Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Diverse Pharmacological Potential of Various Substituted Pyrimidine Derivatives

Author(s): Abdulaziz Alsharif, Mamdouh Allahyani, Abdulelah Aljuaid, Ahad Amer Alsaiari, Mazen Mohammed Almehmadi and Mohammad Asif*

Volume 27, Issue 20, 2023

Published on: 06 December, 2023

Page: [1779 - 1798] Pages: 20

DOI: 10.2174/0113852728266665231101112129

Price: $65

Abstract

In many significant bioactive heterocyclic compounds, the six-membered ring pyrimidines play a major role as bioactive components. There is a lot of room for innovation in the fields of medicinal chemistry and the chemical industries because of the numerous pyrimidine synthesis methods and their varied reactions. The pharmacological effects of pyrimidine derivatives include anticonvulsant, antibacterial, antifungal, antiviral, antitubercular, anticancer, antimicrobial, antihypertensive, antiulcer, anti-inflammatory, antimalarial, antioxidant, analgesic, sedative, anti-depressive, antipyretic properties, etc. The synthetic adaptability of pyrimidine has made it possible to create a wide range of structurally different analogs, including analogs from substitution on the pyrimidine ring at various places, which has aided the design of a wide variety of therapeutic targets. This review's goal is to examine the pharmacological effects of numerous pyrimidine derivatives. This review provides an overview of pyrimidine compounds for biological activities and examines the novel pharmacological molecules containing pyrimidine rings in the future.

Graphical Abstract

[1]
Campbell, I.B.; Macdonald, S.J.F.; Procopiou, P.A. Medicinal chemistry in drug discovery in big pharma: Past, present and future. Drug Discov. Today, 2018, 23(2), 219-234.
[http://dx.doi.org/10.1016/j.drudis.2017.10.007] [PMID: 29031621]
[2]
Dinakaran, V.S.; Bomma, B.; Srinivasan, K.K. Fused Pyrimidines: The heterocycle of diverse biological and pharmacological significance. Pharma Chem., 2012, 4(1), 255-265.
[3]
Arora, P.; Arora, V.; Lamba, H.S.; Wadhwa, D. Importance of heterocyclic chemistry: A review. Int. J. Pharm. Sci. Res., 2012, 3(9), 2947-2954.
[4]
Tiwari, K.; Dubey, V.K. Fresh insights into the pyrimidine metabolism in the trypanosomatids. Parasit. Vectors, 2018, 11(1), 87.
[http://dx.doi.org/10.1186/s13071-018-2660-8] [PMID: 29422065]
[5]
Mahapatra, A.; Prasad, T.; Sharma, T. Pyrimidine: a review on anticancer activity with key emphasis on SAR. Future. J. Pharm. Sci., 2021, 7(1), 123.
[http://dx.doi.org/10.1186/s43094-021-00274-8]
[6]
Rashid, H.; Martines, M.A.U.; Duarte, A.P.; Jorge, J.; Rasool, S.; Muhammad, R.; Ahmad, N.; Umar, M.N. Research developments in the syntheses, anti-inflammatory activities and structure-activity relationships of pyrimidines. RSC Advances, 2021, 11(11), 6060-6098.
[http://dx.doi.org/10.1039/D0RA10657G] [PMID: 35423143]
[7]
Parker, W.B. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev., 2009, 109(7), 2880-2893.
[http://dx.doi.org/10.1021/cr900028p] [PMID: 19476376]
[8]
Sahu, M.; Siddiqui, N. A Review on the biological importance of pyrimidines in the new era. Int. J. Pharm. Pharm. Sci., 2016, 8(5), 8-21.
[9]
Al-Harbi, N.O.; Bahashwan, S.A.; Fayed, A.A.; Aboonq, M.S.; Amr, A.E.G.E. Anti-parkinsonism, hypoglycemic and anti-microbial activities of new poly fused ring heterocyclic candidates. Int. J. Biol. Macromol., 2013, 57, 165-173.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.03.019] [PMID: 23500666]
[10]
Beena, K.P.; Suresh, R.; Rajasekaran, A.; Manna, P.K. Dihydropyrimidinones; A versatile scaffold with diverse biological activity. J. Pharm. Sci.Res., 2016, 8(8), 741-746.
[11]
Walter, M.; Herr, P. Re-discovery of pyrimidine salvage as a target in cancer therapy. Cells, 2022, 11(4), 739.
[http://dx.doi.org/10.3390/cells11040739] [PMID: 35203388]
[12]
Siddiqui, A.; Ceppi, P. A non-proliferative role of pyrimidine metabolism in cancer. Mol. Metab., 2020, 35, 100962.
[http://dx.doi.org/10.1016/j.molmet.2020.02.005] [PMID: 32244187]
[13]
Fouda, A.; Abbas, H.A.; Ahmed, E.; Shati, A.; Alfaifi, M.; Elbehairi, S. Synthesis, in vitro antimicrobial and cytotoxic activities of some new pyrazolo[1,5-a]pyrimidine derivatives. Molecules, 2019, 24(6), 1080.
[http://dx.doi.org/10.3390/molecules24061080] [PMID: 30893820]
[14]
Sukach, V.A.; Tkachuk, V.M.; Rusanov, E.B.; Röschenthaler, G.V.; Vovk, M.V. Heterocyclization of N-(1-chloro-2,2,2-trifluoroethylidene)carbamates with β-enaminoesters-a novel synthetic strategy to functionalized trifluoromethylated pyrimidines. Tetrahedron, 2012, 68(40), 8408-8415.
[http://dx.doi.org/10.1016/j.tet.2012.07.099]
[15]
Gondkar, A.S.; Deshmukh, V.K.; Chaudhari, S.R. Synthesis, characterization and in-vitro anti-inflammatory activity of some substituted 1,2,3,4 tetrahydropyrimidine derivatives. Drug Invention Today, 2013, 5(3), 175-181.
[http://dx.doi.org/10.1016/j.dit.2013.04.004]
[16]
Shonle, H.A.; Moment, A. Some new hypnotics of the barbituric acid series. J. Am. Chem. Soc., 1923, 45(1), 243-249.
[http://dx.doi.org/10.1021/ja01654a033]
[17]
Rohilla, A.; Ali, S. Alloxan induced diabetes: Mechanisms and effects. Int. J. Res. Pharm. Biomed. Sci., 2012, 3(2), 819-823.
[18]
Mohamed, M.S.; Awad, S.M.; Abd El-Tawab, N.A.; Ahmed, N.M. An overview on synthesis and biological activity of pyrimidines. World J. Advan. Res. Rev., 2022, 15(1), 272-296.
[http://dx.doi.org/10.30574/wjarr.2022.15.1.0689]
[19]
Selvam, T.P.; James, C.R.; Dniandev, P.V.; Valzita, S.K. Mini review of pyrimidine and fused pyrimidine marketed drugs. Res Pharm., 2012, 2(4), 1-9.
[20]
Jain, K.S.; Chitre, T.S.; Miniyar, P.B.; Kathiravan, M.K.; Bendre, V.S.; Veer, V.S.; Shahane, S.R.; Shishoo, C.J. Biological and medicinal significance of pyrimidines. Curr. Sci., 2006, 6, 793-803.
[21]
Madadi, N.R.; Penthala, N.R.; Janganati, V.; Crooks, P.A. Synthesis and anti-proliferative activity of aromatic substituted 5-((1-benzyl-1H-indol-3-yl)methylene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione analogs against human tumor cell lines. Bioorg. Med. Chem. Lett., 2014, 24(2), 601-603.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.013] [PMID: 24361000]
[22]
Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[23]
Lal, J.; Gupta, S.K.; Thavaselvam, D.; Agarwal, D.D. Design, synthesis, synergistic antimicrobial activity and cytotoxicity of 4-aryl substituted 3,4-dihydropyrimidinones of curcumin. Bioorg. Med. Chem. Lett., 2012, 22(8), 2872-2876.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.056] [PMID: 22440624]
[24]
Hanan, E.J.; Baumgardner, M.; Bryan, M.C.; Chen, Y.; Eigenbrot, C.; Fan, P.; Gu, X.H.; La, H.; Malek, S.; Purkey, H.E.; Schaefer, G.; Schmidt, S.; Sideris, S.; Yen, I.; Yu, C.; Heffron, T.P. 4-Aminoindazolyl-dihydrofuro[3,4- d]pyrimidines as non-covalent inhibitors of mutant epidermal growth factor receptor tyrosine kinase. Bioorg. Med. Chem. Lett., 2016, 26(2), 534-539.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.078] [PMID: 26639762]
[25]
Tawfik, H.A.; Bassyouni, F.; Gamal-Eldeen, A.M.; Abo-Zeid, M.A.; El-Hamouly, W.S. Tumor anti-initiating activity of some novel 3, 4-dihydropyrimidinones. Pharmacol. Rep., 2009, 61(6), 1153-1162.
[http://dx.doi.org/10.1016/S1734-1140(09)70178-1] [PMID: 20081251]
[26]
Cocco, M.T.; Congiu, C.; Onnis, V.; Piras, R. Synthesis and antitumor evaluation of 6-thioxo-, 6-oxo- and 2,4-dioxopyrimidine derivatives. Farmaco, 2001, 56(10), 741-748.
[http://dx.doi.org/10.1016/S0014-827X(01)01123-5] [PMID: 11718266]
[27]
Mohamed, M.S.; Awad, S.M.; Ahmed, N.M. Anticancer activities of 6-aryl-5-cyano-2-thiouracil derivatives. Pharm. Res., 2012, 6(2), 54-60.
[28]
Awad, S.M.; Fathalla, O.A.; Wietrzyk, J.; Milczarek, M.; Soliman, A.M.; Mohamed, M.S. Synthesis of new pyrimidine derivatives and their antiproliferative activity against selected human cancer cell lines. Res. Chem. Intermed., 2015, 41(3), 1789-1801.
[http://dx.doi.org/10.1007/s11164-013-1312-z]
[29]
El-Naggar, A.M.; Abou-El-Regal, M.M.; El-Metwally, S.A.; Sherbiny, F.F.; Eissa, I.H. Synthesis, characterization and molecular docking studies of thiouracil derivatives as potent thymidylate synthase inhibitors and potential anticancer agents. Mol. Divers., 2017, 21(4), 967-983.
[http://dx.doi.org/10.1007/s11030-017-9776-1] [PMID: 28815411]
[30]
Helwa, A.A.; Gedawy, E.M.; Abou-Seri, S.M.; Taher, A.T.; El-Ansary, A.K. Synthesis and bioactivity evaluation of new pyrimidinone-5-carbonitriles as potential anticancer and antimicrobial agents. Res. Chem. Intermed., 2018, 44(4), 2685-2702.
[http://dx.doi.org/10.1007/s11164-018-3254-y]
[31]
Ahmed, N.M.; Youns, M.; Soltan, M.K.; Said, A.M. Design, synthesis, molecular modelling, and biological evaluation of novel substituted pyrimidine derivatives as potential anticancer agents for hepatocellular carcinoma. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1110-1120.
[http://dx.doi.org/10.1080/14756366.2019.1612889] [PMID: 31117890]
[32]
Haffez, H.; Taha, H.; Rabie, M.A.; Awad, S.M.; Zohny, Y.M. Synthesis, biological evaluation and molecular docking studies of novel thiopyrimidine analogue as apoptotic agent with potential anticancer activity. Bioorg. Chem., 2020, 104, 104249.
[http://dx.doi.org/10.1016/j.bioorg.2020.104249] [PMID: 32911199]
[33]
Ahmed, N.M.; Youns, M.M.; Soltan, M.K.; Said, A.M. Design, synthesis, molecular modeling and antitumor evaluation of novel indolyl-pyrimidine derivatives with EGFR inhibitory activity. Molecules, 2021, 26(7), 1838.
[http://dx.doi.org/10.3390/molecules26071838] [PMID: 33805918]
[34]
Becan, L.; Pyra, A.; Rembiałkowska, N.; Bryndal, I. Synthesis, structural characterization and anticancer activity of new 5-trifluoromethyl-2-thioxo-thiazolo[4,5-d]pyrimidine derivatives. Pharmaceuticals, 2022, 15(1), 92.
[http://dx.doi.org/10.3390/ph15010092] [PMID: 35056147]
[35]
Ma, L.Y.; Wang, B.; Pang, L.P.; Zhang, M.; Wang, S.Q.; Zheng, Y.C.; Shao, K.P.; Xue, D.Q.; Liu, H.M. Design and synthesis of novel 1,2,3-triazole-pyrimidine-urea hybrids as potential anticancer agents. Bioorg. Med. Chem. Lett., 2015, 25(5), 1124-1128.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.087] [PMID: 25655718]
[36]
Qin, W.W.; Sang, C.Y.; Zhang, L.L.; Wei, W.; Tian, H.Z.; Liu, H.X.; Chen, S.W.; Hui, L. Synthesis and biological evaluation of 2,4-diaminopyrimidines as selective Aurora A kinase inhibitors. Eur. J. Med. Chem., 2015, 95, 174-184.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.044] [PMID: 25812967]
[37]
Jin, C.H.; Jun, K.Y.; Lee, E.; Kim, S.; Kwon, Y.; Kim, K.; Na, Y. Ethyl 2-(benzylidene)-7-methyl-3-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate analogues as a new scaffold for protein kinase casein kinase 2 inhibitor. Bioorg. Med. Chem., 2014, 22(17), 4553-4565.
[http://dx.doi.org/10.1016/j.bmc.2014.07.037] [PMID: 25131958]
[38]
Ma, L.Y.; Pang, L.P.; Wang, B.; Zhang, M.; Hu, B.; Xue, D.Q.; Shao, K.P.; Zhang, B.L.; Liu, Y.; Zhang, E.; Liu, H.M. Design and synthesis of novel 1,2,3-triazole-pyrimidine hybrids as potential anticancer agents. Eur. J. Med. Chem., 2014, 86, 368-380.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.010] [PMID: 25180925]
[39]
Temburnikar, K.W.; Zimmermann, S.C.; Kim, N.T.; Ross, C.R.; Gelbmann, C.; Salomon, C.E.; Wilson, G.M.; Balzarini, J.; Seley-Radtke, K.L. Antiproliferative activities of halogenated thieno[3,2-d]pyrimidines. Bioorg. Med. Chem., 2014, 22(7), 2113-2122.
[http://dx.doi.org/10.1016/j.bmc.2014.02.033] [PMID: 24631358]
[40]
Abbas, S.E.; Abdel Gawad, N.M.; George, R.F.; Akar, Y.A. Synthesis, antitumor and antibacterial activities of some novel tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivatives. Eur. J. Med. Chem., 2013, 65, 195-204.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.055] [PMID: 23708013]
[41]
Cheng, H.; Hoffman, J.E.; Le, P.T.; Pairish, M.; Kania, R.; Farrell, W.; Bagrodia, S.; Yuan, J.; Sun, S.; Zhang, E.; Xiang, C.; Dalvie, D.; Rahavendran, S.V. Structure-based design, SAR analysis and antitumor activity of PI3K/mTOR dual inhibitors from 4-methylpyridopyrimidinone series. Bioorg. Med. Chem. Lett., 2013, 23(9), 2787-2792.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.020] [PMID: 23506825]
[42]
Fargualy, A.M.; Habib, N.S.; Ismail, K.A.; Hassan, A.M.M.; Sarg, M.T.M. Synthesis, biological evaluation and molecular docking studies of some pyrimidine derivatives. Eur. J. Med. Chem., 2013, 66, 276-295.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.028] [PMID: 23811090]
[43]
Lee, W.; Ortwine, D.F.; Bergeron, P.; Lau, K.; Lin, L.; Malek, S.; Nonomiya, J.; Pei, Z.; Robarge, K.D.; Schmidt, S.; Sideris, S.; Lyssikatos, J.P. A hit to lead discovery of novel N-methylated imidazolo-, pyrrolo-, and pyrazolo-pyrimidines as potent and selective mTOR inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(18), 5097-5104.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.027] [PMID: 23932790]
[44]
Perspicace, E.; Jouan-Hureaux, V.; Ragno, R.; Ballante, F.; Sartini, S.; La Motta, C.; Da Settimo, F.; Chen, B.; Kirsch, G.; Schneider, S.; Faivre, B.; Hesse, S. Design, synthesis and biological evaluation of new classes of thieno[3,2-d]pyrimidinone and thieno[1,2,3]triazine as inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2). Eur. J. Med. Chem., 2013, 63, 765-781.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.022] [PMID: 23583911]
[45]
Xu, Y.; Foulks, J.M.; Clifford, A.; Brenning, B.; Lai, S.; Luo, B.; Parnell, K.M.; Merx, S.; McCullar, M.V.; Kanner, S.B.; Ho, K.K. Synthesis and structure-activity relationship of 2-arylamino-4-aryl-pyrimidines as potent PAK1 inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(14), 4072-4075.
[http://dx.doi.org/10.1016/j.bmcl.2013.05.059] [PMID: 23756368]
[46]
Wu, K.; Ai, J.; Liu, Q.; Chen, T.; Zhao, A.; Peng, X.; Wang, Y.; Ji, Y.; Yao, Q.; Xu, Y.; Geng, M.; Zhang, A. Multisubstituted quinoxalines and pyrido[2,3-d]pyrimidines: Synthesis and SAR study as tyrosine kinase c-Met inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(20), 6368-6372.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.075] [PMID: 22985853]
[47]
Jiao, X.; Kopecky, D.J.; Liu, J.; Liu, J.; Jaen, J.C.; Cardozo, M.G.; Sharma, R.; Walker, N.; Wesche, H.; Li, S.; Farrelly, E.; Xiao, S.H.; Wang, Z.; Kayser, F. Synthesis and optimization of substituted furo[2,3-d]-pyrimidin-4-amines and 7H-pyrrolo[2,3-d]pyrimidin-4-amines as ACK1 inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(19), 6212-6217.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.020] [PMID: 22929232]
[48]
Hu, J.; Wang, Y.; Wei, X.; Wu, X.; Chen, G.; Cao, G.; Shen, X.; Zhang, X.; Tang, Q.; Liang, G.; Li, X. Synthesis and biological evaluation of novel thiazolidinone derivatives as potential anti-inflammatory agents. Eur. J. Med. Chem., 2013, 64, 292-301.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.010] [PMID: 23644212]
[49]
Ashour, H.M.; Shaaban, O.G.; Rizk, O.H.; El-Ashmawy, I.M. Synthesis and biological evaluation of thieno[2′,3′:4,5]pyrimido derovatives. Eur. J. Med. Chem., 2013, 62, 341-351.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.003] [PMID: 23376247]
[50]
Ahmed, N.M.; Nofal, S.; Awad, S.M. Synthesis, molecular modelling and biological evaluation of novel pyrimidine derivatives as anti-inflammatory agents. J. Pharm. Res. Int., 2020, 32(22), 49-67.
[http://dx.doi.org/10.9734/jpri/2020/v32i2230771]
[51]
Abdel-Aziz, S.A.; Taher, E.S.; Lan, P.; Asaad, G.F.; Gomaa, H.A.M.; El-Koussi, N.A.; Youssif, B.G.M. Design, synthesis, and biological evaluation of new pyrimidine-5-carbonitrile derivatives bearing 1,3-thiazole moiety as novel anti-inflammatory EGFR inhibitors with cardiac safety profile. Bioorg. Chem., 2021, 111(April), 104890.
[http://dx.doi.org/10.1016/j.bioorg.2021.104890] [PMID: 33872924]
[52]
Tale, R.H.; Rodge, A.H.; Hatnapure, G.D.; Keche, A.P. The novel 3,4-dihydropyrimidin-2(1H)-one urea derivatives of N-aryl urea: Synthesis, anti-inflammatory, antibacterial and antifungal activity evaluation. Bioorg. Med. Chem. Lett., 2011, 21(15), 4648-4651.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.062] [PMID: 21737269]
[53]
Bahekar, S.S.; Shinde, D.B. Synthesis and anti-inflammatory activity of some [4,6-(4-substituted aryl)-2-thioxo-1,2,3,4-tetrahydro-pyrimidin-5-yl]-acetic acid derivatives. Bioorg. Med. Chem. Lett., 2004, 14(7), 1733-1736.
[http://dx.doi.org/10.1016/j.bmcl.2004.01.039] [PMID: 15026060]
[54]
Townes, J.A.; Golebiowski, A.; Clark, M.P.; Laufersweiler, M.J.; Brugel, T.A.; Sabat, M.; Bookland, R.G.; Laughlin, S.K.; VanRens, J.C.; De, B.; Hsieh, L.C.; Xu, S.C.; Janusz, M.J.; Walter, R.L. The development of new bicyclic pyrazole-based cytokine synthesis inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(19), 4945-4948.
[http://dx.doi.org/10.1016/j.bmcl.2004.07.024] [PMID: 15341957]
[55]
McIver, E.G.; Bryans, J.; Birchall, K.; Chugh, J.; Drake, T.; Lewis, S.J.; Osborne, J.; Smiljanic-Hurley, E.; Tsang, W.; Kamal, A.; Levy, A.; Newman, M.; Taylor, D.; Arthur, J.S.C.; Clark, K.; Cohen, P. Synthesis and structure-activity relationships of a novel series of pyrimidines as potent inhibitors of TBK1/IKKε kinases. Bioorg. Med. Chem. Lett., 2012, 22(23), 7169-7173.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.063] [PMID: 23099093]
[56]
Keche, A.P.; Hatnapure, G.D.; Tale, R.H.; Rodge, A.H.; Birajdar, S.S.; Kamble, V.M. A novel pyrimidine derivatives with aryl urea, thiourea and sulfonamide moieties: Synthesis, anti-inflammatory and antimicrobial evaluation. Bioorg. Med. Chem. Lett., 2012, 22(10), 3445-3448.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.092] [PMID: 22520258]
[57]
Kaspersen, S.J.; Sundby, E.; Charnock, C.; Hoff, B.H. Activity of 6-aryl-pyrrolo[2,3-d]pyrimidine-4-amines to Tetrahymena. Bioorg. Chem., 2012, 44, 35-41.
[http://dx.doi.org/10.1016/j.bioorg.2012.06.003] [PMID: 22832269]
[58]
Suryawanshi, S.N.; Kumar, S.; Shivahare, R.; Pandey, S.; Tiwari, A.; Gupta, S. Design, synthesis and biological evaluation of aryl pyrimidine derivatives as potential leishmanicidal agents. Bioorg. Med. Chem. Lett., 2013, 23(18), 5235-5238.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.060] [PMID: 23910597]
[59]
Mane, U.R.; Li, H.; Huang, J.; Gupta, R.C.; Nadkarni, S.S.; Giridhar, R.; Naik, P.P.; Yadav, M.R. Pyrido[1,2-a]pyrimidin-4-ones as antiplasmodial falcipain-2 inhibitors. Bioorg. Med. Chem., 2012, 20(21), 6296-6304.
[http://dx.doi.org/10.1016/j.bmc.2012.09.008] [PMID: 23040894]
[60]
Kumar, V.P.; Frey, K.M.; Wang, Y.; Jain, H.K.; Gangjee, A.; Anderson, K.S. Substituted pyrrolo[2,3-d]pyrimidines as cryptosporidium hominis thymidylate synthase inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(19), 5426-5428.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.037] [PMID: 23927969]
[61]
Fatima, S.; Sharma, A.; Saxena, R.; Tripathi, R.; Shukla, S.K.; Pandey, S.K.; Tripathi, R.; Tripathi, R.P. One pot efficient diversity oriented synthesis of polyfunctional styryl thiazolopyrimidines and their bio-evaluation as antimalarial and anti-HIV agents. Eur. J. Med. Chem., 2012, 55, 195-204.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.018] [PMID: 22871486]
[62]
Brodsky, J.L.; Chiang, A.N.; Valderramos, J. Selective pyrimidinones inhibit the propagation of the malarial parasite, Plasmodium falciparum. Bioorg. Med. Chem., 2009, 17, 1527-1533.
[63]
Singh, K.; Kaur, H.; Chibale, K.; Balzarini, J. Synthesis of 4-aminoquinoline-pyrimidine hybrids as potent antimalarials and their mode of action studies. Eur. J. Med. Chem., 2013, 66, 314-323.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.046] [PMID: 23811093]
[64]
Thumar, N.J.; Patel, M.P. Synthesis, characterization, and antimicrobial evaluation of carbostyril derivatives of 1H-pyrazole. Saudi Pharm. J., 2011, 19(2), 75-83.
[http://dx.doi.org/10.1016/j.jsps.2011.01.005] [PMID: 23960745]
[65]
Ramiz, M.M.M.; El-Sayed, W.A.; El-Tantawy, A.I.; Abdel-Rahman, A.A.H. Antimicrobial activity of new 4,6-disubstituted pyrimidine, pyrazoline, and pyran derivatives. Arch. Pharm. Res., 2010, 33(5), 647-654.
[http://dx.doi.org/10.1007/s12272-010-0501-1] [PMID: 20512460]
[66]
Hawser, S.; Lociuro, S.; Islam, K. Dihydrofolate reductase inhibitors as antibacterial agents. Biochem. Pharmacol., 2006, 71(7), 941-948.
[http://dx.doi.org/10.1016/j.bcp.2005.10.052] [PMID: 16359642]
[67]
Roth, B.; Cheng, C.C. Recent progress in the medicinal chemistry of 2,4-diaminopyrimidines. Prog. Med. Chem., 1982, 19(C), 269-331.
[http://dx.doi.org/10.1016/S0079-6468(08)70332-1] [PMID: 6129679]
[68]
Lagoja, I.M. Pyrimidine as constituent of natural biologically active compounds. Chem. Biodivers., 2005, 2(1), 1-50.
[http://dx.doi.org/10.1002/cbdv.200490173] [PMID: 17191918]
[69]
Karaarslan, M.; Koparir, P.; Cansiz, A.; Orek, C.; Sap, O. Synthesis and antimicrobial activity of some new. Chem. Sci. Trans., 2012, 1(1), 226-232.
[http://dx.doi.org/10.7598/cst2012.130]
[70]
Mohamed, M.S.; Youns, M.M.; Ahmed, N.M. Novel indolyl-pyrimidine derivatives: Synthesis, antimicrobial, and antioxidant evaluations. Med. Chem. Res., 2014, 23(7), 3374-3388.
[http://dx.doi.org/10.1007/s00044-014-0916-1]
[71]
Mahmoud, N.F.H.; Ghareeb, E.A. Synthesis of novel substituted tetrahydropyrimidine derivatives and evaluation of their pharmacological and antimicrobial activities. J. Heterocycl. Chem., 2019, 56(1), 81-91.
[http://dx.doi.org/10.1002/jhet.3374]
[72]
El-Etrawy, A.A.S.; Sherbiny, F.F. Design, synthesis, biological assessment and molecular docking studies of some new 2-thioxo-2,3-dihydropyrimidin-4(1H)-ones as potential anticancer and antibacterial agents. J. Mol. Struct., 2021, 1225, 129014.
[http://dx.doi.org/10.1016/j.molstruc.2020.129014]
[73]
Atiya, R.N.; Salih, N.A.; Adam, R.W. Preparation with biological study for pyrimidine derivatives from chalcone. Int. J. Drug Deliv. Technol., 2022, 12(1), 174-179.
[74]
Singh, O.M.; Singh, S.J.; Devi, M.B.; Devi, L.N.; Singh, N.I.; Lee, S.G. Synthesis and in vitro evaluation of the antifungal activities of dihydropyrimidinones. Bioorg. Med. Chem. Lett., 2008, 18(24), 6462-6467.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.063] [PMID: 18977139]
[75]
Ashok, M.; Holla, B.S.; Kumari, N.S. Convenient one pot synthesis of some novel derivatives of thiazolo[2,3-b]dihydropyrimidinone possessing 4-methylthiophenyl moiety and evaluation of their antibacterial and antifungal activities. Eur. J. Med. Chem., 2007, 42(3), 380-385.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.003] [PMID: 17070617]
[76]
Desai, N.C.; Makwana, A.H.; Senta, R.D. Synthesis, characterization and antimicrobial activity of some novel 4-(4-(arylamino)-6-(piperidin-1-yl)-1,3,5-triazine-2-ylamino)-N-(pyrimidin-2-yl)benzenesulfonamides. J. Saudi Chem. Soc., 2016, 20(6), 686-694.
[http://dx.doi.org/10.1016/j.jscs.2015.01.004]
[77]
Kanawade, S.B.; Toche, R.B.; Rajani, D.P. Synthetic tactics of new class of 4-aminothieno[2,3-d]pyrimidine-6-carbonitrile derivatives acting as antimicrobial agents. Eur. J. Med. Chem., 2013, 64, 314-320.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.039] [PMID: 23644214]
[78]
Luo, Y.; Zhang, S.; Liu, Z.J.; Chen, W.; Fu, J.; Zeng, Q.F.; Zhu, H.L. Synthesis and antimicrobical evaluation of a novel class of 1,3,4-thiadiazole: Derivatives bearing 1,2,4-triazolo[1,5-a]pyrimidine moiety. Eur. J. Med. Chem., 2013, 64, 54-61.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.014] [PMID: 23644188]
[79]
Manikannan, R.; Venkatesan, R.; Muthusubramanian, S.; Yogeeswari, P.; Sriram, D. Pyrazole derivatives from azines of substituted phenacyl aryl/cyclohexyl sulfides and their antimycobacterial activity. Bioorg. Med. Chem. Lett., 2010, 20(23), 6920-6924.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.137] [PMID: 20970331]
[80]
Stanley, R.E.; Blaha, G.; Grodzicki, R.L.; Strickler, M.D.; Steitz, T.A. The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nat. Struct. Mol. Biol., 2010, 17(3), 289-293.
[http://dx.doi.org/10.1038/nsmb.1755] [PMID: 20154709]
[81]
Almeida Da Silva, P.E.; Palomino, J.C. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: Classical and new drugs. J. Antimicrob. Chemother., 2011, 66(7), 1417-1430.
[http://dx.doi.org/10.1093/jac/dkr173] [PMID: 21558086]
[82]
Liu, P.; Yang, Y.; Tang, Y.; Yang, T.; Sang, Z.; Liu, Z.; Zhang, T.; Luo, Y. Design and synthesis of novel pyrimidine derivatives as potent antitubercular agents. Eur. J. Med. Chem., 2019, 163, 169-182.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.054] [PMID: 30508666]
[83]
Chikhale, R.; Menghani, S.; Babu, R.; Bansode, R.; Bhargavi, G.; Karodia, N.; Rajasekharan, M.V.; Paradkar, A.; Khedekar, P. Development of selective DprE1 inhibitors: Design, synthesis, crystal structure and antitubercular activity of benzothiazolylpyrimidine-5-carboxamides. Eur. J. Med. Chem., 2015, 96, 30-46.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.011] [PMID: 25874329]
[84]
Matyugina, E.; Khandazhinskaya, A.; Chernousova, L.; Andreevskaya, S.; Smirnova, T.; Chizhov, A.; Karpenko, I.; Kochetkov, S.; Alexandrova, L. The synthesis and antituberculosis activity of 5′-nor carbocyclic uracil derivatives. Bioorg. Med. Chem., 2012, 20(22), 6680-6686.
[http://dx.doi.org/10.1016/j.bmc.2012.09.019] [PMID: 23062712]
[85]
Toti, K.S.; Verbeke, F.; Risseeuw, M.D.P.; Frecer, V.; Munier-Lehmann, H.; Van Calenbergh, S. Synthesis and evaluation of 5′-modified thymidines and 5-hydroxymethyl-2′-deoxyuridines as Mycobacterium tuberculosis thymidylate kinase inhibitors. Bioorg. Med. Chem., 2013, 21(1), 257-268.
[http://dx.doi.org/10.1016/j.bmc.2012.10.018] [PMID: 23199481]
[86]
Shmalenyuk, E.R.; Chernousova, L.N.; Karpenko, I.L.; Kochetkov, S.N.; Smirnova, T.G.; Andreevskaya, S.N.; Chizhov, A.O.; Efremenkova, O.V.; Alexandrova, L.A. Inhibition of Mycobacterium tuberculosis strains H37Rv and MDR MS-115 by a new set of C5 modified pyrimidine nucleosides. Bioorg. Med. Chem., 2013, 21(17), 4874-4884.
[http://dx.doi.org/10.1016/j.bmc.2013.07.003] [PMID: 23891229]
[87]
Smith, J.; Andes, D. Therapeutic drug monitoring of antifungals: pharmacokinetic and pharmacodynamic considerations. Ther. Drug Monit., 2008, 30(2), 167-172.
[http://dx.doi.org/10.1097/FTD.0b013e318167d0e0] [PMID: 18367976]
[88]
Butters, M.; Ebbs, J.; Green, S.P.; MacRae, J.; Morland, M.C.; Murtiashaw, C.W.; Pettman, A.J. Process development of voriconazole: A novel broad-spectrum triazole antifungal agent. Org. Process Res. Dev., 2001, 5(1), 28-36.
[http://dx.doi.org/10.1021/op0000879]
[89]
Fathalla, O.A.; Awad, S.M.; Mohamed, M.S. Synthesis of new 2-thiouracil-5-sulphonamide derivatives with antibacterial and antifungal activity. Arch. Pharm. Res., 2005, 28(11), 1205-1212.
[http://dx.doi.org/10.1007/BF02978199] [PMID: 16350842]
[90]
Sun, L.; Wu, J.; Zhang, L.; Luo, M.; Sun, D. Synthesis and antifungal activities of some novel pyrimidine derivatives. Molecules, 2011, 16(7), 5618-5628.
[http://dx.doi.org/10.3390/molecules16075618] [PMID: 21730919]
[91]
Khan, Z.U.H.; Khan, A.U.; Wan, P.; Chen, Y.; Kong, D.; Khan, S.; Tahir, K. In vitro pharmacological screening of three newly synthesised pyrimidine derivatives. Nat. Prod. Res., 2015, 29(10), 933-938.
[http://dx.doi.org/10.1080/14786419.2014.964707] [PMID: 25280048]
[92]
Wu, W.; Lan, W.; Wu, C.; Fei, Q. Synthesis and antifungal activity of pyrimidine derivatives containing an amide moiety. Front Chem., 2021, 9, 695628.
[http://dx.doi.org/10.3389/fchem.2021.695628] [PMID: 34322475]
[93]
Sharma, V.; Chitranshi, N.; Agarwal, A.K. Significance and biological importance of pyrimidine in the microbial world. Int. J. Med. Chem., 2014, 2014, 1-31.
[http://dx.doi.org/10.1155/2014/202784] [PMID: 25383216]
[94]
Ramiz, M.M.M.; El-Sayed, W.A.; Hagag, E.; Abdel-Rahman, A.A.H. Synthesis and antiviral activity of new substituted pyrimidine glycosides. J. Heterocycl. Chem., 2011, 48(5), 1028-1038.
[http://dx.doi.org/10.1002/jhet.686]
[95]
Bai, S.; Liu, S.; Zhu, Y.; Wu, Q. Asymmetric synthesis and antiviral activity of novel chiral amino-pyrimidine derivatives. Tetrahedron Lett., 2018, 59(33), 3179-3183.
[http://dx.doi.org/10.1016/j.tetlet.2018.07.020]
[96]
Azzam, R.A.; Osman, R.R.; Elgemeie, G.H. Efficient synthesis and docking studies of novel benzothiazole-based pyrimidine sulfonamide scaffolds as new antiviral agents and Hsp90α inhibitors. ACS Omega, 2020, 5(3), 1640-1655.
[http://dx.doi.org/10.1021/acsomega.9b03706] [PMID: 32010839]
[97]
Awad, S.M.; Ali, S.M.; Mansour, Y.E.; Fatahala, S.S. Synthesis and evaluation of some uracil nucleosides as promising anti-herpes simplex virus 1 agents. Molecules, 2021, 26(10), 2988.
[http://dx.doi.org/10.3390/molecules26102988] [PMID: 34069874]
[98]
Guo, D.L.; Zhang, X.J.; Wang, R.R.; Zhou, Y.; Li, Z.; Xu, J.Y.; Chen, K.X.; Zheng, Y.T.; Liu, H. Structural modifications of 5,6-dihydroxypyrimidines with anti-HIV activity. Bioorg. Med. Chem. Lett., 2012, 22(23), 7114-7118.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.070] [PMID: 23099098]
[99]
Tremblay, M.; Bethell, R.C.; Cordingley, M.G.; DeRoy, P.; Duan, J.; Duplessis, M.; Edwards, P.J.; Faucher, A.M.; Halmos, T.; James, C.A.; Kuhn, C.; Lacoste, J.É.; Lamorte, L.; LaPlante, S.R.; Malenfant, É.; Minville, J.; Morency, L.; Morin, S.; Rajotte, D.; Salois, P.; Simoneau, B.; Tremblay, S.; Sturino, C.F. Identification of benzofurano[3,2-d]pyrimidin-2-ones, a new series of HIV-1 nucleotide-competing reverse transcriptase inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(9), 2775-2780.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.042] [PMID: 23511023]
[100]
Tichý, M.; Pohl, R.; Xu, H.Y.; Chen, Y.L.; Yokokawa, F.; Shi, P.Y.; Hocek, M. Synthesis and antiviral activity of 4,6-disubstituted pyrimido[4,5-b]indole ribonucleosides. Bioorg. Med. Chem., 2012, 20(20), 6123-6133.
[http://dx.doi.org/10.1016/j.bmc.2012.08.021] [PMID: 22985963]
[101]
Mizuhara, T.; Oishi, S.; Ohno, H.; Shimura, K.; Matsuoka, M.; Fujii, N. Structure-activity relationship study of pyrimido[1,2-c][1,3]benzothiazin-6-imine derivatives for potent anti-HIV agents. Bioorg. Med. Chem., 2012, 20(21), 6434-6441.
[http://dx.doi.org/10.1016/j.bmc.2012.08.030] [PMID: 23022280]
[102]
Martínez-Montero, S.; Fernández, S.; Sanghvi, Y.S.; Theodorakis, E.A.; Detorio, M.A.; Mcbrayer, T.R.; Whitaker, T.; Schinazi, R.F.; Gotor, V.; Ferrero, M. Synthesis, evaluation of anti-HIV-1 and anti-HCV activity of novel 2′,3′-dideoxy-2′,2′-difluoro-4′-azanucleosides. Bioorg. Med. Chem., 2012, 20(23), 6885-6893.
[http://dx.doi.org/10.1016/j.bmc.2012.09.026] [PMID: 23085031]
[103]
Tichý, M.; Pohl, R.; Tloušt’ová, E.; Weber, J.; Bahador, G.; Lee, Y.J.; Hocek, M. Synthesis and biological activity of benzo-fused 7-deazaadenosine analogues. 5- and 6-substituted 4-amino- or 4-alkylpyrimido[4,5-b]indole ribonucleosides. Bioorg. Med. Chem., 2013, 21(17), 5362-5372.
[http://dx.doi.org/10.1016/j.bmc.2013.06.011] [PMID: 23827234]
[104]
Sakakibara, N.; Hamasaki, T.; Baba, M.; Demizu, Y.; Kurihara, M.; Irie, K.; Iwai, M.; Asada, E.; Kato, Y.; Maruyama, T. Synthesis and evaluation of novel 3-(3,5-dimethylbenzyl)uracil analogs as potential anti-HIV-1 agents. Bioorg. Med. Chem., 2013, 21(18), 5900-5906.
[http://dx.doi.org/10.1016/j.bmc.2013.06.061] [PMID: 23916148]
[105]
Rai, D.; Chen, W.; Tian, Y.; Chen, X.; Zhan, P.; De Clercq, E.; Pannecouque, C.; Balzarini, J.; Liu, X. Design, synthesis and biological evaluation of 3-benzyloxy-linked pyrimidinylphenylamine derivatives as potent HIV-1 NNRTIs. Bioorg. Med. Chem., 2013, 21(23), 7398-7405.
[http://dx.doi.org/10.1016/j.bmc.2013.09.051] [PMID: 24134904]
[106]
Verma, M.; Verma, P.K. Anticancer and antimicrobial prospective of pyrimidine derivatives: A review. Pharm. Innov J., 2019, 8(5), 566-571.
[107]
Kim, J.; Kwon, J.; Lee, D.; Jo, S.; Park, D.S.; Choi, J.; Park, E.; Hwang, J.Y.; Ko, Y.; Choi, I.; Ju, M.K.; Ahn, J.; Kim, J.; Han, S.J.; Kim, T.H.; Cechetto, J.; Nam, J.; Ahn, S.; Sommer, P.; Liuzzi, M.; No, Z.; Lee, J. Synthesis and biological evaluation of triazolothienopyrimidine derivatives as novel HIV-1 replication inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(1), 153-157.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.134] [PMID: 23206860]
[108]
Shakya, N.; Vedi, S.; Liang, C.; Yang, F.; Agrawal, B.; Kumar, R. 4′-Substituted pyrimidine nucleosides lacking 5′-hydroxyl function as potential anti-HCV agents. Bioorg. Med. Chem. Lett., 2014, 24(5), 1407-1409.
[http://dx.doi.org/10.1016/j.bmcl.2014.01.024] [PMID: 24485784]
[109]
Hwang, J.Y.; Windisch, M.P.; Jo, S.; Kim, K.; Kong, S.; Kim, H.C.; Kim, S.; Kim, H.; Lee, M.E.; Kim, Y.; Choi, J.; Park, D.S.; Park, E.; Kwon, J.; Nam, J.; Ahn, S.; Cechetto, J.; Kim, J.; Liuzzi, M.; No, Z.; Lee, J. Discovery and characterization of a novel 7-aminopyrazolo[1,5-a]pyrimidine analog as a potent hepatitis C virus inhibitor. Bioorg. Med. Chem. Lett., 2012, 22(24), 7297-7301.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.123] [PMID: 23159569]
[110]
Shakya, N.; Vedi, S.; Liang, C.; Agrawal, B.; Lorne Tyrrell, D.; Kumar, R. A new class of pyrimidine nucleosides: Inhibitors of hepatitis B and C viruses. Bioorg. Med. Chem. Lett., 2012, 22(20), 6475-6480.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.042] [PMID: 22985854]
[111]
Yang, Z.; Fang, Y.; Pham, T.A.N.; Lee, J.; Park, H. Synthesis and biological evaluation of 5-nitropyrimidine analogs with azabicyclic substituents as GPR119 agonists. Bioorg. Med. Chem. Lett., 2013, 23(5), 1519-1521.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.011] [PMID: 23374864]
[112]
Koga, Y.; Sakamaki, S.; Hongu, M.; Kawanishi, E.; Sakamoto, T.; Yamamoto, Y.; Kimata, H.; Nakayama, K.; Kuriyama, C.; Matsushita, Y.; Ueta, K.; Tsuda-Tsukimoto, M.; Nomura, S. C-Glucosides with heteroaryl thiophene as novel sodium-dependent glucose cotransporter 2 inhibitors. Bioorg. Med. Chem., 2013, 21(17), 5561-5572.
[http://dx.doi.org/10.1016/j.bmc.2013.05.048] [PMID: 23809172]
[113]
Barakat, A.; Islam, M.S.; Al-Majid, A.M.; Ghabbour, H.A.; Fun, H.K.; Javed, K.; Imad, R.; Yousuf, S.; Choudhary, M.I.; Wadood, A. Synthesis, in vitro biological activities and in silico study of dihydropyrimidines derivatives. Bioorg. Med. Chem., 2015, 23(20), 6740-6748.
[http://dx.doi.org/10.1016/j.bmc.2015.09.001] [PMID: 26381063]
[114]
Tewari, N.; Tiwari, V.K.; Mishra, R.C.; Tripathi, R.P.; Srivastava, A.K.; Ahmad, R.; Srivastava, R.; Srivastava, B.S. Synthesis and bioevaluation of glycosyl ureas as α-glucosidase inhibitors and their effect on mycobacterium. Bioorg. Med. Chem., 2003, 11(13), 2911-2922.
[http://dx.doi.org/10.1016/S0968-0896(03)00214-1] [PMID: 12788361]
[115]
Toobaei, Z.; Yousefi, R.; Panahi, F.; Shahidpour, S.; Nourisefat, M.; Doroodmand, M.M.; Khalafi-Nezhad, A. Synthesis of novel poly-hydroxyl functionalized acridine derivatives as inhibitors of α-glucosidase and α-amylase. Carbohydr. Res., 2015, 411, 22-32.
[http://dx.doi.org/10.1016/j.carres.2015.04.005] [PMID: 25957572]
[116]
Negoro, K.; Yonetoku, Y.; Moritomo, A.; Hayakawa, M.; Iikubo, K.; Yoshida, S.; Takeuchi, M.; Ohta, M. Synthesis and structure-activity relationship of fused-pyrimidine derivatives as a series of novel GPR119 agonists. Bioorg. Med. Chem., 2012, 20(21), 6442-6451.
[http://dx.doi.org/10.1016/j.bmc.2012.08.054] [PMID: 23010456]
[117]
Lee, H.; Kim, B.; Ahn, J.; Kang, S.; Lee, J.; Shin, J.; Ahn, S.; Lee, S.; Yoon, S. Molecular design, synthesis, and hypoglycemic and hypolipidemic activities of novel pyrimidine derivatives having thiazolidinedione. Eur. J. Med. Chem., 2005, 40(9), 862-874.
[http://dx.doi.org/10.1016/j.ejmech.2005.03.019] [PMID: 15908051]
[118]
Elmegeed, G.A.; Ahmed, H.H.; Hashash, M.A.; Abd-Elhalim, M.M.; El-kady, D.S. Synthesis of novel steroidal curcumin derivatives as anti-Alzheimer’s disease candidates: Evidences-based on in vivo study. Steroids, 2015, 101, 78-89.
[http://dx.doi.org/10.1016/j.steroids.2015.06.003] [PMID: 26079653]
[119]
Loidreau, Y.; Marchand, P.; Dubouilh-Benard, C.; Nourrisson, M.R.; Duflos, M.; Loaëc, N.; Meijer, L.; Besson, T. Synthesis and biological evaluation of N-aryl-7-methoxybenzo[b]furo[3,2-d]pyrimidin-4-amines and their N-arylbenzo[b]thieno[3,2-d]pyrimidin-4-amine analogues as dual inhibitors of CLK1 and DYRK1A kinases. Eur. J. Med. Chem., 2013, 59, 283-295.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.030] [PMID: 23237976]
[120]
Loidreau, Y.; Marchand, P.; Dubouilh-Benard, C.; Nourrisson, M.R.; Duflos, M.; Lozach, O.; Loaëc, N.; Meijer, L.; Besson, T. Synthesis and biological evaluation of N-arylbenzo[b]thieno[3,2-d]pyrimidin-4-amines and their pyrido and pyrazino analogues as Ser/Thr kinase inhibitors. Eur. J. Med. Chem., 2012, 58, 171-183.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.006] [PMID: 23124214]
[121]
Amr, A.E.G.E.; Sayed, H.H.; Abdulla, M.M. Synthesis and reactions of some new substituted pyridine and pyrimidine derivatives as analgesic, anticonvulsant and antiparkinsonian agents. Arch. Pharm., 2005, 338(9), 433-440.
[http://dx.doi.org/10.1002/ardp.200500982] [PMID: 16134091]
[122]
Wang, S.B.; Deng, X.Q.; Zheng, Y.; Yuan, Y.P.; Quan, Z.S.; Guan, L.P. Synthesis and evaluation of anticonvulsant and antidepressant activities of 5-alkoxytetrazolo[1,5-c]thieno[2,3-e]pyrimidine derivatives. Eur. J. Med. Chem., 2012, 56, 139-144.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.027] [PMID: 22982524]
[123]
Becker, I. Preparation of pyrimidine derivatives as potential medicinal agents by the reaction of 2-amino-4-chloro-6-methylpyrimidine with primary and secondary amines. J. Heterocycl. Chem., 2005, 42(7), 1289-1295.
[http://dx.doi.org/10.1002/jhet.5570420707]
[124]
Sirakanyan, S.N.; Spinelli, D.; Geronikaki, A.; Kartsev, V.; Hakobyan, E.K.; Petrou, A.; Paronikyan, R.G.; Nazaryan, I.M.; Akopyan, H.H.; Hovakimyan, A.A. Synthesis and neurotropic activity of new heterocyclic systems: Pyridofuro[3,2-d]pyrrolo[1,2-a]pyrimidines, Pyridofuro[3,2-d]pyrido[1,2-a]pyrimi-dines and Pyridofuro[3′,2′:4,5]pyrimido[1,2-a]azepines. Molecules, 2021, 26(11), 3320.
[http://dx.doi.org/10.3390/molecules26113320] [PMID: 34205930]
[125]
Yousefi, A.; Yousefi, R.; Panahi, F.; Sarikhani, S.; Zolghadr, A.R.; Bahaoddini, A.; Khalafi-Nezhad, A. Novel curcumin-based pyrano[2,3-d]pyrimidine anti-oxidant inhibitors for α-amylase and α-glucosidase: Implications for their pleiotropic effects against diabetes complications. Int. J. Biol. Macromol., 2015, 78, 46-55.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.03.060] [PMID: 25843662]
[126]
Vartale, S.P.; Halikar, N.K.; Pawar, Y.D.; Tawde, K.V. Synthesis and evaluation of 3-cyano-4-imino-2-methylthio-4H-pyrido[1,2-a]pyrimidine derivatives as potent antioxidant agents. Arab. J. Chem., 2016, 9, S1117-S1124.
[http://dx.doi.org/10.1016/j.arabjc.2011.12.007]
[127]
Attri, P.; Bhatia, R.; Gaur, J.; Arora, B.; Gupta, A.; Kumar, N.; Choi, E.H. Triethylammonium acetate ionic liquid assisted one-pot synthesis of dihydropyrimidinones and evaluation of their antioxidant and antibacterial activities. Arab. J. Chem., 2017, 10(2), 206-214.
[http://dx.doi.org/10.1016/j.arabjc.2014.05.007]
[128]
Kotaiah, Y.; Nagaraju, K.; Harikrishna, N.; Venkata Rao, C.; Yamini, L.; Vijjulatha, M. Synthesis, docking and evaluation of antioxidant and antimicrobial activities of novel 1,2,4-triazolo[3,4-b][1,3,4]thiadiazol-6-yl)selenopheno[2,3-d]pyrimidines. Eur. J. Med. Chem., 2014, 75, 195-202.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.006] [PMID: 24531232]
[129]
Shook, B.C.; Chakravarty, D.; Barbay, J.K.; Wang, A.; Leonard, K.; Alford, V.; Powell, M.T.; Rassnick, S.; Scannevin, R.H.; Carroll, K.; Wallace, N.; Crooke, J.; Ault, M.; Lampron, L.; Westover, L.; Rhodes, K.; Jackson, P.F. Substituted thieno[2,3-d]pyrimidines as adenosine A2A receptor antagonists. Bioorg. Med. Chem. Lett., 2013, 23(9), 2688-2691.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.078] [PMID: 23522563]
[130]
Rana, K.; Kaur, B.; Chaudhary, G.; Kumar, S.; Goyal, S. Synthesis and antiulcer activity of some dihydropyrimidines. Int. J. Pharm. Sci. Drug Res., 2011, 3, 226-229.
[131]
Abdillahi, I.; Kirsch, G. Synthesis of a novel series of thieno[3,2-d]pyrimidin-4-(3H)-ones. Synthesis, 2010, 9, 1428-1430.
[132]
Irshad, N.; Khan, A.; Shah, F.A.; Nadeem, H.; Ashraf, Z.; Tipu, M.K.; Li, S. Antihyperlipidemic effect of selected pyrimidine derivatives mediated through multiple pathways. Fundam. Clin. Pharmacol., 2021, 35(6), 1119-1132.
[http://dx.doi.org/10.1111/fcp.12682] [PMID: 33872413]
[133]
Lacotte, P.; Buisson, D.A.; Ambroise, Y. Synthesis, evaluation and absolute configuration assignment of novel dihydropyrimidin-2-ones as picomolar sodium iodide symporter inhibitors. Eur. J. Med. Chem., 2013, 62, 722-727.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.043] [PMID: 23454514]
[134]
Awad, S.; Zohny, Y.; Ali, S.; Mahgoub, S.; Said, A. Design, synthesis, molecular modeling, and biological evaluation of novel thiouracil derivatives as potential antithyroid agents. Molecules, 2018, 23(11), 2913.
[http://dx.doi.org/10.3390/molecules23112913] [PMID: 30413058]
[135]
Pradip, D. Recent developments towards the synthesis of pyrimidopyrimidine and purine derivatives. Chem. Select., 2023, 8(26), e202300998.
[http://dx.doi.org/10.1002/slct.202300998]
[136]
Ugwu, D.; Okoro, U.; Mishra, N. Synthesis, characterization and anthelmintic activity evaluation of pyrimidine derivatives bearing carboxamide and sulphonamide moieties. J. Serb. Chem. Soc., 2018, 83(4), 401-409.
[http://dx.doi.org/10.2298/JSC170127109U]
[137]
Mohamed, S.F.; Flefel, E.M.; Amr, A.E.G.E.; Abd El-Shafy, D.N. Anti-HSV-1 activity and mechanism of action of some new synthesized substituted pyrimidine, thiopyrimidine and thiazolopyrimidine derivatives. Eur. J. Med. Chem., 2010, 45(4), 1494-1501.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.057] [PMID: 20110135]
[138]
Stella, A.; Van Belle, K.; De Jonghe, S.; Louat, T.; Herman, J.; Rozenski, J.; Waer, M.; Herdewijn, P. Synthesis of a 2,4,6-trisubstituted 5-cyano-pyrimidine library and evaluation of its immunosuppressive activity in a mixed lymphocyte reaction assay. Bioorg. Med. Chem., 2013, 21(5), 1209-1218.
[http://dx.doi.org/10.1016/j.bmc.2012.12.032] [PMID: 23347804]
[139]
Rahaman, S.A.; Rajendra Pasad, Y.; Kumar, P.; Kumar, B. Synthesis and anti-histaminic activity of some novel pyrimidines. Saudi Pharm. J., 2009, 17(3), 255-258.
[http://dx.doi.org/10.1016/j.jsps.2009.08.001] [PMID: 23964169]
[140]
Mohsin, M.M.; Jawad, M.J.; Hassan, S.M.; Awad, S.M.; Hussain, Y.A.; Hadi, N.R. Synthesis and evaluation of the thrombolytic activity of novel condensed pyrimidine sulfonamide derivatives. Eur. J. Mol. Clin. Med., 2020, 7(2), 220-224.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy