079] [PMID: 36327280]
[52]
W. Wanishsakpong, and B.E. Owusu, "Optimal time series model for forecasting monthly temperature in the southwestern region of Thailand", Model. Earth Syst. Environ., vol. 6, no. 1, pp. 525-532, 2020.
[http://dx.doi.org/10.1007/s40808-019-00698-5]
[53]
R. Jamil, "Hydroelectricity consumption forecast for Pakistan using ARIMA modeling and supply-demand analysis for the year 2030", Renew. Energy, vol. 154, pp. 1-10, 2020.
[http://dx.doi.org/10.1016/j.renene.2020.02.117]
[54]
B. Belmahdi, M. Louzazni, and A.E. Bouardi, "A hybrid ARIMA–ANN method to forecast daily global solar radiation in three different cities in Morocco", Eur. Phys. J. Plus, vol. 135, no. 11, p. 925, 2020.
[http://dx.doi.org/10.1140/epjp/s13360-020-00920-9]
[55]
J.L. Tena García, E. Cadenas Calderón, G. González Ávalos, E. Rangel Heras, and A. Mbikayi Tshikala, "Forecast of daily output energy of wind turbine using sARIMA and nonlinear autoregressive models", Adv. Mech. Eng., vol. 11, no. 2, 2019.
[http://dx.doi.org/10.1177/1687814018813464]
[56]
P. Kabbilawsh, D. Sathish Kumar, and N.R. Chithra, "Trend analysis and SARIMA forecasting of mean maximum and mean minimum monthly temperature for the state of Kerala, India", Acta Geophys., vol. 68, no. 4, pp. 1161-1174, 2020.
[http://dx.doi.org/10.1007/s11600-020-00462-9]
[57]
M. Elsaraiti, G. Ali, H. Musbah, A. Merabet, and T. Little, "Time series analysis of electricity consumption forecasting using ARIMA model", In: In 2021 IEEE Green technologies conference, 2021, pp. 259-262.
[http://dx.doi.org/10.1109/GreenTech48523.2021.00049]
[58]
W. Deng, Z. Xiang, K. Huang, J. Liu, C. Yang, and W. Gui, "Detecting intelligent load redistribution attack based on power load pattern learning in cyber-physical power systems", IEEE Trans. Ind. Electron., pp. 1-9, 2023.
[http://dx.doi.org/10.1109/TIE.2023.3294646]
[59]
C. Fang, Y. Qi, P. Cheng, and W.X. Zheng, "Optimal periodic watermarking schedule for replay attack detection in cyber–physical systems", Automatica, vol. 112, p. 108698, 2020.
[http://dx.doi.org/10.1016/j.automatica.2019.108698]
[60]
A. Shadab, S. Ahmad, and S. Said, "Spatial forecasting of solar radiation using ARIMA model", Remote Sens. Appl. Soc. Environ., vol. 20, p. 100427, 2020.
[http://dx.doi.org/10.1016/j.rsase.2020.100427]
[61]
T. Alghamdi, K. Elgazzar, M. Bayoumi, T. Sharaf, and S. Shah, Forecasting traffic congestion using ARIMA modeling.In 2019 15th international wireless communications & mobile computing conference., 2019, pp. 1227-1232.IEEE,
[http://dx.doi.org/10.1109/IWCMC.2019.8766698]
[62]
A.O. Mohamed, "Modeling and forecasting somali economic growth using ARIMA models", Forecasting, vol. 4, no. 4, pp. 1038-1050, 2022.
[http://dx.doi.org/10.3390/forecast4040056]
[63]
J. Cifuentes, G. Marulanda, A. Bello, and J. Reneses, "Air temperature forecasting using machine learning techniques: A review", Energies, vol. 13, no. 16, p. 4215, 2020.
[http://dx.doi.org/10.3390/en13164215]
[64]
T.T.K. Tran, S.M. Bateni, S.J. Ki, and H. Vosoughifar, "A review of neural networks for air temperature forecasting", Water, vol. 13, no. 9, p. 1294, 2021.
[http://dx.doi.org/10.3390/w13091294]
[65]
N. Azizi, M. Yaghoubirad, M. Farajollahi, and A. Ahmadi, "Deep learning based long-term global solar irradiance and temperature forecasting using time series with multi-step multivariate output", Renew. Energy, vol. 206, pp. 135-147, 2023.
[http://dx.doi.org/10.1016/j.renene.2023.01.102]
[66]
Z. Zhang, and Y. Dong, "Temperature forecasting via convolutional recurrent neural networks based on time-series data", Complexity, vol. 2020, pp. 1-8, 2020.
[http://dx.doi.org/10.1155/2020/3536572]
[67]
H. Sanikhani, R.C. Deo, P. Samui, O. Kisi, C. Mert, R. Mirabbasi, S. Gavili, and Z.M. Yaseen, "Survey of different data-intelligent modeling strategies for forecasting air temperature using geographic information as model predictors", Comput. Electron. Agric., vol. 152, pp. 242-260, 2018.
[http://dx.doi.org/10.1016/j.compag.2018.07.008]
[68]
E. Haque, S. Tabassum, and E. Hossain, "A comparative analysis of deep neural networks for hourly temperature forecasting", IEEE Access, vol. 9, pp. 160646-160660, 2021.
[http://dx.doi.org/10.1109/ACCESS.2021.3131533]
[69]
V. Gundu, and S.P. Simon, "Short term solar power and temperature forecast using recurrent neural networks", Neural Process. Lett., vol. 53, no. 6, pp. 4407-4418, 2021.
[http://dx.doi.org/10.1007/s11063-021-10606-7]
[70]
T. Thi Kieu Tran, T. Lee, J.Y. Shin, J.S. Kim, and M. Kamruzzaman, "Deep learning-based maximum temperature forecasting assisted with meta-learning for hyperparameter optimization", Atmosphere, vol. 11, no. 5, p. 487, 2020.
[http://dx.doi.org/10.3390/atmos11050487]
[71]
A. Ozbek, A. Sekertekin, M. Bilgili, and N. Arslan, "Prediction of 10-min, hourly, and daily atmospheric air temperature: comparison of LSTM, ANFIS-FCM, and ARMA", Arab. J. Geosci., vol. 14, no. 7, p. 622, 2021.
[http://dx.doi.org/10.1007/s12517-021-06982-y]
[72]
Y.T. Tsai, Y.R. Zeng, and Y.S. Chang, "Air pollution forecasting using RNN with LSTM", 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pp. 1074-1079, 2018.IEEE.,
[http://dx.doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00178]
[73]
Y.S. Chang, H.T. Chiao, S. Abimannan, Y.P. Huang, Y.T. Tsai, and K.M. Lin, "An LSTM-based aggregated model for air pollution forecasting", Atmos. Pollut. Res., vol. 11, no. 8, pp. 1451-1463, 2020.
[http://dx.doi.org/10.1016/j.apr.2020.05.015]
[74]
S. Abimannan, Y.S. Chang, and C.Y. Lin, "Air pollution forecasting using LSTM-multivariate regression model. In Internet of Vehicles. Technologies and Services Toward Smart Cities: 6th International Conference, IOV 2019, Kaohsiung, Taiwan, November 18–21, 2019", Proceedings, vol. 6, pp. 318-326, 2020.
[75]
S.V. Belavadi, and S. Rajagopal, "R. R, and R. Mohan, “Air quality forecasting using LSTM RNN and wireless sensor networks”", Procedia Comput. Sci., vol. 170, pp. 241-248, 2020.
[http://dx.doi.org/10.1016/j.procs.2020.03.036]
[76]
M.S. Hossain, and H. Mahmood, "Short-term load forecasting using an LSTM neural network 2020 IEEE Power and Energy Conference at Illinois (PECI) 27-28 February 2020,Champaign, IL, USA,",
[http://dx.doi.org/10.1109/PECI48348.2020.9064654]
[77]
B.S. Kwon, R.J. Park, and K.B. Song, "Short-term load forecasting based on deep neural networks using LSTM layer", J. Electr. Eng. Technol., vol. 15, no. 4, pp. 1501-1509, 2020.
[http://dx.doi.org/10.1007/s42835-020-00424-7]
[78]
T. Mathonsi, and T.L. van Zyl, "Prediction interval construction for multivariate point forecasts using deep learning", In 2020 7th International Conference on Soft Computing & Machine Intelligence (ISCMI), 2020 14-15 November 2020,Stockholm, Sweden,, 2020, pp. 88-95
[http://dx.doi.org/10.1109/ISCMI51676.2020.9311603]
[79]
A. Khosravi, S. Nahavandi, D. Creighton, and A.F. Atiya, "Comprehensive review of neural network-based prediction intervals and new advances", IEEE Trans. Neural Netw., vol. 22, no. 9, pp. 1341-1356, 2011.
[http://dx.doi.org/10.1109/TNN.2011.2162110] [PMID: 21803683]
[80]
D. Torregrossa, J.Y. Le Boudec, and M. Paolone, "Model-free computation of ultra-short-term prediction intervals of solar irradiance", Sol. Energy, vol. 124, pp. 57-67, 2016.
[http://dx.doi.org/10.1016/j.solener.2015.11.017]
[81]
M. Zdravkovi, "ć, I. Ćirić, and M. Ignjatović, "Explainable heat demand forecasting for the novel control strategies of district heating systems"", Annu. Rev. Contr., vol. 53, pp. 405-413, 2022.
[http://dx.doi.org/10.1016/j.arcontrol.2022.03.009]
[82]
J. Belikov, M. Meas, R. Machlev, A. Kose, A. Tepljakov, and L. Loo, "Explainable AI based fault detection and diagnosis system for air handling units Proceedings of the International Conference on Informatics in Control, Automation and Robotics", 2022 Lisbon, Portugal,
[http://dx.doi.org/10.5220/0011350000003271]
[83]
A. Singh, M.R. Bhatnagar, and R.K. Mallik, "Secrecy outage performance of SWIPT cognitive radio network with imperfect CSI", IEEE Access, vol. 8, pp. 3911-3919, 2020.
[http://dx.doi.org/10.1109/ACCESS.2019.2962382]
[84]
M.R. Maarif, A.R. Saleh, M. Habibi, N.L. Fitriyani, and M. Syafrudin, "Energy usage forecasting model based on long short-term memory (lstm) and explainable artificial intelligence (XAI)", Information, vol. 14, no. 5, p. 265, 2023.
[http://dx.doi.org/10.3390/info14050265]
[85]
J. Moon, S. Rho, and S.W. Baik, "Toward explainable electrical load forecasting of buildings: A comparative study of tree-based ensemble methods with Shapley values", Sustain. Energy Technol. Assess., vol. 54, p. 102888, 2022.
[http://dx.doi.org/10.1016/j.seta.2022.102888]
[86]
W.J. Chung, and C. Liu, "Analysis of input parameters for deep learning-based load prediction for office buildings in different climate zones using eXplainable Artificial Intelligence", Energy Build., vol. 276, p. 112521, 2022.
[http://dx.doi.org/10.1016/j.enbuild.2022.112521]
[87]
H. Lee, H. Lim, and B. Lee, Analysis of EV charging load impact on distribution network using XAI technique., 2022.
[http://dx.doi.org/10.1049/icp.2022.0686]
[88]
R. Machlev, L. Heistrene, M. Perl, K.Y. Levy, J. Belikov, S. Mannor, and Y. Levron, "Explainable artificial intelligence (XAI) techniques for energy and power systems: Review, challenges and opportunities", Energy and AI, vol. 9, p. 100169, 2022.
[http://dx.doi.org/10.1016/j.egyai.2022.100169]
[89]
Y. Golizadeh Akhlaghi, K. Aslansefat, X. Zhao, S. Sadati, A. Badiei, X. Xiao, S. Shittu, Y. Fan, and X. Ma, "Hourly performance forecast of a dew point cooler using explainable Artificial Intelligence and evolutionary optimisations by 2050", Appl. Energy, vol. 281, p. 116062, 2021.
[http://dx.doi.org/10.1016/j.apenergy.2020.116062]
[90]
R. Kesavan, M. Muthian, K. Sudalaimuthu, S. Sundarsingh, and S. Krishnan, "ARIMA modeling for forecasting land surface temperature and determination of urban heat island using remote sensing techniques for Chennai city, India", Arab. J. Geosci., vol. 14, no. 11, p. 1016, 2021.
[http://dx.doi.org/10.1007/s12517-021-07351-5]
[91]
S. Saab, E. Badr, and G. Nasr, "Univariate modeling and forecasting of energy consumption: the case of electricity in Lebanon", Energy, vol. 26, no. 1, pp. 1-14, 2001.
[http://dx.doi.org/10.1016/S0360-5442(00)00049-9]
[92]
Q.Q. He, C. Wu, and Y.W. Si, "LSTM with particle Swam optimization for sales forecasting", Electron. Commerce Res. Appl., vol. 51, p. 101118, 2022.
[http://dx.doi.org/10.1016/j.elerap.2022.101118]
[93]
S.F. Ahmed, Short-term electrical load demand forecasting based on lstm and rnn deep neural networks Math. Probl. Eng., vol. p. 2022, 2022.
[94]
A. Haque, and S. Rahman, "Short-term electrical load forecasting through heuristic configuration of regularized deep neural network", Appl. Soft Comput., vol. 122, p. 108877, 2022.
[http://dx.doi.org/10.1016/j.asoc.2022.108877]
[95]
"Announcing the enhanced power data access viewer (beta),", Available from: https://power.larc.nasa.gov/data-access-viewer/
[96]
G.U. Yule, On a method of investigating periodicities in disturbed series with special reference to Wolfer’s sunspot numbers., Statistical Papers of George Udny Yule, 1971, pp. 389-420.
[97]
R. Shibata, "Selection of the order of an autoregressive model by Akaike’s information criterion", Biometrika, vol. 63, no. 1, pp. 117-126, 1976.
[http://dx.doi.org/10.1093/biomet/63.1.117]
[98]
M. Geurts, "Time series analysis: Forecasting and control", JMR, vol. 14, p. 269, 1977.
[http://dx.doi.org/10.2307/3150485]
[99]
J.L. Elman, "Finding structure in time", Cogn. Sci., vol. 14, no. 2, pp. 179-211, 1990.
[http://dx.doi.org/10.1207/s15516709cog1402_1]
[100]
S. Hochreiter, and J. Schmidhuber, "Long short-term memory", Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.
[http://dx.doi.org/10.1162/neco.1997.9.8.1735] [PMID: 9377276]
[101]
M.T. Ribeiro, S. Singh, and C. Guestrin, "Why should i trust you?", "Explaining the predictions of any classifier", Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp. 1135-1144, 2016.
[http://dx.doi.org/10.1145/2939672.2939778]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy