Generic placeholder image

Current Vascular Pharmacology

Editor-in-Chief

ISSN (Print): 1570-1611
ISSN (Online): 1875-6212

Research Article

QTc Prolongation to Predict Mortality in Patients Admitted with COVID-19 Infection: An Observational Study

Author(s): Andrea Sartorio, Giulia Burrei, Luca Cristin, Mirko Zoncapè, Michele Carlin, Enrico Tadiello, Pietro Minuz, Andrea Dalbeni and Simone Romano*

Volume 22, Issue 2, 2024

Published on: 08 December, 2023

Page: [106 - 121] Pages: 16

DOI: 10.2174/0115701611250248231114114557

Price: $65

Abstract

Background: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes Coronavirus disease 2019 (COVID-19), characterized by pulmonary infection ranging from asymptomatic forms to respiratory insufficiency and death. Evidence of cardiac involvement in COVID-19 is increasing, and systemic inflammation or direct heart damage by SARS-CoV-2 can prolong the corrected QT interval (QTc).

Methods: In this observational study, a total of 333 consecutive patients admitted to the Covid Center of Verona University Hospital from November 2020 to April 2021 were included. Patients with bundle branch block, pacemaker-controlled heart rhythm and heart rate >120 beats/min were excluded. A complete electrocardiogram (ECG) was performed at admission, and QTc values of ≥440 ms for males and ≥460 ms for females were considered prolonged.

Results: Overall, 153 patients had prolonged QTc (45.5%). In multivariate logistic regression analysis, male sex (odds ratio (OR)=6.612, p=0.046), troponin (OR=1.04, p=0.015) and lymphocyte count (OR=3.047, p=0.019) were independently associated with QTc prolongation. Multivariate logistic regression showed that QTc was independently associated with mortality (OR=4.598, p=0.036). Age, sex, the ratio between the partial pressure of oxygen (PaO2) and the fraction of inspired oxygen (FiO2) (P/F), and fibrosis-4 index for liver fibrosis (FIB-4) were also independently associated with mortality.

Conclusion: QTc interval prolongation appears to be a frequent finding in patients with COVID-19. Moreover, prolonged QTc may be predictive of more severe forms of COVID-19 and worse outcome.

Next »
Graphical Abstract

[1]
COVID-19 Map [Internet]. Johns Hopkins Coronavirus Resource Center. Available from: https://coronavirus.jhu.edu/map.html
[2]
Livanos AE, Jha D, Cossarini F, et al. Intestinal host response to sars-cov-2 infection and covid-19 outcomes in patients with gastrointestinal symptoms. Gastroenterology 2021; 160(7): 2435-2450.e34.
[http://dx.doi.org/10.1053/j.gastro.2021.02.056] [PMID: 33676971]
[3]
Higgins V, Sohaei D, Diamandis EP, Prassas I. COVID-19: from an acute to chronic disease? Potential long-term health consequences. Crit Rev Clin Lab Sci 2021; 58(5): 297-310.
[http://dx.doi.org/10.1080/10408363.2020.1860895] [PMID: 33347790]
[4]
Myall KJ, Mukherjee B, Castanheira AM, et al. Persistent post-COVID-19 interstitial lung disease. An observational study of corticosteroid treatment. Ann Am Thorac Soc 2021; 18(5): 799-806.
[http://dx.doi.org/10.1513/AnnalsATS.202008-1002OC] [PMID: 33433263]
[5]
Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential effects of coronaviruses on the cardiovascular system: A review. JAMA Cardiol 2020; 5(7): 831-40.
[http://dx.doi.org/10.1001/jamacardio.2020.1286] [PMID: 32219363]
[6]
Pesce M, Agostoni P, Bøtker HE, et al. COVID-19-related cardiac complications from clinical evidences to basic mechanisms: opinion paper of the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res 2021; 117(10): 2148-60.
[http://dx.doi.org/10.1093/cvr/cvab201] [PMID: 34117887]
[7]
Magadum A, Kishore R. Cardiovascular manifestations of COVID-19 infection. Cells 2020; 9(11): 2508.
[http://dx.doi.org/10.3390/cells9112508] [PMID: 33228225]
[8]
Bevilacqua M, De Togni P, Cattazzo F, et al. Global longitudinal strain to predict respiratory failure and death in patients admitted for COVID-19-related disease. Am J Cardiol 2022; 165: 109-15.
[http://dx.doi.org/10.1016/j.amjcard.2021.10.046] [PMID: 34895871]
[9]
Lazzerini PE, Acampa M, Laghi-Pasini F, et al. Cardiac arrest risk during acute infections: Systemic inflammation directly prolongs QTc interval via cytokine-mediated effects on potassium channel expression. Circ Arrhythm Electrophysiol 2020; 13(8): e008627.
[http://dx.doi.org/10.1161/CIRCEP.120.008627] [PMID: 32654514]
[10]
Bhatla A, Mayer MM, Adusumalli S, et al. COVID-19 and cardiac arrhythmias. Heart Rhythm 2020; 17(9): 1439-44.
[http://dx.doi.org/10.1016/j.hrthm.2020.06.016] [PMID: 32585191]
[11]
Dherange P, Lang J, Qian P, et al. Arrhythmias and COVID-19. JACC Clin Electrophysiol 2020; 6(9): 1193-204.
[http://dx.doi.org/10.1016/j.jacep.2020.08.002] [PMID: 32972561]
[12]
Correale M, Croella F, Leopizzi A, et al. The evolving phenotypes of cardiovascular disease during COVID-19 pandemic. Cardiovasc Drugs Ther 2023; 37(2): 341-51.
[http://dx.doi.org/10.1007/s10557-021-07217-8] [PMID: 34328581]
[13]
Rubin GA, Desai AD, Chai Z, et al. Cardiac corrected QT interval changes among patients treated for COVID-19 infection during the early phase of the pandemic. JAMA Netw Open 2021; 4(4): e216842.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.6842] [PMID: 33890991]
[14]
Yu WL, Toh HS, Liao CT, Chang WT. A double-edged sword—cardiovascular concerns of potential anti-COVID-19 drugs. Cardiovasc Drugs Ther 2021; 35(2): 205-14.
[http://dx.doi.org/10.1007/s10557-020-07024-7] [PMID: 32557011]
[15]
Laboratory testing of 2019 novel coronavirus (2019-nCoV) in suspected human cases: interim guidance. 2021. Available from: https://www.who.int/publications-detail-redirect/laboratory-testing-of-2019-novel-coronavirus-(-2019-ncov)-in-suspected-human-cases-interim-guidance-17-january-2020
[16]
Camerotto A, Muraro V, Mazzetto A, Sartorio A. L’esplicitazione nel referto dei cicli nell’analisi molecolare di SARS-CoV-2: cui prodest? Riv Ital Med Lab 2021; 17(1): 47-9.
[http://dx.doi.org/10.23736/S1825-859X.21.00092-X]
[17]
Nachimuthu S, Assar MD, Schussler JM. Drug-induced QT interval prolongation: Mechanisms and clinical management. Ther Adv Drug Saf 2012; 3(5): 241-53.
[http://dx.doi.org/10.1177/2042098612454283] [PMID: 25083239]
[18]
Hooks M, Bart B, Vardeny O, Westanmo A, Adabag S. Effects of hydroxychloroquine treatment on QT interval. Heart Rhythm 2020; 17(11): 1930-5.
[http://dx.doi.org/10.1016/j.hrthm.2020.06.029] [PMID: 32610165]
[19]
Vandenberk B, Vandael E, Robyns T, et al. Which QT correction formulae to use for QT monitoring? J Am Heart Assoc 2016; 5(6): e003264.
[http://dx.doi.org/10.1161/JAHA.116.003264] [PMID: 27317349]
[20]
Corrado D, Pelliccia A, Bjørnstad HH, et al. Cardiovascular pre-participation screening of young competitive athletes for prevention of sudden death: proposal for a common European protocol. Eur Heart J 2005; 26(5): 516-24.
[http://dx.doi.org/10.1093/eurheartj/ehi108] [PMID: 15689345]
[21]
Johnson JN, Ackerman MJ. QTc: how long is too long? Br J Sports Med 2009; 43(9): 657-62.
[http://dx.doi.org/10.1136/bjsm.2008.054734] [PMID: 19734499]
[22]
Mohamed Ali S, Musa A, Omar Muhammed K, et al. Prolonged corrected QT interval in hospitalized patients with coronavirus disease 2019 in Dubai, United Arab Emirates: A single-center, retrospective study. J Int Med Res 2021; 49(11)
[http://dx.doi.org/10.1177/03000605211056834] [PMID: 34851769]
[23]
Santus P, Radovanovic D, Saderi L, et al. Severity of respiratory failure at admission and in-hospital mortality in patients with COVID-19: a prospective observational multicentre study. BMJ Open 2020; 10(10): e043651.
[http://dx.doi.org/10.1136/bmjopen-2020-043651] [PMID: 33040020]
[24]
Bucci T, Galardo G, Gandini O, et al. Fibrosis-4 (FIB-4) Index and mortality in COVID-19 patients admitted to the emergency department. Intern Emerg Med 2022; 17(6): 1777-84.
[http://dx.doi.org/10.1007/s11739-022-02997-9] [PMID: 35624344]
[25]
Wu D, Wu X, Huang J, Rao Q, Zhang Q, Zhang W. Lymphocyte subset alterations with disease severity, imaging manifestation, and delayed hospitalization in COVID-19 patients. BMC Infect Dis 2021; 21(1): 631.
[http://dx.doi.org/10.1186/s12879-021-06354-7] [PMID: 34210280]
[26]
Huang W, Berube J, McNamara M, et al. Lymphocyte subset counts in COVID-19 patients: A Meta-Analysis. Cytometry A 2020; 97(8): 772-6.
[http://dx.doi.org/10.1002/cyto.a.24172] [PMID: 32542842]
[27]
Vink AS, Clur SAB, Wilde AAM, Blom NA. Effect of age and gender on the QTc-interval in healthy individuals and patients with long-QT syndrome. Trends Cardiovasc Med 2018; 28(1): 64-75.
[http://dx.doi.org/10.1016/j.tcm.2017.07.012] [PMID: 28869094]
[28]
Masuoka HC, Chalasani N. Nonalcoholic fatty liver disease: An emerging threat to obese and diabetic individuals. Ann N Y Acad Sci 2013; 1281(1): 106-22.
[http://dx.doi.org/10.1111/nyas.12016] [PMID: 23363012]
[29]
Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 2020; 41(2): 255-323.
[http://dx.doi.org/10.1093/eurheartj/ehz486] [PMID: 31497854]
[30]
McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021; 42(36): 3599-726.
[http://dx.doi.org/10.1093/eurheartj/ehab368] [PMID: 34447992]
[31]
Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 2020; 41(3): 407-77.
[http://dx.doi.org/10.1093/eurheartj/ehz425] [PMID: 31504439]
[32]
Gupta N, Malhotra N, Ish P. GOLD 2021 guidelines for COPD-what’s new and why. Adv Respir Med 2021; 89(3): 344-6.
[http://dx.doi.org/10.5603/ARM.a2021.0015] [PMID: 33881161]
[33]
Ginès P, Krag A, Abraldes JG, Solà E, Fabrellas N, Kamath PS. Liver cirrhosis. Lancet 2021; 398(10308): 1359-76.
[http://dx.doi.org/10.1016/S0140-6736(21)01374-X] [PMID: 34543610]
[34]
Navaneethan SD, Zoungas S, Caramori ML, et al. Diabetes management in chronic kidney disease: synopsis of the KDIGO 2022 Clinical Practice Guideline Update. Ann Intern Med 2023; 176(3): 381-7.
[http://dx.doi.org/10.7326/M22-2904] [PMID: 36623286]
[35]
Farré N, Mojón D, Llagostera M, et al. Prolonged QT interval in SARS-CoV-2 infection: prevalence and prognosis. J Clin Med 2020; 9(9): 2712.
[http://dx.doi.org/10.3390/jcm9092712] [PMID: 32839385]
[36]
Banai A, Szekely Y, Lupu L, et al. QT interval prolongation is a novel predictor of 1-year mortality in patients with COVID-19 infection. Front Cardiovasc Med 2022; 9: 869089.
[http://dx.doi.org/10.3389/fcvm.2022.869089] [PMID: 35757338]
[37]
Al-Zakhari R, Atere M, Lim W, et al. Corrected QT interval prolongation, elevated troponin, and mortality in hospitalized COVID-19 patients. Cardiol Res 2021; 12(4): 258-64.
[http://dx.doi.org/10.14740/cr1276] [PMID: 34349868]
[38]
Barbosa S, Muñoz OM, Cañas A, Garcia AA. Prolongation of the QTc interval at admission is associated with increased mortality in patients with SARS-COV-2 during hospitalization. Arq Bras Cardiol 2023; 120(1): e20220155.
[http://dx.doi.org/10.36660/abc.20220155] [PMID: 36629599]
[39]
Mazzanti A, Briani M, Kukavica D, et al. Association of hydroxychloroquine with QTc interval in patients with COVID-19. Circulation 2020; 142(5): 513-5.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.048476] [PMID: 32501756]
[40]
Santoro F, Monitillo F, Raimondo P, et al. QTc interval prolongation and life-threatening arrhythmias during hospitalization in patients with COVID-19. Results from a multi-center prospective registry. Clin Infect Dis 2021; 73(11): e4031-8.
[http://dx.doi.org/10.1093/cid/ciaa1578] [PMID: 33098645]
[41]
Liu D, Zeng X, Ding Z, Lv F, Mehta JL, Wang X. Adverse cardiovascular effects of anti-COVID-19 drugs. Front Pharmacol 2021; 12: 699949.
[http://dx.doi.org/10.3389/fphar.2021.699949] [PMID: 34512335]
[42]
Naqvi IH, Alam MT, Rehan M, Mahmood K, Aurangzeb M, Talib A. COVID-19-associated coagulopathy and thromboembolism: determination of their patterns and risk factors as predictors of mortality among severe COVID-19 patients. Curr Vasc Pharmacol 2022; 20(1): 77-86.
[http://dx.doi.org/10.2174/1570161119666211014162409] [PMID: 34649490]
[43]
Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat Rev Cardiol 2020; 17(9): 543-58.
[http://dx.doi.org/10.1038/s41569-020-0413-9] [PMID: 32690910]
[44]
Nägele MP, Haubner B, Tanner FC, Ruschitzka F, Flammer AJ. Endothelial dysfunction in COVID-19: Current findings and therapeutic implications. Atherosclerosis 2020; 314: 58-62.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.10.014] [PMID: 33161318]
[45]
Bansal M. Cardiovascular disease and COVID-19. Diabetes Metab Syndr 2020; 14(3): 247-50.
[http://dx.doi.org/10.1016/j.dsx.2020.03.013] [PMID: 32247212]
[46]
Kang Y, Chen T, Mui D, et al. Cardiovascular manifestations and treatment considerations in COVID-19. Heart 2020; 106(15): 1132-41.
[http://dx.doi.org/10.1136/heartjnl-2020-317056] [PMID: 32354800]
[47]
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020; 395(10234): 1417-8.
[http://dx.doi.org/10.1016/S0140-6736(20)30937-5] [PMID: 32325026]
[48]
Akkaif MA, Sha’aban A, Cesaro A, et al. The impact of SARS-CoV-2 treatment on the cardiovascular system: an updated review. Inflammopharmacology 2022; 30(4): 1143-51.
[http://dx.doi.org/10.1007/s10787-022-01009-8] [PMID: 35701719]
[49]
Talasaz AH, Kakavand H, Van Tassell B, et al. Cardiovascular complications of COVID-19: pharmacotherapy perspective. Cardiovasc Drugs Ther 2021; 35(2): 249-59.
[http://dx.doi.org/10.1007/s10557-020-07037-2] [PMID: 32671601]
[50]
Reyskens KMSE, Fisher TL, Schisler JC, et al. Cardio-metabolic effectsof HIV protease inhibitors (lopinavir/ritonavir). PLoS One 2013; 8(9): e73347.
[http://dx.doi.org/10.1371/journal.pone.0073347] [PMID: 24098634]
[51]
Badiou S, Merle De Boever C, Dupuy AM, Baillat V, Cristol JP, Reynes J. Decrease in LDL size in HIV-positive adults before and after lopinavir/ritonavir-containing regimen: an index of atherogenicity? Atherosclerosis 2003; 168(1): 107-13.
[http://dx.doi.org/10.1016/S0021-9150(03)00058-3] [PMID: 12732393]
[52]
Gérard A, Romani S, Fresse A, et al. “Off-label” use of hydroxychloroquine, azithromycin, lopinavir-ritonavir and chloroquine in COVID-19: A survey of cardiac adverse drug reactions by the French Network of Pharmacovigilance Centers. Therapie 2020; 75(4): 371-9.
[http://dx.doi.org/10.1016/j.therap.2020.05.002] [PMID: 32418730]
[53]
A living WHO guideline on drugs for covid-19-The BMJ Available from: https://www.bmj.com/content/370/bmj.m3379 (Accessed on: 2023 Feb 19).
[54]
Gubitosa JC, Kakar P, Gerula C, et al. Marked sinus bradycardia associated with remdesivir in COVID-19: A case and literature review. JACC Case Rep 2020; 2(14): 2260-4.
[http://dx.doi.org/10.1016/j.jaccas.2020.08.025] [PMID: 33163977]
[55]
Gupta AK, Parker BM, Priyadarshi V, Parker J. Cardiac adverse events with remdesivir in COVID-19 infection. Cureus 2020; 12(10): e11132.
[http://dx.doi.org/10.7759/cureus.11132] [PMID: 33240723]
[56]
Touafchia A, Bagheri H, Carrié D, et al. Serious bradycardia and remdesivir for coronavirus 2019 (COVID-19): A new safety concerns. Clin Microbiol Infect 2021; 27(5): 791.e5-8.
[http://dx.doi.org/10.1016/j.cmi.2021.02.013] [PMID: 33647441]
[57]
Alattar R, Ibrahim TBH, Shaar SH, et al. Tocilizumab for the treatment of severe coronavirus disease 2019. J Med Virol 2020; 92(10): 2042-9.
[http://dx.doi.org/10.1002/jmv.25964] [PMID: 32369191]
[58]
Haghjoo M, Golipra R, Kheirkhah J, et al. Effect of COVID-19 medications on corrected QT interval and induction of torsade de pointes: Results of a multicenter national survey. Int J Clin Pract 2021; 75(7): e14182.
[http://dx.doi.org/10.1111/ijcp.14182] [PMID: 33759318]
[59]
Michaud V, Dow P, Al Rihani SB, et al. Risk assessment of drug-induced long QT syndrome for some COVID-19 repurposed drugs. Clin Transl Sci 2021; 14(1): 20-8.
[http://dx.doi.org/10.1111/cts.12882] [PMID: 32888379]
[60]
El-Sherif N, Pedalino R, Himel HIV. Role of pharmacotherapy in cardiac ion channelopathies. Curr Vasc Pharmacol 2009; 7(3): 358-66.
[http://dx.doi.org/10.2174/157016109788340794] [PMID: 19601860]
[61]
Saleh M, Gabriels J, Chang D, et al. Safely administering potential QTc prolonging therapy across a large health care system in the COVID-19 era. Circ Arrhythm Electrophysiol 2020; 13(11): e008937.
[http://dx.doi.org/10.1161/CIRCEP.120.008937] [PMID: 33003964]
[62]
Bianco M, Biolè CA, Campagnuolo S, et al. COVID-19 therapies and their impact on QT interval prolongation: A multicentre retrospective study on 196 patients. Int J Cardiol Heart Vasc 2020; 30: 100637.
[http://dx.doi.org/10.1016/j.ijcha.2020.100637] [PMID: 32953967]
[63]
Diaz-Arocutipa C, Brañez-Condorena A, Hernandez AV. QTc prolongation in COVID -19 patients treated with hydroxychloroquine, chloroquine, azithromycin, or lopinavir/ritonavir: A systematic review and meta-analysis. Pharmacoepidemiol Drug Saf 2021; 30(6): 694-706.
[http://dx.doi.org/10.1002/pds.5234] [PMID: 33772933]
[64]
Chorin E, Dai M, Shulman E, et al. The QT interval in patients with COVID-19 treated with hydroxychloroquine and azithromycin. Nat Med 2020; 26(6): 808-9.
[http://dx.doi.org/10.1038/s41591-020-0888-2] [PMID: 32488217]
[65]
Esmel-Vilomara R, Dolader P, Sabaté-Rotes A, Soriano-Arandes A, Gran F, Rosés-Noguer F. [QTc interval prolongation in patients infected with SARS-CoV-2 and treated with antiviral drugs]. An Pediatr 2022; 96(3): 213-20.
[http://dx.doi.org/10.1016/j.anpedi.2021.04.009] [PMID: 33995537]
[66]
Mahmud R, Gray A, Nabeebaccus A, Whyte MB. Incidence and outcomes of long QTc in acute medical admissions. Int J Clin Pract 2018; 72(11): e13250.
[http://dx.doi.org/10.1111/ijcp.13250] [PMID: 30222237]
[67]
Wolf F, Homiedi M, Elias M, Freedberg N, Goldstein LH. Does infection prolong the QT interval? Intern Med J 2020; 50(9): 1078-84.
[http://dx.doi.org/10.1111/imj.14741] [PMID: 31908115]
[68]
Taooka Y, Takezawa G, Ohe M, Sutani A, Isobe T. Multiple logistic regression analysis of risk factors in elderly pneumonia patients: QTc interval prolongation as a prognostic factor. Multidiscip Respir Med 2014; 9(1): 59.
[http://dx.doi.org/10.1186/2049-6958-9-59] [PMID: 25705382]
[69]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[70]
Camerotto A, Sartorio A, Mazzetto A, et al. Early phase management of the SARS-CoV-2 pandemic in the geographic area of the Veneto region, in one of the world’s oldest populations. Int J Environ Res Public Health 2020; 17(23): 9045.
[http://dx.doi.org/10.3390/ijerph17239045] [PMID: 33291638]
[71]
Haitao T, Vermunt JV, Abeykoon J, et al. COVID-19 and sex differences: Mechanisms and biomarkers. Mayo Clin Proc 2020; 95(10): 2189-203.
[http://dx.doi.org/10.1016/j.mayocp.2020.07.024] [PMID: 33012349]
[72]
Bayés de Luna A, Goldwasser D, Fiol M, Bayés-Genis A. Surface electrocardiography. In: Fuster V, Harrington RA, Narula J, Eapen ZJ, Eds. Hurst’s The Heart. (14th ed.), New York, NY: McGraw-Hill Education 2017. Available from: accessmedicine.mhmedical.com/content.aspx?aid=1161724804
[73]
Mantovani A, Beatrice G, Dalbeni A. Coronavirus disease 2019 and prevalence of chronic liver disease: A meta-analysis. Liver Int 2020; 40(6): 1316-20.
[http://dx.doi.org/10.1111/liv.14465] [PMID: 32329563]
[74]
Bertini M, D’Aniello E, Cereda A, et al. The combination of chest computed tomography and standard electrocardiogram provides prognostic information and pathophysiological insights in COVID-19 pneumonia. J Clin Med 2021; 10(14): 3031.
[http://dx.doi.org/10.3390/jcm10143031] [PMID: 34300197]
[75]
Gabarre P, Dumas G, Dupont T, Darmon M, Azoulay E, Zafrani L. Acute kidney injury in critically ill patients with COVID-19. Intensive Care Med 2020; 46(7): 1339-48.
[http://dx.doi.org/10.1007/s00134-020-06153-9] [PMID: 32533197]
[76]
Piano S, Dalbeni A, Vettore E, et al. Abnormal liver function tests predict transfer to intensive care unit and death in COVID-19. Liver Int 2020; 40(10): 2394-406.
[http://dx.doi.org/10.1111/liv.14565] [PMID: 32526083]
[77]
Ibáñez-Samaniego L, Bighelli F, Usón C, et al. Elevation of liver fibrosis index FIB-4 is associated with poor clinical outcomes in patients with COVID-19. J Infect Dis 2020; 222(5): 726-33.
[http://dx.doi.org/10.1093/infdis/jiaa355] [PMID: 32563190]
[78]
Li Y, Regan J, Fajnzylber J, et al. Liver fibrosis index FIB-4 is associated with mortality in COVID-19. Hepatol Commun 2021; 5(3): 434-45.
[http://dx.doi.org/10.1002/hep4.1650] [PMID: 34553511]
[79]
Snitker S, Doerfler RM, Soliman EZ, et al. Association of QT-prolonging medication use in CKD with electrocardiographic manifestations. Clin J Am Soc Nephrol 2017; 12(9): 1409-17.
[http://dx.doi.org/10.2215/CJN.12991216] [PMID: 28793999]
[80]
Lepor H, Lepor NE, Hill LA, Trohman RG. The QT interval and selection of alpha-blockers for benign prostatic hyperplasia. Rev Urol 2008; 10(2): 85-91.
[PMID: 18660858]
[81]
Chen A, Stecker E A, Warden B. Direct oral anticoagulant use: a practical guide to common clinical challenges. J Am Heart Assoc 2020; 9(13): e017559.
[http://dx.doi.org/10.1161/JAHA.120.017559] [PMID: 32538234]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy