Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

The Recent Report on Schiff Bases and their Complexes as DNA Binders

Author(s): Mansi, Charu Bhutani, Pankaj Khanna, Manisha Jain, Sangeeta Talwar, Shilpa Yadav and Leena Khanna*

Volume 27, Issue 20, 2023

Published on: 30 November, 2023

Page: [1799 - 1813] Pages: 15

DOI: 10.2174/0113852728277676231024062455

Price: $65

Abstract

Schiff bases are dynamic organic compounds of bioactive importance, acting as flexible ligands and can form complexes with metals. Schiff bases along with their metal complexes have shown a large affinity towards DNA, which is one of the main targets of chemotherapeutics. DNA can join hands with these motifs in multiple ways, like covalent (crosslinking adducts) and non-covalent (intercalative or groove binding via electrostatic) interactions. Besides, the binding ability and types vary with the metals involved in Schiff base metal complexes. Thus, this review aims to describe significant recent reports of Schiff bases and their metal complexes capable of binding with DNA to evaluate the superlative DNA binders, type of association, and best metal-Schiff base combinations. Among the experimental techniques employed in revealing these interactions, noteworthy UV absorption and fluorescence spectroscopy studies have been discussed for the assessment of various types of bindings as intercalation or groove type.

Graphical Abstract

[1]
Helal, M.H.; Al-Mudaris, Z.A.; Al-Douh, M.H.; Osman, H.; Wahab, H.A.; Alnajjar, B.O.; Abdallah, H.H.; Majid, A.M.S.A. Diaminobenzene Schiff base, a novel class of DNA minor groove binder. Int. J. Oncol., 2012, 41(2), 504-510.
[http://dx.doi.org/10.3892/ijo.2012.1491] [PMID: 22614449]
[2]
Ogbonna, E.N.; Paul, A.; Farahat, A.A.; Terrell, J.R.; Mineva, E.; Ogbonna, V.; Boykin, D.W.; Wilson, W.D. X-ray structure characterization of the selective recognition of AT base pair sequences. ACS Bio. Med. Chem. Au, 2023, 3(4), 335-348.
[http://dx.doi.org/10.1021/acsbiomedchemau.3c00002] [PMID: 37599788]
[3]
Singhal, S.; Khanna, P.; Khanna, L. Synthesis, comparative in vitro antibacterial, antioxidant and UV fluorescence studies of bis indole Schiff bases and molecular docking with ct‐DNA and SARS‐CoV‐2 Mpro. Luminescence, 2021, 36(6), 1531-1543.
[http://dx.doi.org/10.1002/bio.4098] [PMID: 34087041]
[4]
Eshaghi Malekshah, R.; Fahimirad, B.; Aallaei, M.; Khaleghian, A. Synthesis and toxicity assessment of Fe3O4NPs grafted by ∼ NH2-Schiff base as anticancer drug: Modeling and proposed molecular mechanism through docking and molecular dynamic simulation. Drug Deliv., 2020, 27(1), 1201-1217.
[http://dx.doi.org/10.1080/10717544.2020.1801890] [PMID: 32772887]
[5]
Singhal, S.; Khanna, P.; Khanna, L. Synthesis, DFT studies, molecular docking, antimicrobial screening and UV fluorescence studies on ct-DNA for novel Schiff bases of 2-(1-aminobenzyl) benzimidazole. Heliyon, 2019, 5(10), e02596.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02596] [PMID: 31667415]
[6]
Sharifi-Rad, A.; Mehrzad, J.; Darroudi, M.; Saberi, M.R.; Chamani, J. Oil-in-water nanoemulsions comprising Berberine in olive oil: Biological activities, binding mechanisms to human serum albumin or holo-transferrin and QMMD simulations. J. Biomol. Struct. Dyn., 2021, 39(3), 1029-1043.
[http://dx.doi.org/10.1080/07391102.2020.1724568] [PMID: 32000592]
[7]
Sunil, K.T. Biological application of schiff base and its metal complexes. Int. Res. J. Mod. Eng. Technol. Sci., 2023, 3(9), 1254-1258.
[http://dx.doi.org/10.56726/IRJMETS31955]
[8]
Boulechfar, C.; Ferkous, H.; Delimi, A.; Djedouani, A.; Kahlouche, A.; Boublia, A.; Darwish, A.S.; Lemaoui, T.; Verma, R.; Benguerba, Y. Schiff bases and their metal complexes: A review on the history, synthesis, and applications. Inorg. Chem. Commun., 2023, 150, 110451.
[http://dx.doi.org/10.1016/j.inoche.2023.110451]
[9]
Szymańska, M.; Pospieszna-Markiewicz, I.; Mańka, M.; Insińska-Rak, M.; Dutkiewicz, G.; Patroniak, V.; Fik-Jaskółka, M.A. Synthesis and spectroscopic investigations of Schiff base ligand and its bimetallic Ag(I) complex as DNA and BSA binders. Biomolecules, 2021, 11(10), 1449.
[http://dx.doi.org/10.3390/biom11101449] [PMID: 34680081]
[10]
More, M.S.; Joshi, P.G.; Mishra, Y.K.; Khanna, P.K. Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: A review. Mater. Today Chem., 2019, 14, 100195.
[http://dx.doi.org/10.1016/j.mtchem.2019.100195] [PMID: 32289101]
[11]
Shah, S.S.; Shah, D.; Khan, I.; Ali, U. Synthesis and antioxidant activities of schiff bases and their complexes: An updated review. Biointerface Res. Appl. Chem., 2020, 10(6), 6936-6963.
[http://dx.doi.org/10.33263/BRIAC106.69366963]
[12]
Khanna, P.; Saxena, A.; Khanna, L.; Bhagat, S.; Jain, S.C. Synthesis of novel symmetrical and unsymmetrical bis-spiro[indole-indazolyl-thiazolidine]-2,4′-diones. Arkivoc, 2009, 2009(7), 119-125.
[http://dx.doi.org/10.3998/ark.5550190.0010.712]
[13]
Jain, S.C.; Khanna, P.; Bhagat, S.; Jain, M.; Sakhuja, R. Novel fluorinated spiro [Indole-indazolyl-thiazolidine]-2,4′-diones: Design and synthesis. Phosphorus Sulfur Silicon Relat. Elem., 2005, 180(8), 1829-1839.
[http://dx.doi.org/10.1080/104265090889431]
[14]
Williams, A.K.; Dasilva, S.C.; Bhatta, A.; Rawal, B.; Liu, M.; Korobkova, E.A. Determination of the drug–DNA binding modes using fluorescence-based assays. Anal. Biochem., 2012, 422(2), 66-73.
[http://dx.doi.org/10.1016/j.ab.2011.12.041] [PMID: 22281394]
[15]
Moosavi-Movahedi, A.A.; Golchin, A.R.; Nazari, K.; Chamani, J.; Saboury, A.A.; Bathaie, S.Z.; Tangestani-Nejad, S. Microcalorimetry, energetics and binding studies of DNA–dimethyltin dichloride complexes. Thermochim. Acta, 2004, 414(2), 233-241.
[http://dx.doi.org/10.1016/j.tca.2004.01.007]
[16]
Taheri, R.; Hamzkanlu, N.; Rezvani, Y.; Niroumand, S.; Samandar, F.; Amiri-Tehranizadeh, Z.; Saberi, M.R.; Chamani, J. Exploring the HSA/DNA/lung cancer cells binding behavior of p-synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: multi spectroscopic, molecular dynamic and cellular approaches. J. Mol. Liq., 2022, 368, 120826.
[http://dx.doi.org/10.1016/j.molliq.2022.120826]
[17]
Hosseinzadeh, M.; Nikjoo, S.; Zare, N.; Delavar, D.; Beigoli, S.; Chamani, J. Characterization of the structural changes of human serum albumin upon interaction with single-walled and multi-walled carbon nanotubes: Spectroscopic and molecular modeling approaches. Res. Chem. Intermed., 2019, 45(2), 401-423.
[http://dx.doi.org/10.1007/s11164-018-3608-5]
[18]
Maheri, H.; Hashemzadeh, F.; Shakibapour, N.; Kamelniya, E.; Malaekeh-Nikouei, B.; Mokaberi, P.; Chamani, J. Glucokinase activity enhancement by cellulose nanocrystals isolated from jujube seed: A novel perspective for type II diabetes mellitus treatment (In vitro). J. Mol. Struct., 2022, 1269, 133803.
[http://dx.doi.org/10.1016/j.molstruc.2022.133803]
[19]
Malek-Esfandiari, Z.; Rezvani-Noghani, A.; Sohrabi, T.; Mokaberi, P.; Amiri-Tehranizadeh, Z.; Chamani, J. Molecular dynamics and multi-spectroscopic of the interaction behavior between bladder cancer cells and calf thymus DNA with rebeccamycin: Apoptosis through the down regulation of PI3K/AKT signaling pathway. J. Fluoresc., 2023, 33(4), 1537-1557.
[http://dx.doi.org/10.1007/s10895-023-03169-4] [PMID: 36787038]
[20]
Chamani, J. Energetic domains analysis of bovine α-lactalbumin upon interaction with copper and dodecyl trimethylammonium bromide. J. Mol. Struct., 2010, 979(1-3), 227-234.
[http://dx.doi.org/10.1016/j.molstruc.2010.06.035]
[21]
Advancement of schiff base metal complexes interacting with DNA. In: Structural and Biological applications of schiff base metal complexes; Jain, P.; Singh, P., Eds.; Taylor & Francis, 2023; Vol. 2, pp. 151-164.
[22]
González-Ruiz, V.; Olives, A.I.; Martín, M.A.; Ribelles, P.; Ramos, M.T.; Menéndez, J.C.; González-Ruiz, V.; Olives, A.I.; Martín, M.A.; Ribelles, P.; Ramos, M.T.; Menéndez, J.C. An overview of analytical techniques employed to evidence Drug-DNA interactions. Applications to the Design of Genosensors. In: Biomedical Engineering; Intechopen, 2011.
[http://dx.doi.org/10.5772/13586]
[23]
Sirajuddin, M.; Ali, S.; Badshah, A. Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry. J. Photochem. Photobiol. B, 2013, 124, 1-19.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.03.013] [PMID: 23648795]
[24]
Hosny, N.M.; Hussien, M.A.; Radwan, F.M.; Nawar, N. Synthesis, spectral, thermal and optical properties of Schiff-base complexes derived from 2(E)-2-((z)-4-hydroxypent-3-en-2-ylideneamino)-5-guanidinopentanoic acid and acetylacetone. J. Mol. Struct., 2017, 1143, 176-183.
[http://dx.doi.org/10.1016/j.molstruc.2017.04.063]
[25]
Shahabadi, N.; Amiri, S. Spectroscopic and computational studies on the interaction of DNA with pregabalin drug. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 138, 840-845.
[http://dx.doi.org/10.1016/j.saa.2014.10.104] [PMID: 25467655]
[26]
Khanna, L.; Singhal, S.; Jain, S.C.; Khanna, P. Spiro‐indole‐coumarin hybrids: Synthesis, ADME, DFT, NBO studies and in silico screening through molecular docking on DNA G‐Quadruplex. ChemistrySelect, 2020, 5(11), 3420-3433.
[http://dx.doi.org/10.1002/slct.201904783] [PMID: 32328514]
[27]
Jain, M.; Yadav, S. Mansi; Misra, N.; Khanna, P.; Khanna, L. Copper-bisbenzimidazole complexes as biomimetic catalysts in organic transformations. Mini Rev. Org. Chem., 2024, 21(2), 216-228.
[http://dx.doi.org/10.2174/1570193X20666230102105854]
[28]
Mansi; Khanna, P.; Gupta, D.; Yadav, S.; Khanna, L. Hydrotrope assisted green synthesis of dicoumarols and in silico and in vitro antibacterial, antioxidant and xanthine oxidase inhibition studies. J. Biomol. Struct. Dyn., 2023, 41(19), 9651-9665.
[http://dx.doi.org/10.1080/07391102.2022.2145368]
[29]
Singhal, S.; Khanna, P.; Misra, N.; Khanna, L. Multitarget Diallyl Disulfides (DADS) against Aβ Aggregation: Screening through Molecular Docking with Aβ42 & ZnII‐Aβ16, ADME, DFT & Synthetic Strategy. ChemistrySelect, 2021, 6(17), 4112-4123.
[http://dx.doi.org/10.1002/slct.202004635]
[30]
Yıldız, M.; Karpuz, Ö.; Zeyrek, C.T.; Boyacıoğlu, B.; Dal, H.; Demir, N.; Yıldırım, N.; Ünver, H. Synthesis, biological activity, DNA binding and anion sensors, molecular structure and quantum chemical studies of a novel bidentate Schiff base derived from 3,5-bis(triflouromethyl)aniline and salicylaldehyde. J. Mol. Struct., 2015, 1094, 148-160.
[http://dx.doi.org/10.1016/j.molstruc.2015.03.047]
[31]
Barare, B.; Yıldız, M.; Alpaslan, G.; Dilek, N.; Ünver, H.; Tadesse, S.; Aslan, K. Synthesis, characterization, theoretical calculations, DNA binding and colorimetric anion sensing applications of 1-[(E)-[(6-methoxy-1,3-benzothiazol-2-yl)imino]methyl]naphthalen-2-ol. Sens. Actuators B Chem., 2015, 215, 52-61.
[http://dx.doi.org/10.1016/j.snb.2015.03.025]
[32]
Zeyrek, C.T.; Boyacioğlu, B.; Yıldız, M.; Ünver, H.; Yolal, D.; Demir, N.; Elmali, A.; Tadesse, S.; Aslan, K. Synthesis, characterization, and evaluation of (E)-methyl 2-((2-oxonaphthalen-1(2H)-ylidene)methylamino)acetate as a biological agent and an anion sensor. Bioorg. Med. Chem., 2016, 24(21), 5592-5601.
[http://dx.doi.org/10.1016/j.bmc.2016.09.018] [PMID: 27658791]
[33]
Ariyaeifar, M.; Amiri Rudbari, H.; Sahihi, M.; Kazemi, Z.; Kajani, A.A.; Zali-Boeini, H.; Kordestani, N.; Bruno, G.; Gharaghani, S. Chiral halogenated Schiff base compounds: Green synthesis, anticancer activity and DNA-binding study. J. Mol. Struct., 2018, 1161, 497-511.
[http://dx.doi.org/10.1016/j.molstruc.2018.02.042]
[34]
Shabbir, M.; Akhter, Z.; Ahmad, I.; Ahmed, S.; Ismail, H.; Mirza, B.; McKee, V.; Bolte, M. Synthesis, characterization, biological and electrochemical evaluation of novel ether based ON donor bidentate Schiff bases. J. Mol. Struct., 2016, 1116, 84-92.
[http://dx.doi.org/10.1016/j.molstruc.2016.03.008]
[35]
Sankarganesh, M.; Adwin Jose, P.; Dhaveethu Raja, J.; Kesavan, M.P.; Vadivel, M.; Rajesh, J.; Jeyamurugan, R.; Senthil Kumar, R.; Karthikeyan, S. New pyrimidine based ligand capped gold and platinum nano particles: Synthesis, characterization, antimicrobial, antioxidant, DNA interaction and in vitro anticancer activities. J. Photochem. Photobiol. B, 2017, 176, 44-53.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.09.013] [PMID: 28941777]
[36]
Fattuoni, C.; Vascellari, S.; Pivetta, T. Synthesis, protonation constants and biological activity determination of amino acid–salicylaldehyde-derived Schiff bases. Amino Acids, 2020, 52(3), 397-407.
[http://dx.doi.org/10.1007/s00726-019-02816-0] [PMID: 31932980]
[37]
Uddin, N.; Rashid, F.; Ali, S.; Tirmizi, S.A.; Ahmad, I.; Zaib, S.; Zubair, M.; Diaconescu, P.L.; Tahir, M.N.; Iqbal, J.; Haider, A. Synthesis, characterization, and anticancer activity of Schiff bases. J. Biomol. Struct. Dyn., 2020, 38(11), 3246-3259.
[http://dx.doi.org/10.1080/07391102.2019.1654924] [PMID: 31411114]
[38]
Jose, P.A.; Sankarganesh, M.; Raja, J.D.; Senthilkumar, G.S. Synthesis of methoxy substituted pyrimidine derivative imine stabilized copper nanoparticles in organic phase and its biological evaluation. J. Mol. Liq., 2020, 305, 112821.
[http://dx.doi.org/10.1016/j.molliq.2020.112821]
[39]
P, A.J.; M, S.; J, D.R.; S, S.S. Pyrimidine derivative schiff base ligand stabilized copper and nickel nanoparticles by two step phase transfer method; In vitro anticancer, antioxidant, anti-microbial and DNA interactions. J. Fluoresc., 2020, 30(3), 471-482.
[http://dx.doi.org/10.1007/s10895-020-02510-5] [PMID: 32146651]
[40]
Bora, A.; Maiti, S.K.; Singh, A.; Barman, P. Studies on the effect of remote substituents on the DNA binding activity of novel chiral Schiff bases. J. Mol. Struct., 2021, 1234(2), 130179.
[http://dx.doi.org/10.1016/j.molstruc.2021.130179]
[41]
Jilloju, P.C.; Shyam, P.; Sanjeev, A.; Vedula, R.R. Four-component, one–pot synthesis of (E)-N-benzylidene-3-(benzylthio)-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazol-4-amines and their DNA binding and molecular docking studies. J. Mol. Struct., 2021, 1225, 129140.
[http://dx.doi.org/10.1016/j.molstruc.2020.129140]
[42]
Murtaza, S.; Abbas, A.; Iftikhar, K.; Shamim, S.; Akhtar, M.S.; Razzaq, Z.; Naseem, K.; Elgorban, A.M. Synthesis, biological activities and docking studies of novel 2,4-dihydroxybenzaldehyde based Schiff base. Med. Chem. Res., 2016, 25(12), 2860-2871.
[http://dx.doi.org/10.1007/s00044-016-1711-y]
[43]
Almarhoon, Z.M.; Al-Onazi, W.A.; Alothman, A.A.; Al-Mohaimeed, A.M.; Al-Farraj, E.S. Synthesis, DNA binding, and molecular docking studies of dimethylaminobenzaldehyde-based bioactive schiff bases. J. Chem., 2019, 2019, 1-14.
[http://dx.doi.org/10.1155/2019/8152721]
[44]
Lamani, D.S.; Venugopala Reddy, K.R.; Bhojya Naik, H.S.; Savyasachi, A.; Naik, H.R. Synthesis and DNA binding studies of novel heterocyclic substituted quinoline schiff bases: A potent antimicrobial agent. Nucleosides Nucleotides Nucleic Acids, 2008, 27(10-11), 1197-1210.
[http://dx.doi.org/10.1080/15257770802400081] [PMID: 18788049]
[45]
Tahir, M.; Sirajuddin, M.; Haider, A.; Ali, S.; Nadhman, A.; Rizzoli, C. Synthesis, spectroscopic characterization, crystal structure, interaction with DNA, CTAB as well as evaluation of biological potency, docking and molecular dynamics studies of N-(3,4,5-trimethoxybenzylidene)-2,3-dimethylbenzenamine. J. Mol. Struct., 2019, 1178, 29-38.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.014]
[46]
Nayab, P.S. Akrema; Ansari, I.A.; Shahid, M.; Rahisuddin, New phthalimide‐appended Schiff bases: Studies of DNA binding, molecular docking and antioxidant activities. Luminescence, 2017, 32(5), 829-838.
[http://dx.doi.org/10.1002/bio.3259] [PMID: 28028928]
[47]
Farooqi, S.I.; Arshad, N.; Channar, P.A.; Perveen, F.; Saeed, A.; Larik, F.A.; Javed, A.; Yamin, M. New aryl Schiff bases of thiadiazole derivative of ibuprofen as DNA binders and potential anticancer drug candidates. J. Biomol. Struct. Dyn., 2021, 39(10), 3548-3564.
[http://dx.doi.org/10.1080/07391102.2020.1766569] [PMID: 32397836]
[48]
Bashiri, M.; Jarrahpour, A.; Nabavizadeh, S.M.; Karimian, S.; Rastegari, B.; Haddadi, E.; Turos, E. Potent antiproliferative active agents: Novel bis Schiff bases and bis spiro β-lactams bearing isatin tethered with butylene and phenylene as spacer and DNA/BSA binding behavior as well as studying molecular docking. Med. Chem. Res., 2021, 30(1), 258-284.
[http://dx.doi.org/10.1007/s00044-020-02659-5]
[49]
Ali, I.; Haque, A.; Saleem, K.; Hsieh, M.F. Curcumin-I Knoevenagel’s condensates and their Schiff’s bases as anticancer agents: Synthesis, pharmacological and simulation studies. Bioorg. Med. Chem., 2013, 21(13), 3808-3820.
[http://dx.doi.org/10.1016/j.bmc.2013.04.018] [PMID: 23643901]
[50]
Vikneswaran, R.; Syafiq, M.S.; Eltayeb, N.E.; Kamaruddin, M.N.; Ramesh, S.; Yahya, R. A new thio-Schiff base fluorophore with copper ion sensing, DNA binding and nuclease activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 150, 175-180.
[http://dx.doi.org/10.1016/j.saa.2015.05.087] [PMID: 26046495]
[51]
Saha, U.; Dolai, M.; Konar, S.; Das, A.; Butcher, R.J.; Kumar, G.S.; Mukhopadhyay, S. Design and synthesis of a sulphur containing Schiff base drug: DNA binding studies and theoretical calculations. J. Biomol. Struct. Dyn., 2021, 39(1), 263-271.
[http://dx.doi.org/10.1080/07391102.2019.1708799] [PMID: 31870222]
[52]
Ewert, E.; Pospieszna-Markiewicz, I.; Szymańska, M.; Kurkiewicz, A.; Belter, A.; Kubicki, M.; Patroniak, V.; Fik-Jaskółka, M.A.; Roviello, G.N. New N4-donor ligands as supramolecular guests for DNA and RNA: Synthesis, structural characterization, in silico, spectrophotometric and antimicrobial studies. Molecules, 2023, 28(1), 400.
[http://dx.doi.org/10.3390/molecules28010400] [PMID: 36615615]
[53]
Sultana, R.; Ali, A.; Twala, C.; Mehandi, R.; Rana, M.; Yameen, D.; Abid, M. Rahisuddin. Synthesis, spectral characterization of pyrazole derived Schiff base analogs: Molecular dynamic simulation, antibacterial and DNA binding studies. J. Biomol. Struct. Dyn., 2023, 1-28.
[http://dx.doi.org/10.1080/07391102.2023.2179541] [PMID: 36826451]
[54]
Mehandi, R.; Sultana, R.; Ahmedi, S.; Rana, M.; Manzoor, N.; Javed, S. Rahisuddin; Nishat, N. Oxadiazole schiff base as Fe3+ ion chemosensor: “Turn-off” fluorescent, biological and computational studies. J. Fluoresc., 2023, 33(2), 751-772.
[http://dx.doi.org/10.1007/s10895-022-03083-1] [PMID: 36515760]
[55]
Komor, A.C.; Barton, J.K. The path for metal complexes to a DNA target. Chem. Commun., 2013, 49(35), 3617-3630.
[http://dx.doi.org/10.1039/c3cc00177f] [PMID: 23423158]
[56]
Rambabu, A.; Ganji, N.; Daravath, S.; Venkateswarlu, K.; Rangan, K. Shivaraj, Mononuclear Co(II), Ni(II) and Cu(II) complexes of the Schiff base, 2-(((4-trifluoromethoxy)phenylimino)methyl)-6-tert-butylphenol: Synthesis, spectroscopic characterization, X-ray study and biological evaluation. J. Mol. Struct., 2020, 1199, 127006.
[http://dx.doi.org/10.1016/j.molstruc.2019.127006]
[57]
Neelakantan, M.A.; Balamurugan, K.; Balakrishnan, C.; Subha, L. Interaction of amino acid schiff base metal complexes with DNA/BSA protein and antibacterial activity: Spectral studies, DFT calculations and molecular docking simulations. Appl. Organomet. Chem., 2018, 32(4), e4259.
[http://dx.doi.org/10.1002/aoc.4259]
[58]
Bengi, K.; Maddikayala, S.; Pulimamidi, S.R. DNA binding, cleavage, docking, biological and kinetic studies of Cr(III), Fe(III), Co(II) and Cu(II) complexes with ortho‐vanillin Schiff base derivative. Appl. Organomet. Chem., 2022, 36(1), e6451.
[http://dx.doi.org/10.1002/aoc.6451]
[59]
Senthilkumar, G.S.; Sankarganesh, M.; Dhaveethu Raja, J.; Sakthivel, A.; Vijay Solomon, R.; Mitu, L. Novel metal(II) complexes with pyrimidine derivative ligand: Synthesis, multi-spectroscopic, DNA binding/cleavage, molecular docking with DNA/BSA, and antimicrobial studies. Monatsh. Chem., 2021, 152(2), 251-261.
[http://dx.doi.org/10.1007/s00706-021-02737-3]
[60]
Chandrasekar, T.; Arunadevi, A.; Raman, N. Synthesis, spectral characterization, DNA-binding and antimicrobial profile of biological active mixed ligand Schiff base metal(II) complexes incorporating 1,8-diaminonaphthalene. J. Coord. Chem., 2021, 74(4-6), 804-822.
[http://dx.doi.org/10.1080/00958972.2020.1870967]
[61]
Rao, N.N. kishan, E.; Gopichand, K.; Nagaraju, R.; Ganai, A.M.; Rao, P.V. Design, synthesis, spectral characterization, DNA binding, photo cleavage and antibacterial studies of transition metal complexes of benzothiazole Schiff base. Chemical Data Collections, 2020, 27, 100368.
[http://dx.doi.org/10.1016/j.cdc.2020.100368]
[62]
Sakthivel, A.; Thangagiri, B.; Raman, N.; Joseph, J.; Guda, R.; Kasula, M.; Mitu, L. Spectroscopic, SOD, anticancer, antimicrobial, molecular docking and DNA binding properties of bioactive VO(IV), Cu(II), Zn(II), Co(II), Mn(II) and Ni(II) complexes obtained from 3-(2-hydroxy-3-methoxybenzylidene)pentane-2,4-dione. J. Biomol. Struct. Dyn., 2021, 39(17), 6500-6514.
[http://dx.doi.org/10.1080/07391102.2020.1801508] [PMID: 32794423]
[63]
Rodríguez, M.R.; Lavecchia, M.J.; Parajón-Costa, B.S.; González-Baró, A.C.; González-Baró, M.R.; Cattáneo, E.R. DNA cleavage mechanism by metal complexes of Cu(II), Zn(II) and VO(IV) with a schiff-base ligand. Biochimie, 2021, 186, 43-50.
[http://dx.doi.org/10.1016/j.biochi.2021.04.002] [PMID: 33865903]
[64]
Kargar, H.; Behjatmanesh-Ardakani, R.; Torabi, V.; Kashani, M.; Chavoshpour-Natanzi, Z.; Kazemi, Z.; Mirkhani, V.; Sahraei, A.; Tahir, M.N.; Ashfaq, M.; Munawar, K.S. Synthesis, characterization, crystal structures, DFT, TD-DFT, molecular docking and DNA binding studies of novel copper(II) and zinc(II) complexes bearing halogenated bidentate N,O-donor Schiff base ligands. Polyhedron, 2021, 195, 114988.
[http://dx.doi.org/10.1016/j.poly.2020.114988]
[65]
Aljohani, F.S.; Abu-Dief, A.M.; El-Khatib, R.M.; Al-Abdulkarim, H.A.; Alharbi, A.; Mahran, A.; Khalifa, M.E.; El-Metwaly, N.M. Structural inspection for novel Pd(II), VO(II), Zn(II) and Cr(III)- azomethine metal chelates: DNA interaction, biological screening and theoretical treatments. J. Mol. Struct., 2021, 1246, 131139.
[http://dx.doi.org/10.1016/j.molstruc.2021.131139]
[66]
Abu-Dief, A.M.; El-khatib, R.M.; Aljohani, F.S.; Alzahrani, S.O.; Mahran, A.; Khalifa, M.E.; El-Metwaly, N.M. Synthesis and intensive characterization for novel Zn(II), Pd(II), Cr(III) and VO(II)-Schiff base complexes; DNA-interaction, DFT, drug-likeness and molecular docking studies. J. Mol. Struct., 2021, 1242, 130693.
[http://dx.doi.org/10.1016/j.molstruc.2021.130693]
[67]
Singh, A.; Maiti, S.K.; Gogoi, H.P.; Barman, P. Purine-based Schiff base Co(II), Cu(II), and Zn(II) complexes: Synthesis, characterization, DFT calculations, DNA binding study, and molecular docking. Polyhedron, 2023, 230, 116244.
[http://dx.doi.org/10.1016/j.poly.2022.116244]
[68]
Kumar, S.; Devi, J.; Dubey, A.; Kumar, D.; Jindal, D.K.; Asija, S.; Sharma, A. Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff base ligands: Synthesis, characterization, DFT, in vitro antimicrobial activity and molecular docking studies. Res. Chem. Intermed., 2023, 49(3), 939-965.
[http://dx.doi.org/10.1007/s11164-022-04941-0]
[69]
Singh, A.; Barman, P.; Gogoi, H.P. Thioether-based novel transition metal complexes: Synthesis, DNA interaction, in vitro biological assay, DFT calculations, and molecular docking studies. Bioorg. Chem., 2023, 132, 106343.
[http://dx.doi.org/10.1016/j.bioorg.2023.106343] [PMID: 36623447]
[70]
Lavanya, M.; Haribabu, J.; Ramaiah, K.; Suresh Yadav, C.; Kumar Chitumalla, R.; Jang, J.; Karvembu, R.; Varada Reddy, A.; Jagadeesh, M. 2′-Thiophenecarboxaldehyde derived thiosemicarbazone metal complexes of copper(II), palladium(II) and zinc(II) ions: Synthesis, spectroscopic characterization, anticancer activity and DNA binding studies. Inorg. Chim. Acta, 2021, 524(January), 120440.
[http://dx.doi.org/10.1016/j.ica.2021.120440]
[71]
Jeyaraman, P.; Samuel, M.; Johnson, A.; Raman, N. Synthesis, characterization, ADMET, in vitro and in vivo studies of mixed ligand metal complexes from a curcumin Schiff base and lawsone. Nucleosides Nucleotides Nucleic Acids, 2021, 40(3), 242-263.
[http://dx.doi.org/10.1080/15257770.2020.1867865] [PMID: 33380278]
[72]
Geeth Vincent, S.; Krishna Jyothi, R.R.; Joseph, J. Novel metal complexes of flavone Schiff base: Synthesis, characterization, antioxidant and DNA binding studies. Mater. Today Proc., 2021, 45, 1031-1038.
[http://dx.doi.org/10.1016/j.matpr.2020.03.141]
[73]
Sakthi, M.; Ramu, A. Synthesis, structure, DNA/BSA binding and antibacterial studies of NNO tridentate Schiff base metal complexes. J. Mol. Struct., 2017, 1149, 727-735.
[http://dx.doi.org/10.1016/j.molstruc.2017.08.040]
[74]
Vamsikrishna, N.; Daravath, S.; Ganji, N.; Pasha, N. Shivaraj, Synthesis, structural characterization, DNA interaction, antibacterial and cytotoxicity studies of bivalent transition metal complexes of 6-aminobenzothiazole Schiff base. Inorg. Chem. Commun., 2020, 113(113), 107767.
[http://dx.doi.org/10.1016/j.inoche.2020.107767]
[75]
Maikoo, S.; Booysen, I.N.; Xulu, B.; Rhyman, L.; Ramasami, P. Stabilization of the ruthenium (II) and -(III) centres by chelating N-donor ligands: Synthesis, characterization, biomolecular affinities and computational studies. J. Mol. Struct., 2021, 1244, 130986.
[http://dx.doi.org/10.1016/j.molstruc.2021.130986]
[76]
Yusof, E.N.M.; Latif, M.A.M.; Tahir, M.I.M.; Sakoff, J.A.; Simone, M.I.; Page, A.J.; Veerakumarasivam, A.; Tiekink, E.R.T.; Ravoof, T.B.S.A. o-vanillin derived schiff bases and their organotin(IV) compounds: Synthesis, structural characterisation, in-silico studies and cytotoxicity. Int. J. Mol. Sci., 2019, 20(4), 854.
[http://dx.doi.org/10.3390/ijms20040854] [PMID: 30781445]
[77]
Naik, S.; Parameshwara Naik, P.; Krishnamurthy, G.; Manjuraj, T. Synthesis, characterization, DFT, DNA binding/cleavage studies of schiff base metal (II) complexes. Res. J. Chem. Environ., 2020, 24(10), 93-103.
[78]
Kargar, H.; Behjatmanesh-Ardakani, R.; Torabi, V.; Sarvian, A.; Kazemi, Z.; Chavoshpour-Natanzi, Z.; Mirkhani, V.; Sahraei, A.; Nawaz Tahir, M.; Ashfaq, M. Novel copper(II) and zinc(II) complexes of halogenated bidentate N,O-donor Schiff base ligands: Synthesis, characterization, crystal structures, DNA binding, molecular docking, DFT and TD-DFT computational studies. Inorg. Chim. Acta, 2021, 514, 120004.
[http://dx.doi.org/10.1016/j.ica.2020.120004]
[79]
Kirubavathy, S.J.; Chitra, S. Synthesis, characterization, DFT, In-vitro anti-microbial, cytotoxicity evaluation, and DNA binding interactions of transition metal complexes of quinoxaline Schiff base ligand. Mater. Today Proc., 2020, 33, 2331-2350.
[http://dx.doi.org/10.1016/j.matpr.2020.04.699]
[80]
Maiti, S.K.; Kalita, M.; Singh, A.; Deka, J.; Barman, P. Investigation of DNA binding and bioactivities of thioether containing Schiff base Copper(II), Cobalt(II) and Palladium(II) complexes: Synthesis, characterization, spectrochemical study, viscosity measurement. Polyhedron, 2020, 184, 114559.
[http://dx.doi.org/10.1016/j.poly.2020.114559]
[81]
Mahalakshmi, R.; Raman, N. Enthused research on DNA-binding and DNA-cleavage aptitude of mixed ligand metal complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 112, 198-205.
[http://dx.doi.org/10.1016/j.saa.2013.04.054] [PMID: 23666355]
[82]
Venkateswarlu, K.; Ganji, N.; Daravath, S.; Kanneboina, K.; Rangan, K. Shivaraj, Crystal structure, DNA interactions, antioxidant and antitumor activity of thermally stable Cu(II), Ni(II) and Co(III) complexes of an N,O donor Schiff base ligand. Polyhedron, 2019, 171, 86-97.
[http://dx.doi.org/10.1016/j.poly.2019.06.048]
[83]
Shebl, M. Synthesis, spectroscopic characterization and antimicrobial activity of binuclear metal complexes of a new asymmetrical Schiff base ligand: DNA binding affinity of copper(II) complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 117, 127-137.
[http://dx.doi.org/10.1016/j.saa.2013.07.107] [PMID: 23988527]
[84]
Wang, Y.; Yang, Z.Y. Synthesis, characterization and DNA-binding properties of three 3d transition metal complexes of the schiff base derived from diethenetriamine with PMBP. Trans. Met. Chem., 2005, 30(7), 902-906.
[http://dx.doi.org/10.1007/s11243-005-6298-y]
[85]
Sobha, S.; Mahalakshmi, R.; Raman, N. Studies on DNA binding behaviour of biologically active transition metal complexes of new tetradentate N2O2 donor Schiff bases: Inhibitory activity against bacteria. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 92, 175-183.
[http://dx.doi.org/10.1016/j.saa.2012.02.063] [PMID: 22446764]
[86]
Raman, N.; Jeyamurugan, R.; Subbulakshmi, M.; Boominathan, R.; Yuvarajan, C. Synthesis, DNA binding, and antimicrobial studies of novel metal complexes containing a pyrazolone derivative Schiff base. Chem. Pap., 2010, 64(3), 318-328.
[http://dx.doi.org/10.2478/s11696-010-0003-0]
[87]
Morgan, S.M.; El-Sonbati, A.Z.; Eissa, H.R. Geometrical structures, thermal properties and spectroscopic studies of Schiff base complexes: Correlation between ionic radius of metal complexes and DNA binding. J. Mol. Liq., 2017, 240, 752-776.
[http://dx.doi.org/10.1016/j.molliq.2017.05.114]
[88]
Gubendran, A.; Kesavan, M.P.; Ayyanaar, S.; Mitu, L.; Athappan, P.; Rajesh, J. Non-enolisable Knoevenagel condensate appended Schiff bases-metal (II) complexes: Spectral characteristics, DNA-binding and nuclease activities. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 181, 39-46.
[http://dx.doi.org/10.1016/j.saa.2017.03.031] [PMID: 28319797]
[89]
Raman, N.; Pothiraj, K.; Baskaran, T. DNA-binding, oxidative DNA cleavage, and coordination mode of later 3d transition metal complexes of a Schiff base derived from isatin as antimicrobial agents. J. Coord. Chem., 2011, 64(22), 3900-3917.
[http://dx.doi.org/10.1080/00958972.2011.634005]
[90]
Abdel-Rahman, L.H.; Abu-Dief, A.M.; El-Khatib, R.M.; Abdel-Fatah, S.M. Some new nano-sized Fe(II), Cd(II) and Zn(II) Schiff base complexes as precursor for metal oxides: Sonochemical synthesis, characterization, DNA interaction, in vitro antimicrobial and anticancer activities. Bioorg. Chem., 2016, 69, 140-152.
[http://dx.doi.org/10.1016/j.bioorg.2016.10.009] [PMID: 27816797]
[91]
Mahmood, K.; Hashmi, W.; Ismail, H.; Mirza, B.; Twamley, B.; Akhter, Z.; Rozas, I.; Baker, R.J. Synthesis, DNA binding and antibacterial activity of metal(II) complexes of a benzimidazole Schiff base. Polyhedron, 2019, 157, 326-334.
[http://dx.doi.org/10.1016/j.poly.2018.10.020]
[92]
Hosny, N.M.; Hussien, M.A.; Radwan, F.M.; Nawar, N. Synthesis, spectral characterization and DNA binding of Schiff-base metal complexes derived from 2-amino-3-hydroxyprobanoic acid and acetylacetone. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 132, 121-129.
[http://dx.doi.org/10.1016/j.saa.2014.04.165] [PMID: 24858353]
[93]
Raman, N.; Selvan, A.; Sudharsan, S. Metallation of ethylenediamine based Schiff base with biologically active Cu(II), Ni(II) and Zn(II) ions: Synthesis, spectroscopic characterization, electrochemical behaviour, DNA binding, photonuclease activity and in vitro antimicrobial efficacy. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 79(5), 873-883.
[http://dx.doi.org/10.1016/j.saa.2011.03.017] [PMID: 21550840]
[94]
Niu, M.; Hong, M.; Chang, G.; Li, X.; Li, Z. A comparative study of cytotoxicity and interaction with DNA/protein of five transition metal complexes with Schiff base ligands. J. Photochem. Photobiol. B, 2015, 148, 232-241.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.04.023] [PMID: 25974907]
[95]
Khan, N.H.; Pandya, N.; Prathap, K.J.; Kureshy, R.I.; Abdi, S.H.R.; Mishra, S.; Bajaj, H.C. Chiral discrimination asserted by enantiomers of Ni(II), Cu(II) and Zn(II) Schiff base complexes in DNA binding, antioxidant and antibacterial activities. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 81(1), 199-208.
[http://dx.doi.org/10.1016/j.saa.2011.06.002] [PMID: 21723189]
[96]
Shakir, M.; Abbasi, A.; Azam, M.; Khan, A.U. Synthesis, spectroscopic studies and crystal structure of the Schiff base ligand L derived from condensation of 2-thiophenecarboxaldehyde and 3,3′-diaminobenzidine and its complexes with Co(II), Ni(II), Cu(II), Cd(II) and Hg(II): Comparative DNA binding studies of L and its Co(II), Ni(II) and Cu(II) complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 79(5), 1866-1875.
[http://dx.doi.org/10.1016/j.saa.2011.05.077] [PMID: 21715221]
[97]
Arish, D.; Nair, M.S. Synthesis, spectroscopic, antimicrobial, DNA binding and cleavage studies of some metal complexes involving symmetrical bidentate N, N donor Schiff base ligand. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 82(1), 191-199.
[http://dx.doi.org/10.1016/j.saa.2011.07.031] [PMID: 21855399]
[98]
Aboafia, S.A.; Elsayed, S.A.; El-Sayed, A.K.A.; El-Hendawy, A.M. New transition metal complexes of 2,4-dihydroxybenzaldehyde benzoylhydrazone Schiff base (H2dhbh): Synthesis, spectroscopic characterization, DNA binding/cleavage and antioxidant activity. J. Mol. Struct., 2018, 1158, 39-50.
[http://dx.doi.org/10.1016/j.molstruc.2018.01.008]
[99]
Liu, Z.C.; Yang, Z.Y.; Li, T.R.; Wang, B.D.; Li, Y.; Wang, M.F. DNA-binding, antioxidant activity and solid-state fluorescence studies of Copper(II), Zinc(II) and Nickel(II) complexes with a Schiff base derived from 2-oxo-quinoline-3-carbaldehyde. Trans. Met. Chem., 2011, 36(5), 489-498.
[http://dx.doi.org/10.1007/s11243-011-9494-y]
[100]
Raman, N.; Mahalakshmi, R.; Mitu, L. Bio-sensitive activities of coordination compounds containing 1,10-phenanthroline as co-ligand: Synthesis, structural elucidation and DNA binding properties of metal(II) complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 131, 355-364.
[http://dx.doi.org/10.1016/j.saa.2014.04.114] [PMID: 24835939]
[101]
Yarkandi, N.H.; El-Ghamry, H.A.; Gaber, M. Synthesis, spectroscopic and DNA binding ability of CoII, NiII, CuII and ZnII complexes of Schiff base ligand (E)-1-(((1H-benzo[d]imidazol-2-yl)methylimino)methyl)naphthalen-2-ol. X-ray crystal structure determination of cobalt (II) complex. Mater. Sci. Eng. C, 2017, 75, 1059-1067.
[http://dx.doi.org/10.1016/j.msec.2017.02.171] [PMID: 28415390]
[102]
Chandrasekar, T.; Raman, N. Exploration of cellular DNA lesion, DNA-binding and biocidal ordeal of novel curcumin based Knoevenagel Schiff base complexes incorporating tryptophan: Synthesis and structural validation. J. Mol. Struct., 2016, 1116, 146-154.
[http://dx.doi.org/10.1016/j.molstruc.2016.02.102]
[103]
Venkateswarlu, K.; Kumar, M.P.; Rambabu, A.; Vamsikrishna, N.; Daravath, S.; Rangan, K. Shivaraj, Crystal structure, DNA binding, cleavage, antioxidant and antibacterial studies of Cu(II), Ni(II) and Co(III) complexes with 2-((furan-2-yl)methylimino)methyl)-6-ethoxyphenol Schiff base. J. Mol. Struct., 2018, 1160, 198-207.
[http://dx.doi.org/10.1016/j.molstruc.2018.02.004]
[104]
Abdel-Rahman, L.H.; Abu-Dief, A.M.; Ismael, M.; Mohamed, M.A.A.; Hashem, N.A. Synthesis, structure elucidation, biological screening, molecular modeling and DNA binding of some Cu(II) chelates incorporating imines derived from amino acids. J. Mol. Struct., 2016, 1103, 232-244.
[http://dx.doi.org/10.1016/j.molstruc.2015.09.039]
[105]
Mishra, M.; Tiwari, K.; Shukla, S.; Mishra, R.; Singh, V.P. Synthesis, structural investigation, DNA and protein binding study of some 3d-metal complexes with N′-(phenyl-pyridin-2-yl-methylene)-thiophene-2-carboxylic acid hydrazide. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 132, 452-464.
[http://dx.doi.org/10.1016/j.saa.2014.05.007] [PMID: 24892525]
[106]
Al-Mogren, M.M.; Alaghaz, A.N.M.A.; Ebrahem, E.A. Synthesis, spectroscopic, molecular orbital calculation, cytotoxic, molecular docking of DNA binding and DNA cleavage studies of transition metal complexes with N-benzylidene-N′-salicylidene-1,1-diaminopropane. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 114, 695-707.
[http://dx.doi.org/10.1016/j.saa.2013.05.079] [PMID: 23831943]
[107]
Kalaivani, P.; Prabhakaran, R.; Poornima, P.; Dallemer, F.; Vijayalakshmi, K.; Padma, V.V.; Natarajan, K. Versatile coordination behavior of salicylaldehydethiosemicarbazone in ruthenium(II) carbonyl complexes: Synthesis, spectral, X-ray, electrochemistry, DNA binding, cytotoxicity, and cellular uptake studies. Organometallics, 2012, 31(23), 8323-8332.
[http://dx.doi.org/10.1021/om300914n]
[108]
Kavitha, B.; Sravanthi, M.; Saritha Reddy, P. DNA interaction, docking, molecular modelling and biological studies of o-Vanillin derived Schiff base metal complexes. J. Mol. Struct., 2019, 1185, 153-167.
[http://dx.doi.org/10.1016/j.molstruc.2019.02.093]
[109]
Keypour, H.; Forouzandeh, F.; Salehzadeh, S.; Hajibabaei, F.; Feizi, S.; Karamian, R.; Ghiasi, N.; Gable, R.W. DNA binding studies and antibacterial properties of a new Schiff base ligand containing homopiperazine and products of its reaction with Zn(II), Cu(II) and Co(II) metal ions: X-ray crystal structure of Cu(II) and Zn(II) complexes. Polyhedron, 2019, 170, 584-592.
[http://dx.doi.org/10.1016/j.poly.2019.06.023]
[110]
Raman, N.; Sakthivel, A.; Pravin, N. Exploring DNA binding and nucleolytic activity of few 4-aminoantipyrine based amino acid Schiff base complexes: A comparative approach. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 125, 404-413.
[http://dx.doi.org/10.1016/j.saa.2014.01.108] [PMID: 24566120]
[111]
Abdel Aziz, A.A.; Elantabli, F.M.; Moustafa, H.; El-Medani, S.M. Spectroscopic, DNA binding ability, biological activity, DFT calculations and non linear optical properties (NLO) of novel Co(II), Cu(II), Zn(II), Cd(II) and Hg(II) complexes with ONS Schiff base. J. Mol. Struct., 2017, 1141, 563-576.
[http://dx.doi.org/10.1016/j.molstruc.2017.03.081]
[112]
Pradeepa, S.M.; Bhojya Naik, H.S.; Vinay Kumar, B.; Indira Priyadarsini, K.; Barik, A.; Jayakumar, S. Synthesis and characterization of Cobalt(II), Nickel(II) and Copper(II)-based potential photosensitizers: Evaluation of their DNA binding profile, cleavage and photocytotoxicity. Inorg. Chim. Acta, 2015, 428, 138-146.
[http://dx.doi.org/10.1016/j.ica.2014.12.032]
[113]
Hussien, M.A.; Nawar, N.; Radwan, F.M.; Hosny, N.M. Spectral characterization, optical band gap calculations and DNA binding of some binuclear Schiff-base metal complexes derived from 2-amino-ethanoic acid and acetylacetone. J. Mol. Struct., 2015, 1080, 162-168.
[http://dx.doi.org/10.1016/j.molstruc.2014.09.071]
[114]
Packianathan, S.; Raman, N. Stimulated DNA binding by metalloinsertors having the 4-formyl-N,N-dimethylaniline Schiff base: Synthesis and characterization. Inorg. Chem. Commun., 2014, 45, 55-60.
[http://dx.doi.org/10.1016/j.inoche.2014.04.004]
[115]
Basha, M.T.; Alghanmi, R.M.; Shehata, M.R.; Abdel-Rahman, L.H. Synthesis, structural characterization, DFT calculations, biological investigation, molecular docking and DNA binding of Co(II), Ni(II) and Cu(II) nanosized Schiff base complexes bearing pyrimidine moiety. J. Mol. Struct., 2019, 1183, 298-312.
[http://dx.doi.org/10.1016/j.molstruc.2019.02.001]
[116]
Sujarani, S.; Ramu, A. Docking of imines, cytotoxicity and DNA interaction studies of metal(II) complexes. J. Mol. Struct., 2014, 1059(1), 299-308.
[http://dx.doi.org/10.1016/j.molstruc.2013.11.038]
[117]
Pandiyan, R.P.; Raman, N. Biological screening and DNA nuclease activity of transition metal complexes of N2O2 type of Knoevenagel condensate Schiff base. Appl. Organomet. Chem., 2016, 30(7), 531-539.
[http://dx.doi.org/10.1002/aoc.3466]
[118]
Asatkar, A.K.; Nair, S.; Verma, V.K.; Verma, C.S.; Jain, T.A.; Singh, R.; Gupta, S.K.; Butcher, R.J. Syntheses of phenoxo-bridged Zn(II) and metallamacrocyclic Hg(II) complexes of organochalcogen (Se, Te) substituted Schiff-bases: Structure and DNA-binding studies of Zn(II) complexes. J. Coord. Chem., 2012, 65(1), 28-47.
[http://dx.doi.org/10.1080/00958972.2011.639874]
[119]
Paulpandiyan, R.; Raman, N. DNA binding propensity and nuclease efficacy of biosensitive Schiff base complexes containing pyrazolone moiety: Synthesis and characterization. J. Mol. Struct., 2016, 1125, 374-382.
[http://dx.doi.org/10.1016/j.molstruc.2016.07.003]
[120]
Kumaravel, G.; Raman, N. A treatise on benzimidazole based Schiff base metal(II) complexes accentuating their biological efficacy: Spectroscopic evaluation of DNA interactions, DNA cleavage and antimicrobial screening. Mater. Sci. Eng. C, 2017, 70(Pt 1), 184-194.
[http://dx.doi.org/10.1016/j.msec.2016.08.069] [PMID: 27770880]
[121]
Abdel-Rahman, L.H.; Abdelghani, A.A.; AlObaid, A.A.; El-ezz, D.A.; Warad, I.; Shehata, M.R.; Abdalla, E.M. Novel bromo and methoxy substituted Schiff base complexes of Mn(II), Fe(III), and Cr(III) for anticancer, antimicrobial, docking, and ADMET studies. Sci. Rep., 2023, 13(1), 3199.
[http://dx.doi.org/10.1038/s41598-023-29386-2] [PMID: 36823294]
[122]
Acharya, P.; Kuila, A.; Pramanik, U.; Hathwar, V.R.; Brandao, P.; Mukherjee, S.; Maity, S.; Maity, T.; Maity, R.; Chandra Samanta, B. Combined theoretical and experimental insights on DNA and BSA binding interactions of Cu(II) and Ni(II) complexes along with the DPPH method of antioxidant assay and cytotoxicity studies. RSC Advances, 2023, 13(11), 7632-7644.
[http://dx.doi.org/10.1039/D2RA08341H] [PMID: 36908538]
[123]
Al-Rashdi, K.S.; Babgi, B.A.; Ali, E.M.M.; Jedidi, A.; Emwas, A.H.M.; Davaasuren, B.; Jaremko, M.; Humphrey, M.G. Tuning anticancer properties and DNA-binding of Pt(II) complexes via alteration of nitrogen softness/basicity of tridentate ligands. RSC Advances, 2023, 13(14), 9333-9346.
[http://dx.doi.org/10.1039/D3RA00395G] [PMID: 36959884]
[124]
Bashir, M.; Dar, A.A.; Yousuf, I. Syntheses, structural characterization, and cytotoxicity assessment of novel Mn(II) and Zn(II) complexes of aroyl-hydrazone schiff base ligand. ACS Omega, 2022, 8(3), 3026-3042.
[http://dx.doi.org/10.1021/acsomega.2c05927]
[125]
Mandal, S.; Naskar, R.; Mondal, A.S.; Bera, B.; Mondal, T.K. Facile synthesis of novel NNO-tethered Copper(II) complexes: characterization details, theoretical studies, promising enzyme-like activities, and biomolecular interactions. Dalton Trans., 2023, 52(18), 5983-5998.
[http://dx.doi.org/10.1039/D2DT04170G] [PMID: 37039520]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy